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Abstract. The aim of this work is the study of symplectic structures
on 2-step nilmanifolds. We concentrate in the closedness condition,
proving that the existence of a closed 2-form of type II is necessary
to get a symplectic structure. In low dimensions, this condition is
sufficient in most cases.
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1 Introduction

A 2-step nilmanifold is a smooth manifold M = Λ\N , where N is a
simply connected 2-step nilpotent Lie group and Λ is a co-compact discrete
subgroup of N . After a result of Nomizu [20] any symplectic structure on
the nilmanifold M is cohomologous to an invariant one on N . In this work
we search for symplectic structures, by concentrating the attention on the
closedness condition of the corresponding 2-form. Closed 2-forms on M =
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Γ\N are called magnetic fields, and they are deeply related to magnetic
trajectories (see for instance [23] and references herein). In fact, magnetic
trajectories are curves on a Riemannian manifold (M, ⟨ , ⟩), solutions of
the equation

∇γ′γ′ = F γ′, (1.1)

where ∇ is the Levi-Civita connection on M and F is a (1,1)- tensor giving
rise to a closed 2-form ω = ⟨F ·, ·⟩, which could be degenerate. This is the
focus of our research.

Symplectic 2-forms on homogeneous spaces were studied by different
authors (see for instance [5, 4, 10, 12, 21]), and specifically on nilpotent
Lie groups, see results for instance in [1, 6, 8, 14]. Also a construction by
a double extension procedure was given in [5].

Since the problem of determining whether an arbitrary Lie algebra
admits symplectic structures is difficult in general, it was attacked by
using different strategies. In a case-by-case study, after the classification of
nilpotent Lie algebras, one gets results in dimension six. See [14] for some
results in dimension eight. Several subfamilies of nilpotent symplectic Lie
algebras have been described. For example, symplectic filiform algebras in
[2, 11] or free nilpotent Lie algebras in [7].

Pouseele and Tirao showed that for a nilpotent Lie algebra associated
to a graph, the condition

2 dimC(n) ≤ dim n

implies the existence of symplectic structures [24], where C(n) denotes the
commutator of n. Moreover, the graph encodes geometrical information.
Previously, Dotti and Tirao in [8] proved that if the 2-step nilpotent Lie
group N admits a symplectic structure, then

2 dimC(n) ≤ dim n+ 1.

As said above, the focus here is concentrated on closed 2-forms. By
studying their existence, it was proved in [22] that if n is non-singular (see
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Definition 2.4 below) and

dim n > 3 dimC(n)

then any closed 2-form ω on n satisfies

(∗) ω(Z,U) = 0, for all Z ∈ z, U ∈ n.

Notice that in the non-singular case, the commutator C(n) coincides with
the center of the Lie algebra z. Condition (*) is equivalent to saying
that for any metric, the corresponding skew-symmetric map induced by ω
preserves the decomposition (**), see below.

Condition (*) above is the key of our results. In terms of forms, it says
that there is no 2-form ω on n such that ω(z, z) = 0 but ω(z, n) ̸= 0. This
is what we call a 2-form of type II. Now, asking for symplectic structures,
we get:

Lemma. If a 2-step nilpotent Lie group admits a left-invariant sym-
plectic structure, then it admits a closed 2-form of type II.

This observation is the starting point to study the family of closed 2-
forms of type II, which is done with the help of a metric. Recall that on
a 2-step nilpotent Lie group N equipped with a left-invariant metric, one
makes use of a natural decomposition of the corresponding Lie algebra

(∗∗) n = v⊕ z, where v = z⊥.

Now, given a left-invariant 2-form ω onN , one can find a skew-symmetric
map F : n → n, such that ω = ⟨F ·, ·⟩. We study the existence of symplectic
structures, in terms of conditions on the map F. Any such linear map F

decomposes as F = F1+F2, where F1 preserves the decomposition above,
while F2 makes F(z) ⊆ v and F(v) ⊆ z. This corresponds to 2-forms of
type I or II respectively.

The closedness condition of ω gives two closedness conditions for the
2-forms of type I and II. Explicitly, given the constant structures of the Lie
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algebra Ck
ij where v1, . . . , vn is an orthonormal basis of v, the closedness

condition for type II reduces to
m∑
s=1

(Cs
ijbsk + Cs

jkbsi + Cs
kibsj) = 0,

where (bsj) gives a m × n matrix and m = dim z. One searches for non-
trivial solutions.

Looking for the symplectic structures on low-dimensional Lie algebras,
we prove

Theorem. Let N denote a nilpotent Lie group of dimension 2n, n ≤ 3.
With exception of the trivial extension of the Heisenberg Lie algebra of
dimension five, any such Lie group admits a symplectic structure if and
only if it admits a closed 2-form of type II.

Finally we show examples in higher dimensions, where the result above
is no longer true. This is provided by free 2-step nilpotent Lie algebras
in n generators with n ≥ 4. In fact, these Lie algebras admit non-trivial
closed 2-forms of type II but no symplectic structures.

2 Lie groups of step two with a left-invariant met-
ric

In this section we recall basic facts on 2-step nilpotent Lie groups
equipped with a left-invariant metric. Firstly recall that a Lie group is
called 2-step nilpotent if its Lie algebra n is 2-step nilpotent, that is, n is
not abelian and the Lie bracket satisfies [[U, V ],W ] = 0 for all U, V,W ∈ n.
Throughout this paper Lie groups, so as their Lie algebras are considered
over R.

Example 2.1. The smallest dimensional (non-abelian) 2-step nilpotent
Lie group is the Heisenberg Lie group of dimension three, H3. Its Lie
algebra h3 is spanned by vectors e1, e2, e3 satisfying the non-trivial Lie
bracket relation

[e1, e2] = e3.
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The Lie group H3 can be modeled on R3 equipped with the product op-
eration given by

(v1, z1)(v2, z2) = (v1 + v2, z1 + z2 +
1

2
vt1Jv2),

where vi = (xi, yi), i = 1, 2 and J : R2 → R2 is the linear map J(x, y) =

(y,−x). Another presentation of the Heisenberg Lie group is given by
3 × 3-triangular real matrices with 1’s on the diagonal with the usual
multiplication of matrices.

A Riemannian metric ⟨ , ⟩ on the Lie group N is called left-invariant
if translations on the left by elements of the group are isometries. Thus,
a left-invariant metric on N is determined by an inner product on the
corresponding Lie algebra n, usually identified with the tangent space at
the identity element TeN . We denote also by ⟨ , ⟩ the metric on n.

Whenever the Lie algebra n is 2-step nilpotent, its commutator C(n)
is contained in the center z. So the metric ⟨ , ⟩ determines an orthogonal
decomposition as vector spaces on the Lie algebra:

n = v⊕ z, where v = z⊥. (2.1)

The decomposition in Equation (2.1) induces the skew-symmetric maps
j(Z) : v → v, for every Z ∈ z, implicitly defined by

⟨Z, [V,W ]⟩ = ⟨j(Z)V,W ⟩ for all Z ∈ z, V,W ∈ v. (2.2)

Note that j : z → so(v) is a linear map, which has a corresponding
kernel. As said the commutator C(n) is contained in the center and one
has the splitting

z = C(n)⊕ ker(j)

as orthogonal direct sum of vector spaces. In fact,

• since ⟨Z, [U, V ]⟩ = 0 for all U, V ∈ v and Z ∈ ker(j), then ker(j) ⊥
C(n).

• dim z = dimker(j) + dimC(n).
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• The restriction j : C(n) 7→ so(v) is injective.

See the proof of the next result in Proposition 2.7 in [9].

Proposition 2.2. [9] Let (N, ⟨ , ⟩) denote a 2-step nilpotent Lie group
with a left-invariant metric. Then

• the subspaces ker j and C(n) are commuting ideals in n.

• Let E = exp(ker(j)). Then E is the Euclidean de Rham factor of N
and N is isometric to the Riemannian product of the totally geodesic
submanifolds E and N̄ where N̄ = exp(v⊕ C(n)).

Example 2.3. Let h3 denote the Heisenberg Lie algebra of dimension
three with basis e1, e2, e3 as in Example 2.1. The canonical metric makes
this basis orthonormal. It is not hard to see that the center is the sub-
space z = span{e3}, while its orthogonal complement is the subspace
v = span{e1, e2} and moreover the map j : z → so(v) is generated by

j(e3) =

(
0 −1

1 0

)
,

in the basis e1, e2 of v.

Let Γ ⊂ N denote a discrete subgroup of the nilpotent Lie group N ,
such that the quotient M = Γ\N is compact. This is called a compact
nilmanifold. Important geometrical properties of M are obtained from the
Lie algebra of N , n. In fact, by a theorem of Nomizu [20] every de Rham
cohomology group H i(M,R) is isomorphic to the group H i(n).

As a consequence, results obtained at the Lie algebra level and related
to forms on n, are applicable for the corresponding Lie group and their
quotients.

Definition 2.4. A 2 -step nilpotent real Lie algebra n with center z is
called non-singular if ad(X) : n → z is onto for any X /∈ z [9]. The
corresponding 2-step nilpotent Lie group will be called non-singular.
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See the next examples of non-singular Lie algebras.

Example 2.5. Heisenberg Lie algebras. Let n ≥ 1 be any integer and let
X1, Y1, X2, Y2, . . . , Xn, Yn be any basis of a real vector space v isomorphic
to R2n. Let Z be an element generating a one dimensional space z. Define
a Lie bracket by [Xi, Yi] = −[Yi, Xi] = Z and the other Lie brackets by
zero. The Lie algebra h2n+1 = v⊕ z is the (2n+1)-dimensional Heisenberg
Lie algebra.

By making use of the maps j(Z) : v → v defined in Equation (2.2),
one may described the non-singularity notion. See [9].

Proposition 2.6. Let n denote a 2-step nilpotent Lie algebra. The fol-
lowing properties are equivalent:

1. n is non singular,

2. For every inner product ⟨ , ⟩ and every non-zero element Z ∈ z the
map j(Z) is non-singular.

3. For some inner product ⟨ , ⟩ and every non-zero element Z ∈ z the
map j(Z) is non-singular.

Non-singular Lie algebras are known as fat algebras because they are
the symbol algebra [Definition 3.1.7 in [3]] or nilpotentization [19] of fat
distributions.

A 2-step nilpotent Lie algebra n = v⊕ z equipped with a inner product
⟨ , ⟩ is singular if j(Z) is singular for every nonzero Z ∈ z.

The Lie algebra n is almost non-singular if j(Z) is non-singular for
every Z in an open dense subset of z.

Every 2-step nilpotent Lie algebra is non-singular, almost non-singular
or singular. See [9].

Given a metric on a 2-step nilpotent Lie algebra n, if two non-zero
elements Z,Z ′ ∈ z can be found such that j(Z) is non-singular and j(Z ′)

is singular, then the Lie algebra n is almost non-singular.
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Among other examples, see [16, 17], a family of non-singular Lie alge-
bras is provided by H-type Lie algebras, which are defined as follows.

Let (n, ⟨ , ⟩) denote a 2-step nilpotent Lie algebra equipped with a
metric. If the map j(Z) : v → v is orthogonal for every Z ∈ z with
⟨Z,Z⟩ = 1, then the Lie algebra n is a Lie algebra of type H [15] (also
known as H-type Lie algebras). Equivalently, the 2-step nilpotent Lie
algebra n is of type H if and only if

j(Z)2 = −⟨Z,Z⟩Id, for every Z ∈ z,

which is equivalent to j(Z)j(Z̃) + j(Z̃)j(Z) = −2⟨Z, Z̃⟩Id, for Z, Z̃ ∈ z.
By making use of this identity one proves that

[X, j(Z)X] = ⟨X,X⟩Z

for every X ∈ v and Z ∈ z.
In particular, the real, complex and quaternionic Heisenberg algebras

are examples of Lie algebras of type H.

3 Left-invariant 2-forms and magnetic fields

In this section we study closed left-invariant 2-forms, called magnetic
fields, on any 2-step nilpotent Lie group. We shall see that the closedness
condition imposes several restrictions.

Let ω denote a left-invariant 2-form on a Lie group (N, ⟨ , ⟩) equipped
with a left-invariant metric. It is closed if

ω([U, V ],W ) + ω([V,W ], U) + ω([W,U ], V ) = 0 for all U, V,W ∈ n.

Note that a left-invariant 2-form on N is determined by its values at
the identity. Thus, we say this is a 2-form on n. The closed 2-form ω is
symplectic whenever it is non-degenerate, that is, if ω(U, V ) = 0 for all
V ∈ n, then U = 0.

Let ⟨ , ⟩ denote the metric on n. Let ω be a left-invariant 2-form on
N , then there exists a unique skew-symmetric endomorphism F : n → n
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satisfying
ω(X,Y ) = ⟨F(X), Y ⟩, for all X,Y ∈ n.

Conversely, let F : n → n denote a skew-symmetric endomorphism on
the Lie algebra. Define the associated 2-form ω as ω(X,Y ) = ⟨F(X), Y ⟩.
When ω is closed, such skew-symmetric map F is known as a Lorentz force.

Now, the condition of asking the 2-form ω to be closed is equivalent to
asking the skew-symmetric map F to satisfy the equation:

⟨F(U), [V,W ]⟩+⟨F(V ), [W,U ]⟩+⟨F(W ), [U, V ]⟩ = 0, for all U, V,W ∈ n.

(3.1)
Furthermore, ω is non-degenerate, if and only if F is non-singular.

Assume now that the 2-step nilpotent Lie group N has Lie algebra n,
which decomposes into the orthogonal splitting n = v ⊕ z as in Equation
(2.1). Write Fv = πv ◦ F and Fz = πz ◦ F, where πv : n → v and πz : n → z

denote the corresponding orthogonal projections onto the subspaces v and
z, respectively. So, the 2-form ω associated to F is closed if and only if the
following conditions hold

(C1) Fz(Z) ∈ C(n)⊥, for all Z ∈ z,

and for all U, V,W ∈ v:

(C2) ⟨Fz(U), [V,W ]⟩+ ⟨Fz(V ), [W,U ]⟩+ ⟨Fz(W ), [U, V ]⟩ = 0,

which can be obtained by analyzing Condition (3.1) in terms of the pro-
jections onto the subspaces v and z.

Remark 3.1. For any exact form, the corresponding Lorentz map satisfies
Fz ≡ 0. Furthermore, any skew-symmetric map on the Lie algebra F : n →
n such that the projection Fz ≡ 0 trivially satisfies Equations (C1) and
(C2).

The skew-symmetric map F : n → n decomposes as

F = F1+F2,

where F1 and F2 are skew-symmetric maps such that, with respect to the
orthogonal splitting n = v⊕ z in Equation (2.1), one has:
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• F1 preserves the decomposition: F1(V + Z) = Fv(V ) + Fz(Z),

• F2 interchanges the subspaces v and z: F2(V +Z) = Fz(V ) + Fv(Z)

for all V ∈ v, Z ∈ z.

In fact, for any skew-symmetric map F ∈ so(n), one has the decompo-
sition F = Fz+Fv an so,

F(V + Z) = (Fv(V ) + Fz(Z)) + (Fv(Z) + Fz(V )), for all V ∈ v, Z ∈ z.

The skew-symmetry property from F implies that both F1 and F2 are
skew-symmetric.

Notice that

• F1 trivially satisfies Condition (C2) and

• F2 trivially satisfies Condition (C1).

Thus the skew-symmetric map F gives rise to a closed 2-form if and
only if for both F1 and F2 it holds:

• F1 satisfies Condition (C1), that is F1(z) ⊆ ker(j) and

• F2 satisfies Condition (C2).

Definition 3.2. Let F denote a skew-symmetric map on a 2-step nilpotent
Lie algebra (n, ⟨ , ⟩). We say that

1. F is of type I, if F preserves the decomposition v⊕ z (so, F = F1)

2. F is of type II, if F(v) ⊆ z and F(z) ⊆ v (so, F = F2 above).

Next, we shall study exact 2-forms. Start with a left-invariant 1-form
η. Consider the linear isomorphism between the Lie algebra n and its dual
space n∗ given by the metric, that is, sending U → ℓU , where ℓU (V ) =

⟨U, V ⟩.
By considering the decomposition of the Lie algebra n given in Equation

(2.1) one can write any left-invariant 1-form η as η = ℓZ+V . One verifies
easily that the differential satisfies

dℓZ+V (U, V ) = ⟨Z, [U,W ]⟩ = ⟨j(Z)U,W ⟩.
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The kernel of the differential operator d : n∗ → Λ2n∗ contains the subspace
{ℓV , with V ∈ v}. For the description of the rank of d notice that dη ̸= 0

if and only if j(Z) ̸= 0. This implies Z belongs to C(n). Thus, for the
2-form dℓZ , the corresponding Lorentz force F is given by F = j(Z) for
some non-trivial Z ∈ C(n).

We have therefore proved the next result.

Proposition 3.3. Let (N, ⟨ , ⟩) denote a 2-step-nilpotent Lie group equipped
with a left-invariant metric and Lie algebra n with orthogonal splitting
n = v⊕ z as in (2.1). Let F : n → n denote a linear map. Write the map
F as

F = F1+F2,

where F1(v) ⊆ v and F1(z) ⊆ z, while F2(z) ⊆ v and F2(v) ⊆ z. Then

(i) The skew-symmetric map F gives rise to a closed 2-form if and only
if both maps F1 and F2 are skew-symmetric and

• F1 satisfies Condition (C1) and

• F2 satisfies Condition (C2).

(ii) The 2-form associated with F is exact if and only if there is Z ∈ C(n)

such that F = j(Z).

Remark 3.4. Note that if the 2-step nilpotent Lie group N has no Eu-
clidean factor, then z = C(n). Thus, any skew-symmetric map F of type I
satisfies Fz ≡ 0.

On the other hand, if N has Euclidean factor then ker(j) ̸= {0} and
any non-trivial skew-symmetric map F : n → n that satisfies F(v) ⊆ ker(j)

and F(z) ⊆ v gives rise to a closed left-invariant 2-form of type II on N .

Example 3.5. Let V0+Z0 be any element on a 2-step nilpotent Lie algebra
n. Then a natural choice for F is the skew-symmetric part of ad(V0 +Z0):
ad(V0+Z0)−ad(V0+Z0)

∗ = ad(V0)−ad(V0)
∗, where ad(X)∗ denotes the

adjoint of ad(X) with respect to the metric. Notice that ad(V0)(v) ⊆ z
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and ad(V0)
∗(z) ⊂ v. Thus ad(V0)− ad(V0)

∗ gives rise to a closed 2-form if
and only if Condition (C2) holds, equivalently:

⟨[V0, V ], [U,W ]⟩+⟨[V0, U ], [W,V ]⟩+⟨[V0,W ], [V,U ]⟩ = 0 for all U, V,W ∈ v.

Which kind of elements V0 ∈ v may satisfy this equation? Take the Heisen-
berg Lie algebra of dimension 2n + 1, n ≥ 2, in Example 2.5. Assume
V0 =

∑
i xiXi +

∑
i yiYi. By taking U = Yi, V = Xj and W = Yj with

i ̸= j, one gets xi = 0 for every i. Analogously, by taking U = Xi, one
finally obtains V0 = 0.

Notice that if a Lie group N admits a symplectic structure, then the
dimension of N is an even integer.

Lemma 3.6. Let N denote a 2-step nilpotent Lie group admitting a sym-
plectic structure. Then N admits a left-invariant Lorentz force of type
II.

Proof. Choose a left-invariant metric on N and fix this metric at the Lie
algebra level. Take the decomposition n = v ⊕ z and in Equation (2.1).
Take the linear map F ∈ so(n) such that ω(u, v) = ⟨F(u), v⟩, and write
F = F1+F2, where F1 preserves the decomposition, but F2(z) ⊆ v and
F2(v) ⊆ z. Assume F2 is trivial, so F = F1 is of type I. The closedness
condition says that F(z) ⊆ ker(j) ⊊ z. But since F(v) ⊆ v, it follows that
F cannot be non-singular, which is a contradiction.

Remark 3.7. The proof of the previous lemma shows that a Lorentz force
of type I never induces a symplectic form.

Moreover, let n be a nilpotent Lie algebra and let η denote a 1-form.
Thus, dη(Z,U) = 0 for every Z ∈ z, U ∈ n. This says that dη cannot be
sympletic. This was already known, see for instance [13].

Example 3.8. Let h3 denote the Heisenberg Lie algebra of dimension
three. Let ei, i = 1, 2, 3 denote the dual basis of the orthonormal ba-
sis e1, e2, e3. With the convention eij = ei ∧ ej , clearly the 2-forms
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e12, e13, e23 give a basis of the space of 2-forms on n. Since ⟨j(e3)e1, e2⟩ =
⟨e3, [e1, e2]⟩ = 1, then e12 is exact.

It is not hard to see that any 2-form ω = αe12 + βe13 + γe23 is closed.

Notice that any skew-symmetric map of type II, namely F2, gives rise
to a 2-form ω satisfying the condition

ω(Z, Z̃) = 0, for all Z, Z̃ ∈ z.

This means, that the center is “isotropic” for ω. In this situation only one
of the two following conditions is true:

(i) either ω(z, n) = 0 or

(ii) there is U ∈ n− z such that ω(Z,U) ̸= 0 for some Z ∈ z.

Indeed the non-trivial cases correspond to the second condition (ii). Due
to the correspondence between 2-forms and skew-symmetric maps, one can
obtain a description of 2-forms in terms of skew-symmetric maps of type
I or II, as follows.

As above, let ⟨ , ⟩ denote a metric on the 2-step nilpotent Lie algebra n

and take the orthogonal decomposition n = v⊕ z as in Equation (2.1). Let
F : n → n be the skew-symmetric map on n such that ω(V +Z, Ṽ + Z̃) =

⟨F(V + Z), Ṽ + Z̃⟩.
The condition of the center to be isotropic says that ⟨F(Z), Z̃⟩ = 0

for all Z, Z̃ ∈ z, that is Fz(Z) = 0, for any Z ∈ z, which in terms of the
families we introduced previously, gives:

F(Z + V ) = F1(V ) + F2(Z) + F2(V ) for all V + Z ∈ n.

But in this situation, the corresponding 2-form ω is closed if and only if
F2 satisfies Condition (C2). In fact, any skew-symmetric linear map F1

with F1(z) ≡ 0 induces a closed 2-form as already noticed in Remark 3.1.
On the other hand, ω(Z,U) ̸= 0 if and only if ⟨F(Z), U⟩ ≠ 0 if and

only if ⟨F2(Z), U⟩ ≠ 0 for some Z ∈ z and some U ∈ n− z. And this must
occur for any metric.
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Proposition 3.9. Let n denote a 2-step nilpotent Lie algebra.

(i) There is a non-trivial closed 2-form ω for which either ω(z, z) ̸= 0 or
ω(z, n) = 0 if and only if for any metric ⟨ , ⟩ on the Lie algebra n there
is a non-trivial skew-symmetric map of type I satisfying Condition
(C1).

(ii) There is a non-trivial closed 2-form ω for which ω(z, z) = 0 but
ω(z, n) ̸= 0 if and only if for any metric ⟨ , ⟩ on the Lie algebra n

there is a non-trivial skew-symmetric map of type II satisfying Con-
dition (C2).

Moreover, in terms of Definition 3.2, the proposition above enables us
to distinguish 2-forms into two families. We shall say that a 2-form ω on
the Lie algebra n is

(i) of type I: if it satisfies either ω(z, z) ̸= 0 or ω(z, n) = 0

(ii) of type II: if it satisfies ω(z, z) = 0 but ω(z, n) ̸= 0.

Example 3.10. Let h(C) denote the Heisenberg Lie algebra over C. Con-
sider the underlying real Lie algebra of dimension six, that we denote in the
same way. It has a center of dimension two spanned by Z1, Z2 and comple-
mentary subspace of dimension four spanned by the vectors X1, Y1, X2, Y2.
They satisfy the non-trivial Lie bracket relations

[X1, Y1] = −[X2, Y2] = Z1 [X1, Y2] = [X2, Y1] = Z2.

The left multiplication by i induces a real linear map J : h(C) → h(C)
satisfying J2 = −Id and J ◦ad(U) = ad(U)◦J for all U ∈ h(C). Explicitly,
in the basis, one has

J(Z1) = Z2 J(X1) = X2 J(Y1) = Y2.

Take the metric on h(C) making the set Zi, Xi, Yi for i=1,2, an orthonormal
basis. Thus, h(C) is a Lie algebra of type H. Clearly the complex structure
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J is skew-symmetric with respect to this metric ⟨ , ⟩. Since this Lie algebra
is non-singular, the kernel of j is trivial, ker j = {0}.

Assume that F is a skew-symmetric map on the Lie algebra giving
rise to a closed 2-form. Write F = F1+F2 as above. Since h(C) is non-
singular, Condition (C1) imposes the linear map F1 is trivial on z. Thus,
F1 corresponds to a skew-symmetric map v → v.

On the other hand, for V,W ∈ v, the condition (C2) for F2 gives

0 = ⟨F2(V ), [JV,W ]⟩+ ⟨F2(JV ), [W,V ]⟩+ ⟨F2W, [V, JV ]⟩
= ⟨F2(V ), J [V,W ]⟩+ ⟨F2(JV ), [W,V ]⟩+ ⟨F2W,J [V, V ]⟩
= ⟨F2(V ), J [V,W ]⟩ − ⟨F2(JV ), [V,W ]⟩
= ⟨−J F2(V )− F2(JV ), [V,W ]⟩.

Since W is an arbitrary element and ad(V ) is onto the center z we get
F2(JV ) = −J F2(V ), for every V ∈ v. And since F2 is skew-symmetric it
holds on n:

F2 ◦J = −J ◦ F2 . (3.2)

Conversely, any skew-symmetric map F2 : h(C) → h(C) that verifies Equa-
tion (3.2) will give rise to a closed 2-form of type II.

The next result proved in [22] determines a condition on the dimension
of the Lie algebra and its center for the non-existence of magnetic fields of
type II, that is, the corresponding skew-symmetric map is of type II.

Lemma 3.11. [22] Let n denote a non-singular 2-step nilpotent Lie algebra
such that dim n > 3 dim z. Then any closed 2-form on n satisfies

ω(Z,U) = 0, for all Z ∈ z, U ∈ n.

Proof. Firstly, note that since the Lie algebra is non-singular, its commu-
tator coincides with the center, C(n) = z. Let ω denote a closed 2-form
on n, the non-singularity property implies that ω(z, z) = 0. In fact, let
Z, Z̃ ∈ z with Z = [U, V ] for U, V ∈ n. The closedness condition says that
ω(Z̃, [U, V ]) = 0.
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By contradiction, assume that there exists a non-trivial closed 2-form
ω on the non-singular 2-step nilpotent Lie algebra n such that there are
Z ∈ z and U ∈ n− z satisfying ω(Z,U) ̸= 0, that is ω is of type II.

Let ⟨ , ⟩ be a metric on n inducing an orthogonal decomposition n =

v⊕ z as in Equation (2.1). Notice that by hypothesis, dim v > 2 dim z.
Let F denote the skew-symmetric map on the Lie algebra n such that

ω(X,Y ) = ⟨F(X), Y ⟩. Then

ω(Z,U) ̸= 0 if and only if ⟨F(Z), U⟩ ≠ 0 if and only if ⟨F2(Z), U⟩ ≠ 0,

where F1 and F2 are taken as in Proposition 3.3. Since ⟨Z,F2(U)⟩ ≠ 0

says that the image of F2 |v is non-trivial, we may assume (changing Z if
necessary) that F2(U) = Z, so that ⟨Z,F2(U)⟩ = ⟨Z,Z⟩ ≠ 0.

Denote the kernel of F2 by W = ker(F2 |v). Thus one has:

dimW = dim v− dim Image(F2 |v) ≥ dim v− dim z > dim v/2

Since j(Z) is non-singular, it holds dim j(Z)W > dim v/2, which im-
plies that the intersection is nontrivial, W ∩ j(Z)W ̸= {0}. Let elements
W, W̃ ∈ W such that j(Z)W = W̃ ̸= 0. Now, the closedness condition for
the 2-form ω is equivalent to Condition (C2) for F2. And for W, W̃ , U we
get

0 =⟨F2(W ), [W̃ , U ]⟩+ ⟨F2(W̃ ), [U,W ]⟩+ ⟨F2(U), [W, W̃ ]⟩

=⟨Z, [W, W̃ ]⟩ = ⟨W̃ , W̃ ⟩ ≠ 0,

which is a contradiction. Thus, there are no closed 2-forms of type II under
the hypothesis.

Example 3.12. A singular example. Let n denote the Lie algebra
n = v ⊕ z, where v is spanned by the vectors V1, V2, V3, V4, V5 and z is
spanned by Z1, Z2, and they obey the non-trivial Lie bracket relations:

[V1, V2] = Z1, [V3, V4] = Z2 = [V4, V5].

Take the metric on n that makes the previous basis orthonormal.
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Let F : n → n denote the skew-symmetric map given by

F(V3) = Z2 = −F (V5), F(V4) = Z1, F(Vi) = 0, i = 1, 2.

Usual computations show that the 2-form given as ω(X,Y ) = ⟨F(X), Y ⟩
is closed.

This is an example of a singular Lie algebra (that is, every j(Z) is
singular) admitting a closed 2-form of type II. In fact, every map j(z1Z1+

z2Z2) : v → v has a matrix of the form
0 −z1 0 0 0

z1 0 0 0 0

0 0 0 −z2 0

0 0 z2 0 −z2
0 0 0 z2 0


in the basis of v given above. And dim n > 3 dim z.

In [22] the authors determine the algebras of type H admitting Lorentz
forces of type II.

Theorem 3.13. Let n = v⊕ z be a Lie algebra of type H. Then n admits
a Lorentz force of type II if and only if n is the 3-dimensional Heisenberg
algebra, the 6-dimensional complex Heisenberg algebra or the 7-dimensional
quaternionic Heisenberg algebra.

The results of this section give obstructions for the existence of left-
invariant symplectic structures on 2-step nilpotent Lie groups. This follows
as an application.

Corollary 3.14. Let N denote a 2-step nilpotent Lie group of dimension
2n. Whenever the Lie group N is non-singular and dim n > 3 dim z, there
is no left-invariant symplectic structure on N .

In particular, the only Lie group of type H admitting a left-invariant
symplectic structure corresponds to the complex Heisenberg with Lie algebra
h(C).
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Proof. By Lemma 3.11 any non-singular Lie algebra n satisfying dim n >

dim z cannot admit a closed-symplectic structure of type II. Thus any
closed 2-form corresponds to a 2-form of type I. Such 2-form corresponds to
a skew-symmetric map on n satisfying Condition (C1), that is Fz(Z) ∈ ker j

for all Z ∈ z. Thus by the non-singularity property Fz(Z) = 0 for all Z ∈ z.
So, any closed 2-form of type I is degenerate.

Among Lie algebras of type H admitting closed 2-form of type II, only
the complex Heisenberg Lie algebra h(C) is even-dimensional. According
to computations in Example (3.10), any Lorentz force on h(C) has a matrix
presentation of the form in the basis X1, X2, Y1, Y2, Z1, Z2:

0 a b c g h

−a 0 d e h −g
−b −d 0 f i j

−c −e −f 0 j −i
−g −h −i −j 0 0

−h g −j i 0 0


and it is not difficult to see that there are non-singular examples. Thus,
there exist symplectic structures in this case.

Remark 3.15. Dotti and Tirao proved in [8]:

Let M = T t × Γ\H be an even dimensional H-type nilmanifold, where
H is an H-type group whose Lie algebra is not isomorphic to h3, h(C) or
h(H). Then there is no symplectic structure on M .

By Remark 3.4, if t ≥ 1 we get examples of Lie groups that do not ad-
mit symplectic structures but admitting a non-trivial closed left-invariant
2-form of type II. In 4.2 we show more interesting examples on indecom-
posable Lie algebras.

4 Closed 2-forms on low dimensional Lie algebras

In this section we study closed 2-forms of type II on 2-step nilpotent
Lie algebras of dimension n with n ≤ 6. The main goal is to compare
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the existence of closed 2-forms of type II with the existence of symplectic
structures.

Notice that the non-existence of closed 2-forms of type II on the Heisen-
berg Lie algebra of dimension 5 is a consequence of Lemma 3.11, while the
existence for non-singular Lie algebras such as the Heisenberg Lie algebra
of dimension 3, and the complex Heisenberg Lie algebra in dimension six,
is stated in Theorem 3.13.

Firstly, recall the list of 2-step nilpotent Lie algebras up to dimension
6, where we write the non-trivial Lie brackets:

Dimension 3

1. h1(R) Heisenberg Lie algebra of dimension three: [e1, e2] = e3.

Dimension 4

1. h1(R)⊕ R = span{e1, e2, e3, e4} with [e1, e2] = e3.

Dimension 5

1. h1(R)⊕ R2 = span{e1, e2, e3, e4, e5} with [e1, e2] = e3.

2. h2(R) Heisenberg Lie algebra of dimension 5: span{e1, e2, e3, e4, e5}
with [e1, e2] = [e3, e4] = e5.

3. g5 = span{e1, e2, e3, e4, e5} with [e1, e3] = e4, [e2, e3] = e5, called
Star.

Dimension 6: the Lie algebra is spanned by vectors e1, e2, e3, e4, e5, e6

1. h1(R)⊕ R3 with [e1, e2] = e3.

2. h2(R)⊕ R with [e1, e2] = [e3, e4] = e5.

3. g5 ⊕ R with [e1, e3] = e4, [e2, e3] = e5.

4. h1(R)⊕ h1(R) with [e1, e2] = e5, [e3, e4] = e6.
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5. f6: where [e1, e2] = e4 [e1, e3] = e5 [e2, e3] = e6. This is the free
2-step nilpotent Lie algebra in three generators.

6. k6: where [e1, e4] = e5 [e2, e3] = −e5 [e3, e4] = e6.

7. h1(C) with [e1, e2] = e5 = −[e3, e4], [e1, e4] = e6 = [e2, e3]. It is the
complex Heisenberg Lie algebra.

Proposition 4.1. Every 2-step nilpotent Lie group of dimension n with
n ≤ 6 admits a non-trivial closed 2-form of type II, with exception of the
real Heisenberg Lie algebra of dimension 5.

Proof. For the general approach to the proof, let n denote a 2-step nilpo-
tent Lie algebra equipped with any metric. Then the Lie algebra admits
a decomposition n = v⊕ z as in Equation (2.1).

Let v1, . . . vm be a orthonormal basis of v and z1, . . . zn a orthonormal
basis of z. As usual, write Ck

ij for the constant structures of the Lie algebra,
which in our cases is

[vi, vj ] =
n∑

s=1

Cs
ijzs.

Now, let ω denote a closed 2-form of type II satisfying ω = ⟨F ·, ·⟩.
Thus F(vk) =

∑n
t=1 btkzt for any k = 1, . . .m. Notice that bsk = −bks

from the skew-symmetric property of F. Now, the closedness condition
says

⟨[vi, vj ],F(vk)⟩+ ⟨[vj , vk],F(vi)⟩+ ⟨[vk, vi],F(vj)⟩, for all i, j, k,

which explicitly gives
n∑

s=1

(Cs
ijbsk + Cs

jkbsi + Cs
kibsj) = 0.

Indeed trivial solutions bsi = 0 for all i, s are always possible.
The next table shows the solutions of the equation above in every case.
We denote by ei, the dual forms of the elements ej in the corresponding

Lie algebras. And as usual eij := ei ∧ ej .
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Lie algebra closed 2-forms
h1 a13e

13 + a23e
23, ai3 ∈ R.

h1 ⊕ R a13e
13 + a23e

23 + a14e
14 + a24e

24, aij ∈ R.
h1 ⊕ R2

∑5
j=3 a1je

1j +
∑5

j=3 a2je
2j , aij ∈ R.

h2 no
g5

∑3
i=1

∑5
j=4 aije

ij , aij ∈ R.
h1 ⊕ R3

∑6
j=3 a1je

1j +
∑6

j=3 a2je
2j , aij ∈ R.

h2 ⊕ R
∑4

i=1 ai6je
i6, ai6 ∈ R.

g5 ⊕ R
∑3

i=1

∑6
j=4 aije

ij , aij ∈ R.
h1 ⊕ h1

∑2
i=1 ai5e

i5 +
∑4

j=3 ai6e
i6, aij ∈ R.

f6
∑3

i=1

∑6
j=4 aije

ij , a25 = a16 + a34, aij ∈ R.
k6 a(e16 + e35) + b(e26 + e45) +

∑4
i=3 ai6e

i6, aij ∈ R.
h(C)

∑
i=1,3 ai5(e

i5 − ei+16) +
∑

i=1,3 ai6(e
i6 + ei+15), aij ∈ R.

Table 4.1: Closed 2-forms of type II

Let us now determine the 2-closed forms on each of the nilpotent Lie al-
gebras of dimension n ≤ 6 listed above. They are obtained from canonical
computations by asking the 2-form to be closed (see (3.1)).

Recall that n = v⊕ z with v = z⊥. And any skew-symmetric map F of
type I preserves the decomposition, while if F is of type II, then F(z) ⊆ v

and F(v) ⊆ z.

Dimension 3: In h1(R) every 2-form is closed and it is represented by
any skew-symmetric map F : h1(R) → h1(R). Thus in the canonical basis,
it has a matricial presentation(

A B

−Bt 0

)
A ∈ so(2,R), Bt =

(
b c

)
.

Dimension 4: In h1(R) ⊕ R every closed 2-form is represented by a
matrix of the form:(

A B

−Bt 0

)
A ∈ so(2,R), Bt =

(
b c

d e

)
.
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Notice that there are symplectic structure, whenever the matrix above is
non-singular.

Dimension 5:
• In h1(R)⊕ R2 every closed 2-form is represented by a matrix of the

form:

(
A B

−Bt C

)
A ∈ so(2,R), Bt ∈M2×3(R) C =

0 0 0

0 0 h

0 −h 0

 .

• In h2(R) every closed 2-form is represented by a matrix of the form:(
A 0

0 0

)
A ∈ so(4,R).

• In g5 every closed 2-form is represented by a matrix of the form:(
A B

−Bt 0

)
A ∈ so(3,R), Bt ∈M2×3(R).

Dimension 6

• In h1(R)⊕ R3 every closed 2-form is represented by a matrix of the
form:

(
A B

−Bt C

)
A ∈ so(2,R), B ∈M2×4(R), C =


0 0 0 0

0 0 −e −f
0 e 0 −g
0 f g 0

 .

The 2-form ω = e1 ∧ e3+ e2 ∧ e4+ e5 ∧ e6 gives a symplectic structure.
• In h2(R) ⊕ R every closed 2-form is represented by a matrix of the

form: (
A B

−Bt 0

)
A ∈ so(4,R), Bt =

(
0 0 0 0

h g j i

)
.

There is no symplectic structure.
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• In g5⊕R every closed 2-form is represented by a matrix of the form:(
A B

−Bt 0

)
A ∈ so(3,R), B ∈M3×3(R).

The 2-form ω = e1 ∧ e4+ e2 ∧ e5+ e3 ∧ e6 gives a symplectic structure.
• In h1(R)⊕h1(R) every closed 2-form is represented by a 6×6 matrix

of the form:(
A B

−Bt 0

)
A ∈ so(4,R), Bt =

(
a b 0 0

0 0 c d

)
.

The 2-form ω = e1 ∧ e5+ e2 ∧ e4+ e3 ∧ e6 gives a symplectic structure.
• In f6 every closed 2-form is represented by a matrix of the form:(

A B

−Bt 0

)
A ∈ so(3,R), B =

d e f

g f + i h

i j k

 .

The 2-form ω = e1∧e6+2e2∧e5+e3∧e4 gives a symplectic structure.
• In k6 every closed 2-form is represented by a 6 × 6 skew-symmetric

matrix of the form:(
A B

−Bt 0

)
A ∈ so(4,R), Bt =

(
0 0 g h

g h i j

)
.

The 2-form ω = e1 ∧ e6+ e2 ∧ e4+ e3 ∧ e5 gives a symplectic structure.
• In h1(C) every closed 2-form is represented by a matrix of the form:(

A B

−Bt 0

)
A ∈ so(4,R), Bt =

(
g h i j

h −g j −i

)
.

The 2-form ω = e1 ∧ e6+ e2 ∧ e5+ e3 ∧ e4 gives a symplectic structure.
The results of the previous paragraphs establish the proof of the fol-

lowing result.

Theorem 4.2. Every 2-step nilpotent Lie group of dimension 2n with
n ≤ 3 admits a left-invariant symplectic structure if and only if it ad-
mits a closed left-invariant 2-form of type II, with exception of the trivial
extension of the Heisenberg Lie group of dimension five.
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4.1 The action of the group of orthogonal automorphisms

As proved in [23] there is an action of the group of orthogonal automor-
phisms that facilitates to find the solutions: in fact, assume γ is a solution
of Equation (1.1). Take an orthogonal automorphism φ, then

∇dφγ′dφγ′ = dφ∇γ′γ′ = dφF γ′ = dφF dφ−1dφγ′,

see more details in [23]. Thus, the magnetic trajectories for F are related
via dφ with the magnetic trajectories for dφF dφ−1.

Orthogonal automorphisms of the 2-step nilpotent Lie group N are in
correspondence with orthogonal automorphisms of the corresponding Lie
algebra n. That is, ψ : n → n, such that ⟨ψx, ψy⟩ = ⟨x, y⟩ for any x, y ∈ n.

By using the orthogonal decomposition n = v⊕ z we have that

• ψ(z) ⊆ z and ψ(v) ⊆ v,

• ψ = (A,B) with A ∈ O(v) and B ∈ O(z) satisfy Aj(Z)A−1 = j(BZ),
for all Z ∈ z.

In particular, the last equality above says that exact magnetic fields are
preserved by this action.

It is not hard to see that this action preserves the type of the magnetic
field. That is, if F is of type I (resp. II), then ψ ◦F ◦ψ−1 is of type I (resp.
II), for any ψ : n → n orthogonal automorphism.

Remark 4.3. In [23] the authors considered a more general action to
compute solutions. In fact given a magnetic trajectory γ : I →M solution
of the magnetic equation (1.1) for a Lorentz force F, then the curve ϕ◦γ(νs)
is solution of the magnetic equation for the Lorentz force νdϕF dϕ−1, for
ν ∈ R− {0} and ϕ a isometry of M .

Example 4.4. In the Heisenberg Lie algebra of dimension three the group
of orthogonal automorphisms Auto(h1(R)) consists of maps ψ : n → n,
where ψ(v + z) = Av + det(A)z, for v ∈ v, z ∈ z, A ∈ O(2).

Under this action any closed 2-form
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• of type I is equivalent to j(e3);

• of type II it is equivalent to(
0 B

−Bt 0

)
Bt =

(
r 0

)
r ∈ R+.

The action of Auto(h1(R)) preserves the norm ∥v∥ for any v ∈ v. Thus
r = ∥v∥.

The natural action is that of the automorphism group on the second
cohomology group H2(n,R) which enables to classify the extensions of n.
See for instance [18].

4.2 Lie algebras admitting closed 2-forms of type II but no
symplectic structure.

Now we present examples of indecomposable Lie algebras admitting a
closed 2-form of type II but no symplectic structure.

There is a family of 2-step nilpotent Lie algebras which are constructed
from graphs. Let G be a directed graph with at least one edge. Denote
the vertices of G by S = {X1, ..., Xm} and its edges by E = {Z1, ..., Zq}.
The Lie algebra L(G) is the vector space direct sum v⊕ z, where we let E
be a basis over R for z and S be a basis over R for v. Define the bracket
relations among elements of S according to adjacency rules:

• if Zk is a directed edge from vertex Xi to vertex Xl then define the
skew-symmetric bracket [Xi, Xl] = Zk.

• If there is no edge between two vertices, then define the bracket of
those two elements in S to be zero.

Extend the bracket relation to all of v by using bilinearity of the
bracket. The existence problem of symplectic structures in this family
of 2-step nilpotent Lie algebras was solved by Pouseele and Tirao in [24]:
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Theorem 4.5. [24].Let G be a graph. Then the Lie algebra L(G) asso-
ciated with G is symplectic if and only if |V | + |E| is even, and, in each
connected component of G, the number of edges does not exceed the number
of vertices.

Consider the complete graph K4: it has four vertices V1, V2, V3, V4 and
six edges Z1, Z2, Z3, Z4, Z5, Z6, giving rise to a Lie algebra of dimension
ten with non-trivial Lie brackets

[V1, V2] = Z1, [V1, V3] = Z2, [V1, V4] = Z3,

[V2, V3] = Z4, [V2, V4] = Z5, [V3, V4] = Z6.

Since |E| = 6 > 4 = |V | the corresponding Lie algebra does not admit a
symplectic structure.

However it admits a 2-form of type II: one has to solve four linear
equations for the coordinates aij such that F (Vi) =

∑6
j=1 ajiZj :

• ⟨[V1, V2], F (V3)⟩+⟨[V2, V3], F (V1)⟩+⟨[V3, V1], F (V2)⟩ = 0 is equivalent
to

a13 + a41 − a22 = 0,

• ⟨[V1, V2], F (V4)⟩+⟨[V2, V4], F (V1)⟩+⟨[V4, V1], F (V2)⟩ = 0 is equivalent
to

a14 + a51 − a32 = 0,

• ⟨[V1, V3], F (V4)⟩+⟨[V3, V4], F (V1)⟩+⟨[V4, V1], F (V3)⟩ = 0 is equivalent
to

a24 + a61 − a33 = 0.

• ⟨[V2, V3], F (V4)⟩+⟨[V3, V4], F (V2)⟩+⟨[V4, V2], F (V3)⟩ = 0 is equivalent
to

a44 + a62 − a53 = 0.



Symplectic structures on low dimensional 2-step nilmanifolds 251

This is a linear homogeneous system with 24 variables and 4 equations.
That is, there always exists non-trivial solutions. Notice that the indices
at the beginning of each equations show that the corresponding column
has a 1 only in this position. Thus, the system has column rank equals
four. Moreover the result of Pouseele and Tirao says:

Among complete graphs Kn, the only one giving rise to a symplectic
Lie algebra is K3.

The ideas of the previous example for the complete graph K4 can be
extended to other complete graphs Kn to get closed 2-forms of type II. One
has to solve n(n−1)(n−2)

3! equations for nn(n−1)
2 coefficients akij , for n ≥ 3,

where i < j. In fact the corresponding matrix has column rank equals
n(n−1)(n−2)

3! , which is verified at the column of akij for all possible i, j, k
with i < j < k, and 1 ≤ i.

The associated Lie algebra for Kn is the free 2-step nilpotent Lie alge-
bra in n generators.

Remark 4.6. The Lie algebra induced from the graph K3 is the Lie alge-
bra f6. It admits closed 2-forms of type II. Moreover there exists symplectic
forms induced from 2-forms of type II. In fact, take for instance the 2-form
induced from a matrix as in page 15 with d = j = h = 1 and the other
coefficients equal zero, is symplectic.
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