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Positive solutions to Yamabe-type
equations by shooting methods
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Abstract. We will survey certain multiplicity results obtained for
positive solutions of the Yamabe equation on closed manifolds. Many
of these results were obtained using bifurcation theory. The strongest
results appeared when the Yamabe equation can be reduced to an
ordinary differential equation and global bifurcation theory can be
applied. We will discuss how these results can be prove applying
shooting methods, without using bifurcation theory.
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1 Introduction

Consider a closed Riemannian manifold (M, g) of dimension n ≥ 3. It
is a classical, important problem to understand the family of metrics ĝ,
conformally equivalent to g, which have constant scalar curvature.

The first basic question is of course if there is at least one such confor-
mal metric. Research on this problem started with the work of H. Yamabe
in the classical article [30]. Yamabe considered the infimum of the (nor-
malized) total scalar functional S, restricted to the conformal class of g,
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which is the family of metrics conformally equivalent to g and is denoted
by [g]. Namely, consider

Y (M, [g]) := inf
h∈[g]

∫
M sh dvolh

(V ol(M,h))
n−2
n

= inf
h∈[g]

S(h),

where dvolh denotes the volume element of h and sh is the scalar curvature
of h. Y (M, [g]) is now usually called the Yamabe constant of the conformal
class [g]. By a direct computation one can see that the critical points of S
restricted to [g] are the metrics in [g] which have constant scalar curvature.
Yamabe then tried to show the existence of a metric of constant scalar
curvature in [g] by proving that the infimum Y (M, [g]) is realized. While
the main ideas in the argument were correct, there was an important error
in the proof. This was pointed out (and fixed under certain conditions) by
N. Turdinger in [29]. Important progress was later obtained by T. Aubin
[1]. Aubin showed in particular that Y (M, [g]) ≤ Y (Sn, [gn0 ]), where n is
the dimension of M and gn0 is the round metric on the sphere: this is now
called Aubin’s inequality. Aubin also showed that Y (M, [g]) is realized if
the inequality is strict, and proved that this is actually the case in many
situations. The problem was finally settled by R. Schoen [25], proving the
strict inequality in the remaining cases and therefore giving the proof that
in all conformal classes of metrics in any closed Riemannian manifold there
exists at least one metric of constant scalar curvature.

The total scalar curvature functional S restricted to the conformal class
of a metric g can be expressed in terms of g and the conformal factor. If
we write the conformal metric h ∈ [g] as h = u4/(n−2)g, where u ∈ C∞(M),

u > 0, we obtain

S(h) = Yg(u) :=

∫
M

4(n−1)
n−2 |∇u|g + sgu

2 dvolg(∫
|u|pn+1 dvolg

)2/(pn+1)
,

where pn := n+2
n−2 is the critical Sobolev exponent. Yg is called the Yamabe

functional and its Euler-Lagrange equation is the Yamabe equation:

−4(n− 1)

n− 2
∆gu+ sgu = λupn , u ∈ C∞(M), (1.1)
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where ∆g is the Laplace-Beltrami operator and λ ∈ R. In fact, h has
constant scalar curvature λ if and only if u is a positive solution to this
equation.

It is easy to see that in case Y (M, [g]) ≤ 0 then a constant scalar cur-
vature metric that realizes the Yamabe constant is, up to scaling, the only
metric of constant (non-positive) scalar curvature in [g]. But solutions in
general are not unique in the case Y (M, [g]) > 0, and there has been many
important results studying the space of positive solutions of the Yamabe
equation in this case. The most important example in the theory is per-
haps the conformal class of the metric of constant sectional on the sphere,
which we will denote as before by (Sn, gn0 ). In this example there is a non-
compact family of conformal diffeomorphisms, which give a noncompact
family of positive solutions to the Yamabe equation. These are actually
all the solutions to the Yamabe equation on (Sn, gn0 ). The corresponding
conformal metrics are of course all isometric to gn0 and in particular are
minimizers for the Yamabe funcional. R. Schoen asked if (Sn, gn0 ) was
actually the only closed Riemannian manifold with a non-compact set of
positive solutions to the Yamabe equation [26, 27]. This question is very
deep and rich. It turned out that there are other examples of Riemannian
manifolds for which the set of positive solutions of the Yamabe equation
is not compact, in dimension at least 25. See [6, 7, 8] and the references
in these articles for more details on this problem.

There are also some particular situations when one can prove that
solutions are not unique. For instance under the presence of symmetries,
studying the equivariant problem as in the work by E. Hebey and M.
Vaugon [15]. Also in the case of Riemannian products. If (M, g), (N,h)

are closed Riemannian manifolds of constant scalar curvature and sg is
positive, then by a direct computation it is easy to check that limδ→0 S(h+

δg) = +∞. Therefore for δ small, the product metric cannot be a Yamabe
minimizer since it does not verify Aubin’s inequality. It then follows that
there is at least one other solution, a Yamabe minimizer. An important
particular example is given by the cylinders (S1, dt2) × (Sn, δgn0 ). One
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can study the Yamabe equation in these cases by looking at the universal
Riemannian covering, which is R × Sn. Since R × Sn is conformal to
the punctured Euclidean n + 1-space, Rn+1 − {0}, studying the Yamabe
equation on R× Sn is equivalent to the study of solutions to the Yamabe
equation on the Euclidean space with singularities at 0 and ∞. But it is
known that all such solutions are radial by a result in [9]. This says that all
solutions of the Yamabe equation on the products (S1, dt2)× (Sn, δgn0 ) are
actually functions which depend only on the circle, as was pointed out in
[19, 28]. The problem is then reduced to an ordinary differential equation
on the circle. R. Schoen in [28] gave a detailed study the solutions by
considering the phase space of the corresponding autonomous system, in
particular showing that the number of solutions goes to infinity as δ → 0.

For general Riemannian products one does not know that solutions
depend only on one of the factors but many multiplicity results have been
obtained by looking for solutions which do depend on only one of the fac-
tors. This is done mostly using bifurcation theory. We wil give a brief
discussion on bifurcation theory and its applications to the Yamabe equa-
tion in the next section.

2 Multiplicity results for the Yamabe equation by
bifurcation theory

Given Banach spaces X, Y , consider a map F : X × R → Y and the
equation

F (x, λ) = 0.

We assume that we are in the situation when there is a canonical one
parameter family of solutions, which depends on λ. To simplify the dis-
cussion, we assume now that this canonical family of solutions is given by
x = 0, F (0, λ) = 0 for all λ. To study the problem one needs to assume
certain regularity for the map F . Let us assume in this discussion that
the map F is of class C2, to avoid any technical issue. Fix a point (0, λ0)
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in the canonical family of solutions, which we will call the family of triv-
ial solutions. Bifurcation theory deals with the problem of understanding
the space of solutions close to (0, λ0). To do this consider the differen-
tial of F , D(0,λ0)F . Since the derivative in the direction of λ vanishes,
DλF (0, λ0) = 0, the information comes from DxF (0, λ0). If DxF (0, λ0)

were an isomorphism then we can apply the Implicit Function Theorem for
Banach spaces to prove that in a neighborhood of (0, λ0) all solutions are
given by the canonical solutions in the neighborhood. In this situation the
point (0, λ0) is called a locally rigid element of the family. In the opposite
situation, when (0, λ0) is an accumulation point of non-trivial solutions,
it is said that (0, λ0) is a bifurcation point. Then for (0, λ0) to be a bifur-
cation point it is necessary that DxF (0, λ0) is not an isomorphism. But
in general it is not a sufficient condition and it is often a very delicate
issue to decide if a point where DxFf(0, λ0) is not an isomorphism, is a
bifurcation point or not.

Under certain general hypothesis, to see if such a point is indeed a
bifurcation point, and to understand the space of solutions around such a
point is determined by what is called the bifurcation equation: asume that
DxF (0, λ0) is a Fredholm operator, X = V ⊕W , where V is the kernel of
DxF (0, λ0) and it is finite dimensional and W is closed, and Y = R ⊕ Z

where Z is finite dimensional and R is the range of DxF (0, λ0) and it is
closed. Let P : Y → Z, Q : Y → R be the projections. The equation
F (x, λ) = 0 is of course equivalent to the couple of equations

P (F (x, λ)) = 0, Q(F (x, λ)) = 0.

Applying the Implicit Function Theorem to Q ◦ F we obtain that in
a neighborhood U of (0, λ0) ∈ V ⊕ R there exists a function I : U → W ,
I(0, λ0) = 0, such that locally Q◦F (v, w, λ) = 0 if and only if w = I(v, λ).
Then locally the equation F (v, w, λ) = 0 is equivalent to the bifurcation
equation:

B(v, λ) = P (F (v, I(v, λ), λ) = 0.

Then (0, λ0) is a bifurcation point if and only if the bifurcation equation
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has a sequence of nontrivial solutions converging to (0, λ0). Note that the
bifurcation equation is a finite dimensional equation in a finite number of
variables; this is usually called the Lyapunov-Schmidt reduction.

To apply bifurcation theory to the Yamabe equation one has to fix a
family of constant scalar curvature metrics on a manifold, and consider
the Yamabe equation on each metric in the family. The general setup was
considered by L. L. de Lima, P. Piccione and M. Zedda in [13].

Consider a family gλ of Riemannian metrics on the closed manifold M

which have constant positive scalar curvature. The necessary condition
to have bifurcation at gλ0 is given in [13, Proposition 3.1]: If gλ0 is a
bifurcation point then

sgλ0
n−1 is an eigenvalue of −∆gλ0

.

In the previous situation, if gλ0 satisfies that
sgλ0
n−1 is an eigenvalue of

−∆gλ0
we say that gλ0 is a degeneracy point for the family. A sufficient

condition to have bifurcation at a degeneracy point gλ0 is obtained in [13,
Theorem 3.3]: Let nλ be the dimension of the space of eigenfunctions
corresponding to eigenvalues strictly less than sgλ

n−1 . Assume that ε > 0 is
such that on [λ0 − ε, λ0 + ε], gλ0 is the only degeneracy point. If nλ0−ε ̸=
nλ0+ε then gλ0 is a bifurcation point.

It might happen that all points are degeneracy points and even if one
has an isolated degeneracy point it might happen that there is no jump
in nλ as λ passes through the degeneracy point, so one could not decide
if it is a bifurcation point using the previous result. But one sees that in
general one can normalize the scalar curvatures to take the same constant
value in the family and one could know which are the bifurcations points
for the family if one knows the eigenvalues of the Laplacian for the metrics
in the family. But, of course, to compute the Laplace spectrum is a very
difficult problem in general.

One situation that can be worked out more explicitly is the case of the
Riemannian products already mentioned in the introduction. If (M1, g1),
(M2, g2) are Riemannian manifolds of constant scalar curvature there is a
canonical family of metrics of constant scalar curvature: λ > 0 7→ gλ =

g1+λg2. Note that sgλ
= sg1 +λ−1sg2 and the spectrum of gλ is given by
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the combinations αi+λ−1βj , where αi is an eigenvalue of (M1g1) and βj is
an eigenvalue of (M2, g2). Then one can understand the bifurcation prob-
lem for this family of metrics if one can compute the scalar curvature and
Laplace spectrum of both factors, g1 and g2. Except for some degenerate
situations, in the case when both sg1 and sg2 are positive, one can prove
that the set of bifurcation points is discrete and consists of sequences of
values of λ going to 0 and to ∞, see [13, Theorem 4.5].

A more general situation is to consider the total space of a Riemannian
submersion. One obtains a canonical family of metrics on the total space
by multiplying the metric along the fibers by a constant λ > 0. One needs
to impose certain restrictions on the fibration to make sure that the scalar
curvature is constant for the metrics in the family. But even in the most
favorable cases the study of the spectrum of the Laplacian in the total
space is much more complicated than in the case of Riemannian products.
See the article by R. Bettiol and P. Piccione [4], for a discussion of this
situation.

There is a way to simplify the previous discussion and which still cap-
tures many of the multiplicity results obtained. In the case of a Rie-
mannian product (M1, g1) × (M2, g2) of closed Riemannian manifolds of
constant positive scalar curvature we can consider (this was already men-
tioned in the introduction when discussing the case of the cylinders) the
Yamabe equation of the product gλ = g1 + λg2 restricted to functions on
M1. In the case of the canonical variation of a Riemannian submersion,
we can do the same trick assuming that the submersion is harmonic [22],
so that the Laplacians of the total space and of the base commute, as long
as the scalar curvature of the total space stays constant. One therefore
studies solutions of an equation of the form

−∆g1u+ λu = λuq. (2.1)

In the equation λ is a positive constant, related to the scalar curvature of
the total space, and q = pn1+n2 , where ni is the dimension of Mi. Note
that pn1+n2 < pn1 .
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An equation like (2.1) is called a Yamabe type equation. The equation
is called critical if q = pn, subcritical if q < pn and supercritical if q >

pn. We will discuss bifurcation for these equations in the next section.
From the previous comments the results will imply multiplicity results for
the Yamabe equation on certain Riemannian products or total spaces of
Riemannian submersions.

3 Yamabe-type equations: reduction to an ODE
and global bifurcation

We consider now the Yamabe-type equation (2.1) with λ > 0, q > 1, on
a fixed closed Riemannian manifold (Mn, g). To apply bifurcation theory
in this situation we consider the map F : C2,α(M) × (0,∞) → C0,α(M),
given by F (u, λ) = −∆u+λu−λuq: and study bifurcation, for the equation
f(u, λ) = 0, from the trivial family of solutions (1, λ).

Note that DuF (1, λ)[v] = −∆v + λ(1 − q)v. Following the discussion
in the previous section it is easy to see that the bifurcation points of the
family are exactly the points (1, λi), where λi(q − 1) is an eigenvalue of
−∆. Therefore we can understand which are the bifurcation points for
the family as long as one knows the eigenvalues of the Laplacian. We will
discuss now how we can obtain global bifurcation results in certain cases
by reducing the equation to an ordinary differrential equation.

The simplest case where one can reduce Equation (2.1) to an ordinary
differential is on Riemannian manidols which admit an isometric coho-
mogeneity one action. If we restrict the equation to functions which are
invariant by the action then we reduce the equation to an ordinary differ-
ential equation on the orbit space, with singularities in the singular orbits.
More generally, we can consider functions which are constant along the
level sets of an isoparametric function. If (Mn, g) is a Riemannian man-
ifold, then a smooth function f : M → [c, d] is called an isoparametric
function if there exist a continuous function a and a smooth function b
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such that

|∇f |2g = b ◦ f, and ∆gf = a ◦ f.

An isoparametric function is called proper if its level sets are connected.
We will assume that the isoparametric functions we consider are proper,
although it will be necessary only in a few situations. The level sets of
an isoparametric function are called isoparametric hypersurfaces. An im-
mediate consequence of the definition of an isoparametric function is the
following reduction of a partial differential equation on (M, g) into an or-
dinary differential equation on the closed interval [c, d] ⊂ R.

Proposition 3.1. Let (M, g) be a closed Riemannian manifold and f :

M → [c, d] be an isoparametric function with c < d and |∇f |2g = b ◦ f

and ∆gf = a ◦ f . Then, for any function φ : R → R, ϕ : [c, d] → R is a
solution to the problem

−bϕ′′ − aϕ′ = φ(ϕ) in [c, d], (3.1)

if and only if u = ϕ ◦ f is a solution to the problem

−∆gu = φ(u) on M.

The proof of this Proposition follows directly from the identity ∆g(v◦f) =
(v′′ ◦ f)|∇f |2g + (v′ ◦ f)∆gf .

These ideas can be applied to general Riemannian manifolds, as it was
done for instance in [3], but we will restrict now to the case of the round
sphere (Sn, gn0 ). We will make this restriction to simplify the discussion,
and also because the round sphere admits a very rich family of isopara-
metric functions.

E. Cartan [10] proved that, in the case of a space form (M, g), a hy-
persurface S ⊂ M is isoparametric (according to the previous definition)
if and only if it has constant principal curvatures. In particular, the reg-
ular orbits of a cohomogeneity one action are examples of isoparametric
hypersurfaces: they are called homogeneous.
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We will give now a brief discussion of the theory of isoparametric hy-
persurfaces in the sphere (Sn, gn0 ). See [11] for more details on this and
on isoparametric hypersurfaces in general. If we denote by ℓ the number
of distinct principal curvatures of a fixed isoparametric hypesurface in the
sphere (Sn, gn0 ), we have that that ℓ = 1, 2, 3, 4 or 6. If ℓ is odd, all the
multiplicities of the principal curvatures are the same, while if ℓ is even,
there are, at most, two different multiplicities m1 and m2 (see the articles
by H. F. Münzner, [20, 21]).

It is easy to see that if f is a proper isoparametric function and φ is
a monotone function defined on the range of f then φ ◦ f is also a proper
isoparametric function, with the same level sets. In the case of the sphere
there is a way to pick certain particular isoparametric function within this
family. After composition as before, all proper isoparametric functions on
the sphere are the restrictions of Cartan-Münzner polynomials on Rn+1

([20, 21]). A Cartan-Münzner polynomial is a polynomial F in Rn+1 of
degree d which satisfies the Cartan-Münzner equations:

⟨∇F,∇F ⟩ = d2∥x∥2d−2

∆F =
1

2
cd2∥x∥d−2,

where c is a constant, which we will describe below. Then f = F|Sn is an
isoparametric function on the sphere: it verifies

⟨∇f,∇f⟩ = d2(1− f2)

∆f = −d(n+ d− 1)f +
1

2
cd2.

It is easy to see that f : Sn → [−1, 1] and its only critical values are
-1 and 1. For t ∈ (−1, 1) f−1(t) is called an isoparametric hypersurface
of degree d, and d = ℓ, the number of distinct principal curvatures. In
case d is odd we have that c = 0. If d = 2, 4 or 6 then half of principal
curvatures have multiplicity m1 and the other half have multiplicity m2,
and the constant c is m2 −m1.
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We will denote an isoparametric function on the sphere by fd,c (but
note that there are different Cartan-Münzner polynomials with the same
values of d and c).

Note that if φ ∈ C2[−1, 1] then ∆(φ ◦ fd,c) = d2(1 − (fd,c)2) (φ′′ ◦
fd,c) + (−d(n + d − 1)fd,c + (1/2)cd2) (φ′ ◦ fd,c). And therefore, as in
Proposition 3.1, φ ◦ fd,c satisfies Equation (2.1) if and only if φ satisfies

d2(1−t2)φ′′(t)+(−d(n+d−1)t+(1/2)cd2)φ′(t)−λ(φ(t)−φ(t)q) = 0. (3.2)

Given an isoparametric function f , let Sf = {φ ◦ f : φ : [−1, 1] → R}.
Let Ck,α

f = Ck,α ∩ Sf . We will look for solutions of Equation (2.1) in Sf

applying bifurcation theory. We will sometines denote a function φ◦f ∈ Sf

simply by φ: we hope that this will not cause any confusion.
Then consider F : C2,α

f × (0,∞) → C0,α
f , F (φ ◦ f, λ) =[

d2(1− t2)φ′′(t) + (−d(n+ d− 1)t+ (1/2)cd2)φ′(t)− λ(φ(t)− φ(t)q)
]
◦f.

Note that DφF (1, λ)[v] = d2(1−t2)v′′(t)+(−d(n+d−1)t+(1/2)cd2)v′(t)−
λ(1 − q)v. To find the possible bifurcation points we have to solve the
equation

d2(1− t2)v′′(t)+(−d(n+d−1)t+(1/2)cd2)v′(t)−λ(1−q)v(t) = 0, (3.3)

where t ∈ [−1, 1]. A solution must verify the initial condition

(−d(n+ d− 1)(−1) + (1/2)cd2)v′(−1)− λ(1− q)v(−1) = 0.

The space of solutions of the initial value problem verifying this condition
has dimension 1. One solves the initial value problem with any pair of
initial values (v(−1), v′(−1)) satisfying this condition, and checks if the
solution is defined on all of [−1, 1], verifying

(−d(n+ d− 1)(1) + (1/2)cd2)v′(1)− λ(1− q)v(1) = 0.

This linear problem is actually well known. A nontrivial solution of the
equation exists if and only if λ(q−1) = dk(n+dk−1) for some nonnegative
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integer k. The corresponding equation for λ = λk = dk(n+dk−1)
q−1 is the

classical Jacobi equation and a solution is a polynomial of degree k called
a Jacobi polynomial, which we will denote by Pk (see [2, Sections 1,2] for
the details on Jacobi polynomials used in this article). It is easy to see
from the discussion in the previous two sections that all these λk’s give
bifurcation points for the Equation (3.2). But more explicit information
can be given in this situation. It is easy to check that DφF (1, λ) : C2,α →
C0,α is self adjoint with respect to a weighted L2 inner product on [−1, 1],
see [2, Lemma 3.1]. In particular both the kernel and cokernel are 1-
dimensional and the bifurcation equation from Section 2 is given by a real
valued function B of two variables. The point (1, λk) is a critical point
of the function B. As F (1, λ) = 0 we have that ∂2B/∂λ2 = 0. And a
straightforward computation shows that ∂2B/∂λ∂v ̸= 0 (see the proof in
[2, Theorem 3.2]. It follows that (1, λk) is a nondegenerate critical point
of the bifurcation function B, of index one. Then we can apply the Morse
Lemma to show that up to diffeomorphism the space of solution around
(1, λk) looks like the space of solutions of x2 − y2 = 0 near (0, 0) ∈ R2.
Therefore the space of solutions in a neighborhood consists of two curves.
One is the curve (1, λ) of trivial solutions and there is another curve, of
non-trivial solutions. This is essentially the content of the classical result
of Crandall and Rabinowitz on the bifurcation from simple eigenvalues,
see [12]. But in this case one can also say something about the global
structure of the space of solutions. The first important point is that the
number of critical points of a nontrivial solution of Equation (3.2) is locally
constant (in the space of solutions). It is a classical result that the Jacobi
polynomial of degree k, Pk, has k simple roots in the interval (−1, 1).
This of course implies that Pk has exactly k − 1 critical points in (-1,1).
Since the path of solutions near the bifurcation point has the form s 7→
1 + sPk + o(s2) (see [12]) it follows that the nontrivial solutions near the
k-th bifurcation point have exactly k− 1 critical points in (−1, 1). Let Ck

be the connected component (in the space of nontrivial solutions) of a path
of nontrivial solutions appearing at (1, λk) (note that there are actually
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two paths of nontrivial solutions appearing at (1, λk), which together with
(1, λk) form single path). From the previous comments all the solutions in
Ck have exactly k− 1 critical points in (−1, 1), and therefore in particular
Ck ∩ Cj = ∅ if j ̸= k. This implies by the global bifurcation theorem of
Rabinowitz, [24], that the connected component Ck is not compact. It
was proved in [5] that there exists λ0 > 0 such that if λ ∈ (0, λ0] the
only positive solution of Equation (2.1) is the constant solution. It is also
known that for fixed 0 < λ+

1 < λ∗
2 the space of solutions of Equation (2.1)

with λ ∈ [λ∗
1, λ

∗
2] is compact (see for instance [17, Lemma 2.4]).

If there is λ∗ > λk such that for any solution (u, λ) ∈ Ck we have that
λ ̸= λ∗ then Ck would be contained in [λ0, λ

∗], and therefore would be com-
pact by the result mentioned above. Since this would give a contradiction
we have that for any λ > λk there is a solution (u, λ) ∈ Ck.

We point out that for a solution φ of Equation (3.2) the space of critical
points of the corresponding solution φ◦f of Equation (2.1) is given by the
critical points of f and the preimages by f of the critical points of φ. So
in particular for the solutions of Equation (3.2) in Ck the set of critical
points of the corresponding solution of Equation (2.1) has k+1 connected
components.

We have sketched the main ideas in the proof of [16, Theorem 1.1]:

Theorem A: Let fd,c be an isoparametric function on Sn. For each
positive integer k there exists at least k positive nonconstant solutions
of Equation (2.1) for λ ∈ (λk, λk+1]. For each integer i, 1 ≤ i ≤ k,
λ ∈ (λk, λk+1], there is a positive solution ui of Equation (2.1) for which
the set of critical points has exactly i+ 1 connected components.

In [23] a partial result in the direction of Theorem A was proved us-
ing only techniques from ordinary differential equations. In [14] a double
shooting method was used to find multiplicity results for nodal solutions
of the Yamabe equation on the sphere. In the next two sections we will
describe this method and show that it can be used to give a new proof of
Theorem A, without using bifurcation theory.
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4 Double shooting

Given an isoparametric function f = fd,c on the sphere Sn to prove
Theorem A we have to find solutions to the ordinary differential Equation
(3.2). We will first give a different normalization of the equation. In
Equation (3.2) we let t = cos(s), s ∈ [0, π] and call w(s) = φ(cos(s)).
Note that the critical points of w are 0, π and the values of s ∈ (0, π) such
that cos(s) is a critical point of φ. By a direct computation we see that
Equation (3.2) is equivalent to

w′′(s) +

(
n− 1

d
cos(s)− c

2

)
w′(s)

sin(s)
+

λ

d2
(wq − w) = 0. (4.1)

As before, we let m1, m2, be the multiplicities of the principal curva-
tures of the regular level sets of f . We recall that we have that d(m1 +

m2) = 2(n − 1) and c = m2 −m1. Then we write the previous equation
as:

w′′ +
h(s)

sin s
w′ +

λ

d2
[wq − w] = 0 on [0, π], (4.2)

where h(s) = m1+m2
2 cos s− m2−m1

2 .
Observe this equation becomes singular at s = 0 and s = π, and that

the natural boundary conditions in order to obtain a smooth solution on Sn

are w′(0) = w′(π) = 0. Also notice that the function h satisfies h(0) = m1,
h(π) = −m2, it is strictly decreasing, it has a unique zero a0 ∈ (0, π) and
h(s) > 0 in [0, a0), while h(s) < 0 in (a0, π]. Moreover, the function
h̃(s) := −h(π − s) = m1+m2

2 cos s + m2−m1
2 has the same properties with

m1 and m2 interchanged and a unique zero at π − a0.
For any initial value x ∈ [0,∞) denote by wx the solution of Equation

(4.2) with initial conditions w′
x(0) = 0, wx(0) = x .

Define the energy function

E(s, x) :=
(w′

x(s))
2

2
+

λ

d2

(
wq+1
x

q + 1
− w2

x

2

)
.

The function E is nonincreasing on the first variable in the interval
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[0, a0] and nondecreasing in [a0, π], since

E′(s, x) = −h(s)

sin s
(w′

x(s))
2.

In particular we have that E(s, x) ≤ E(0, x) for all s ∈ [0, a0]. This
implies that wx and w′

x are uniformly bounded on [0, a0] which implies
that wx is defined on [0, a0]. A similar argument can be made to show
that if initial conditions are given on π then the corresponding solution is
defined on [a0, π].

To prove Theorem A we will consider the solutions wx, w̃y of Equation
(4.2) with initial conditions w′

x(0) = w̃′
y(π) = 0, wx(0) = x, w̃y(π) = y and

consider the maps I(x) = (wx(a0), w
′
x(a0)) and J(y) = (w̃y(a0), w̃

′
y(a0)).

I, J : R → R2 and if I(x) = J(y) then wx = w̃y is a solution of Equation
(4.2) with w′

x(0) = w′
x(π) = 0. To understand the intersections of the

curves I, J one needs to obtain information of the functions wx, w̃y.
Therefore we will consider the initial value problem{

w′′
i (s) +

h(s)
sin sw

′
i(s) +

λ
d2
(wq

i − wi) = 0 in [0, a0],
wi(0) = x,w′

i(0) = 0,
(4.3)

and the “final” value problem{
w′′
f (s) +

h(s)
sin sw

′
f (s) +

λ
d2
(wq

f − wf ) = 0 in [a0, π],
wf (π) = y, w′

f (π) = 0,
(4.4)

As we mentioned before, Problem (4.4) can actually be written as an
initial condition problem having the form of Problem (4.3), by considering
the function h̃(s) = −h(π − s) = m1+m2

2 cos s + m2−m1
2 . Then wf solves

Problem (4.4) if and only if ω(s) = wf (π − s) solves the initial value
problem{

ω′′(s) + h̃(s)
sin sω

′(s) + λ
d2
(ωq − ω) = 0 in [0, π − a0],

ω(0) = y, ω′(0) = 0,
(4.5)

So we will discuss Problem (4.3), which will also give the corresponding
information for Problem (4.4).

We first point out the following:
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Lemma 4.1. If 0 < x ≤ 1, then wx(s) > 0 for all s ∈ [0, a0]

Proof. Let x ∈ (0, 1] and suppose, to get a contradiction, that wx has a
zero s0 in (0, a0]. Notice that w′

x(s0) ̸= 0, otherwise wx ≡ 0 by uniqueness
of the solution. Observe E(0) = λ

d2
(x

q+1

q+1 − x2

2 ) < 0, since 0 < x ≤ 1 and
q > 1. As the energy E(s, x) is non increasing on the first variable, we have
that 0 > E(0, x) ≥ E(s0, x) =

(w′
x(s0))

2

2 > 0, which is a contradiction.

Remark 4.2. Note in general that if x > 0 and wx(s1) = 0 then E(s1, x) >

0. Also if w′
x(s2) = 0 and wx(s2) ∈ (0, 1), then E(s2, x) < 0. So, for

instance, it cannot happen that s2 < s1 ≤ a0.

Next we prove:

Lemma 4.3. There exists D0 > 1 such that for all x ∈ (0, D0) the solution
wx is strictly positive in [0, a0]. uD0(a0) = 0, uD0 is strictly positive and
decreasing in [0, a0).

Proof. Let P = {x ∈ (1,∞) : wx is strictly positive on [0, a0]}. Since
w1 is constant equal to 1 it follows that there exists ε > 0 such that
(1, 1 + ε) ⊂ P . In particular P ̸= ∅. It is also clear that P is open. It
can be seen that for x large enough wx will have zeroes in (0, a0) (see for
instance [14, Theorem 3.1]), so D0 = supP < ∞. Since P is open we have
that D0 /∈ P . But since D0 is in the closure of P we have that wD0 ≥ 0

on [0, a0]. If s ∈ (0, a0) and wD0(s) = 0 then s would be a local minimum,
and therefore w′

D0
(s) = 0. By uniqueness of solutions this would imply

that wD0 is constant equal to 0, which is a contradiction. Therefore we
must have that wD0(a0) = 0. Note that if wD0 had a local minimum at
s0 ∈ (0, a0) then we would have that wD0(s0) ∈ (0, 1) and we would get a
contradiction from Remark (4.2). It follows that wD0 is strictly decreasing
in [0, a0].

Similarly we have

Lemma 4.4. There exists D̃0 > 1 such that for all y ∈ (0, D̃0) the solution
w̃y is strictly positive in [a0, π]. w̃

D̃0
(a0) = 0, w̃

D̃0
is strictly positive and

increasing in [0, a0].
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We will restrict the curves I, J to [0, D0] and [0, D̃0], respectively. If for
x ∈ (0, D0), y ∈ (0, D̃0) we have that I(x) = J(y) then the corresponding
solution of Equation (4.2) is positive. We distinguish four cases:

C1: x, y ∈ (0, 1). In this case 0, and π are local minima.
C2: x, y > 1. In this case 0, and π are local maxima.
C3: x < 1, y > 1. In this case 0 is a local minimum and π is a local

maximum.
C4: x > 1, y < 1. In this case 0 is a local maximum and π is a local

minimum.

If a0 = π/2 and h is antisymmetric around a0, then one can see that
the solutions in cases C3 and C4 are equivalent; they are the reflection
around π/2 of each other. Note also that the solutions in cases C1 and C2

have an odd number of critical points, and the solutions in cases C3 and
C4 have an even number of critical points. Solutions of case C1 come form
the intersections of I and J restricted to (0, 1). Case C2 comes from the
restriction of I and J to (1, A0) and (1, Ã0) respectively. Case C3 comes
form restricting I to (0, 1) and J to (1, Ã0) and Case C4 comes from the
restriction of I to (1, A0) and J to (0, 1).

Theorem A follows from proving: Fix a positive integer k. For any
positive integer i ≤ k and λ > λk there exists:

(1): If i is odd, a positive solution of Equation (4.2) having exactly
i − 1 critical points in (0, π) coming from C3 and a positive solution of
Equation (4.2) having exactly i − 1 critical points in (0, π) coming from
C4.

(2): If i is even, a positive solution of Equation (4.2) having exactly
i − 1 critical points in (0, π) coming from C1 and a positive solution of
Equation (4.2) having exactly i − 1 critical points in (0, π) coming from
C2.

Note that actually we get twice the number of solutions stated in The-
orem A. As mentioned before, in case (1) the two solutions obtained might
be equivalent, but the solutions in (2) are always different.
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In the next section we will give all the details to prove the case C1.
Namely;

Theorem B: Fix a positive integer k. For any positive even integer
i ≤ k and λ > λk there exist x, y ∈ (0, 1) such that I(x) = J(y) and the
corresponding solution of Equation (4.2) has exactly i+ 1 critical points.

All the other cases are proved in a very similar way. We restrict to the
case C1 to make the proof as short and readable as possible.

5 Proof of Theorem B

In this section we consider Equation (4.2) and prove Theorem B. We
keep the notation from the previous section.

Let a0 be the unique zero of h in (0, π). For x ∈ [0, 1] let wx be the
solution of Equation (4.2) with initial conditions wx(0) = d, w′

x(0) = 0.
Note that w0 and w1 are constant functions. Note also that if x ̸= 0, 1

and s is a critical point of wx then wx(s) ̸= 0, 1; moreover s is a local
minimum if and only if wx(s) ∈ (0, 1) and a local maximum if and only
if wx(s) ∈ (1,∞). Recall that we defined the path I : [0, 1] → R2 by
I(x) = (wx(a0), w

′
x(a0)).

Note that I(1) = (1, 0) and I(x) ̸= (1, 0) if x ̸= 1. It is then easy to see
that we have a well defined continuous function θ : [0, 1) → R such that
θ(0) = −π, and and θ(x) gives an angle between I(x) and the half-line
[1,∞). Also notice that (wx)

′(a0) = 0 if and only if θ(x) = kπ for some
integer k. If k is odd then wx(a0) < 1 and a0 is a local minimum for wx.
If k is even then wx(a0) > 1 and a0 is a local maximum of wx.

For x ̸= 0, 1 define n(x) as the number critical of wx in (0, a0). We will
see that θ(x) determines n(x). To prove this we start with the following
observation:

Lemma 5.1. Suppose θ(x∗) = kπ for some x∗ > 0 and some integer k,
and that n(x∗) = m ≥ 0. Then, given 0 < ε < π there exists δ > 0 such
that if |x− x∗| < δ, then θ(x) ∈ (kπ − ε, kπ + ε) and
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1. θ(x) < kπ iff n(x) = m+ 1,

2. θ(x) ≥ kπ iff n(x) = m.

Proof. First choose δ1 > 0 such that if |x − x∗| < δ1, then θ(x) ∈ (kπ −
ε, kπ + ε).

If k is even, then wx∗(a0) > 1. For ϵ1 > 0 small enough, wx∗(t) > 1 for
all s ∈ (a0 − ϵ1, a0 + ϵ1). Then there exists a positive δ2 < δ1 such that if
|x − x∗| < δ2, then wx(s) > 1 for all s ∈ (a0 − ϵ1, a0 + ϵ1). We can also
assume that wx

′ has exactly one zero in (a0 − ϵ1, a0 + ϵ1), which is a local
maximum; wx

′ > 0 before the critical point and wx
′ < 0 after the critical

point. There exists also δ < δ2 such that if x ∈ (x∗ − δ, x∗ + δ), then wx

has exactly m critical points in [0, a0 − ϵ1]. For x ∈ (x∗ − δ, x∗ + δ) we
have that if θ(x) ≥ kπ then wx

′(a0) ≥ 0. This implies that the critical
point of wx in (a0 − ϵ1, a0 + ϵ1) is ≥ a0. Therefore n(x) = m. If instead
θ(x) < kπ then wx

′(a0) < 0. This implies that the critical point of wx in
(a0 − ϵ1, a0 + ϵ1) is < a0. Therefore n(x) = m+ 1.

The argument in the case k is odd is similar.

As usual for x ∈ R let [x] be the maximum integer ≤ x. Then for x > 0

define
n(x) = −

[
θ(x)

π

]
− 2.

Proposition 5.2. For x ∈ (0, 1) we have that θ(x) < −π and n(x) = n(x).

Proof. Let A = {x ∈ (0, 1) : θ(x) < −π, n(x) = n(x)}. There is x0 ∈
(0, 1) such that for all x ∈ (0, x0] the solution wx is strictly increasing in
[0, a0], and therefore θ(x) ∈ (−π,−2π). It follows that n(x) = n(x) = 0

and (0, x0] ⊂ A. If there is x1 ∈ (0, 1) such that θ(x1) = −π and θ(x) < −π

for all x ∈ (0, x1) if follows from Lemma 5.1 that for x close to x1, wx

is strictly increasing and less than 1 in [0, a0]. Therefore wx1 would be
nondecreasing in [0, a0] and have a critical point with value at most 1 in
a0, which is crearly not possible. Therefore θ(x) < −π for all x ∈ (0, 1).
For any negative integer k both n(x) and n(x) are constant on an interval
where θ(x) ∈ ((k+1)π, kπ). And Lemma 5.1 says that both n(x) and n(x)
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change in the same way as θ(x) passes through kπ. Therefore A = (0, 1)

and the proposition is proved.

An alternative way to define θ(x) is the following: for x ∈ (0, 1) con-
sider the continuous function φ : [0, a0] → R such that φ(0) = −π and
φ(t) gives an angle between (wx(t), wx

′(t)) and the half line [1,∞). Let
ϕ(x) = φ(a0). Then both θ and ϕ are continuous functions which at each
x coincide up to an integer multiple of 2π. Moreover, it is easy to see that
ϕ(x) = θ(x) for x close to 0. It follows that θ = ϕ. The last proposition
also follows from this description.

We want to obtain information of wx for x close to 1. More precisely,
we need to understand limx→1 θ(x). For this we consider vλ(t) = ∂w

∂x (s, 1).
Note that vλ satisfies the linearized equation

v′′(s) +
h(s)

sin s
v′(s) + λ(q − 1)v(s) = 0 (5.1)

with initial conditions vλ(0) = 1, v′λ(0) = 0. To match the previous nor-
malization we consider −vλ and define a continuous function φλ : [0, a0] →
R such that φλ(0) = −π and for each s ∈ [0, π) φλ(s) is an angle between
(−vλ(s),−v′λ(s)) and the positive real axis [0,∞). Let θλ = φλ(a0).

Remark 5.3. Since w1−δ(t) = 1 + δ(−vλ)(t) + O(δ2) in [0, a0] it is easy
to see that limd→1 θ(d) = θλ

Note that Equation (5.1) is the renormalization of Equation (3.3). Let
λk = dk(n+dk−1)

q−1 be the eigenvalues of the problem. vλk
be the corre-

sponding eigenfunction with vλk
(0) = 1. Note that vλk

is a multiple of
Pk(cos(s), where Pk is the Jacobi polynomial, as in Section 3. Then for
each k ≥ 1 vλk

has exactly k zeroes in (0, π). This implies that vλk
has

exactly k − 1 critical points in (0, π). It might happen that a0 is one of
the critical points. The other ones fall in either (0, a0) or in (a0, π).

We will need the following application of Sturm comparison theory:

Lemma 5.4. If λ > λk then θλ < θλk
.
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Proof. Consider the functions φλ(t) and φλk
(t). We have to prove that

φλ(a0) < φλk
(a0). We have that φλ(0) = φλk

(0) = −π. Both functions
are strictly decreasing. For a positive integer j, φλ(tj) = −π/2 − jπ if
and only if tj = tj(λ) is the j-th zero of vλ. The most classical Sturm
Comparison Theorem says that tj(λk) > tj(λ). If for some t ∈ (0, a0]

we have that the number of zeroes of vλ in (0, t] is strictly greater than
the number of zeroes of vλk

in (0, t) then φλ(t) < φλk
(t). Note that this

happens in particular if vλk
(t) = 0. Therfore if vλk

(a0) = 0 then the
lemma is proved. If vλk

(a0) ̸= 0 we can also assume that vλ(a0) ̸= 0 and
vλk

and vλk
have the same number of zeroes in (0, a0). In this situation we

can apply the Second Comparison Theorem of Sturm theory ([18, 10.41])
which says that

vλk
′(a0)

vλk
(a0)

>
vλ

′(a0)

vλ(a0)
.

Note that we are assuming that vλk
(a0) and vλ(a0) have the same

sign. If both are positive, as the vector
(
1,

vλk
′(a0)

vλk (a0)

)
is above the vec-

tor
(
1, vλ

′(a0)
vλ(a0)

)
, we have that θλ < θλk

. If both are negative, as the vector(
1,

vλk
′(a0)

vλk (a0)

)
is above the vector

(
1, vλ

′(a0)
vλ(a0)

)
, the direction of

(vλk
(a0), vλk

′(a0)) is under the direction of the vector (vλ(a0), vλ
′(a0)).

This again implies that θλ < θλk
.

Now we proceed to consider the second curve, corresponding to the
solutions of Equation (4.2) with condition w′(π) = 0. Let h̃(s) = − −
h(π−s) = m1+m2

2 cos s+m2−m1
2 and consider the initial conditions Problem

(4.5). As it was mentioned in Section 4, ω is a solution to Problem (4.5)
if and only if w̃(s) := ω(π− s) solves the “final” conditions Problem (4.4).
Then we can apply the same ideas to this problem.

For y ∈ R, we denote by w̃y the solution to the Problem 4.4 and define
the map J(y) := (w̃y(a0), w̃

′
y(a0)).

We have that J(1) = (1, 0), J(0) = (0, 0), J(y) ̸= (1, 0) if y ̸= 1. So,
there is a well define argument function ϑ such that ϑ(0) = −π and ϑ(y)

gives and angle between J(y) and the half line [1,∞).
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Then it follows from the same ideas used to study the curve I that
ϑ(y) > −π for every y ∈ (0, 1) and that if N(y) denotes the number of
critical points of w̃y in (a0, π), then

N(y) =

[
ϑ(y)

π

]
+ 1.

Now consider the solution ṽ of Equation (5.1) with boundary conditions
ṽλ(π) = −1, ṽ′λ(π) = 0. Define a continuous function φ̃λ : [a0, π] → R
such that φ̃λ(π) = −π and for each s ∈ [a0, π], φ̃λ(s) is an angle between
(ṽλ(s), ṽ

′
λ(s)) and the positive real axis [0,∞). Let ϑλ = φ̃λ(a0).

Then as in Lemma 5.4, we have:

Lemma 5.5. If λ > λk then ϑλ > ϑλk
.

Next, we define curves in the argument-radius plane R,S : [0, 1) →
R× R>0 given by

R(x) := (θ(x), |I(x)− (1, 0)|) and S(y) := (ϑ(y), |J(y)− (1, 0)|)

We have:

Lemma 5.6. The curves R and S are simple and they intersect only at
the point (−π, 1).

Proof. The fact that R and S are simple follows immediately from the
uniqueness of the solutions to the Problems (4.3) and (4.4). For an x, y ∈
(0, 1) we have seen that θ(x) < −π and ϑ(y) > −π. Therefore, R ∩ S =

{R(0) = S(0)} = {(−π, 1)}.

We have now everything we need to prove Theorem B:

Proof of Theorem B. Fix an integer k ≥ 1 and λ > λk. Consider the
curves R and S corresponding to λ. R and S together for a simple curve
αλ which lies in the upper half plane and goes from (θλ, 0) to (ϑλ, 0).
Let i be an even integer, i ≤ k. Note that vλk

has k zeroes in (0, π)
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and critical points in 0 and π. Therefore it has exactly k + 1 critical in
[0, π] and therefore φλk

(π) = −(k + 1)π. But φλk
(π) = θλk

− ϑλk
− π.

Since λ > λk we have from Lemma 5.4 and Lemma 5.5 that ϑλ − θλ >

ϑλk
− θλk

= kπ. And since i ≤ k the curve αλ − i(π, 0) which goes
from (θλ − iπ, 0) to (ϑλ − iπ, 0) must intersect φλ (since ϑλ − iπ > θλ).
Note that R cannot intersect R− i(π, 0): If R(x1) = R(x2)− (iπ, 0) then
I(x1) = I(x2) which would imply that x1 = x2, reaching a contradiction.
Similarly, S cannot intersect S− i(π, 0). And since θ(x) < −π and ϑ(y) >

−π for all x, y ∈ (0, 1) it follows that R − i(π, 0) cannot intersect S. It
follows that R must intersect S − (iπ, 0). Let x, y ∈ (0, 1) be points such
that R(x) = S(y) − (iπ, 0). Then I(x) = J(y). Therefore wx = w̃y

is a well-defined solution of Equation (4.2), on [0, π]. Note that since
R(x) = S(y) − (iπ, 0), we have that θ(x) = ϑ(y) − iπ. Note also that
the function φx is defined in the whole intervale [0, π], and we have that
φx(π) = φx(a0)−(φ̃y(a0)+π) = θ(x)−ϑ(y)−π = −(i+1)π. This implies
that wx has exactly i+ 1 critical points in [0, π].
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