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Abstract. On a quasi-smooth hypersurface X in an n-dimensional projective simplicial
toric variety Pn

Σ associated to a fan Σ, the morphism i∗ : Hp(Pn
Σ,Q) → Hp(X,Q)

induced by the inclusion, is injective for p = dimX and an isomorphism for p ≤
dimX−1. When n = 2k+1 one can define the Noether-Lefschetz locus NLβ as the locus
of quasi-smooth hypersurfaces of degree β such that i∗ restricted to the middle algebraic
cohomology is not an isomorphism. In [6] Bruzzo and Grassi proved a Noether-Lefschetz
type theorem: if the projective simplicial toric variety is Oda, i.e., the multiplication
morphism

H0(OP2k+1
Σ

(α))⊗H0(OP2k+1
Σ

(γ)) → H0(OP2k+1
Σ

(α+ γ)))

is surjective whenever α and γ are an ample and nef class, respectively, then, on a very
general hypersurface X,

i∗ : Hk,k(P2k+1
Σ ,Q) → Hk,k(X,Q)

is an isomorphism. Hence, NLβ is a countable union of closed subschemes in the

projective complete linear system PH0(OP2k+1
Σ

(β)). The aims of this review article are

to give a brief survey and to present some open problems of the Noether-Lefschetz locus

and its components.

Keywords: Noether-Lefschetz components, toric varieties, Hodge theory.

2020 Mathematics Subject Classification: 14C22, 14J70, 14M25, 32S35, 14M10

Email: wmontoya@ime.unicamp.br

163

http://doi.org/10.21711/231766362024/rmc608


164 William D. Montoya

1 Introduction

What is nowadays the Noether-Lefschetz theorem was stated in 1882
by Max Noether, and was proved in 1920 by Salomon Lefschetz using
algebraic topological methods. In Lefschetz’s words:

“It was my lot to plant the harpoon of algebraic topology into the body
of the whale of algebraic geometry".

The classical Noether-Lefschetz theory is about the Picard number of
surfaces in the 3-dimensional projective space. Let Ud ⊂ PH0(P3,OP3(d))

be the locus of smooth surfaces of degree d in P3, with d ≥ 4; then the very
general surface in Ud has Picard number 1. For a historical perspective of
the Noether-Lefschetz problem and exhaustive references the reader may
consult [5].

In Section 3, we present an extension of the previous result, a Noether-
Lefschetz type theorem for toric varieties, proved by Bruzzo and Grassi in
[6]:

LetX = {f0 = 0} be a quasi-smooth hypersurface of an odd-dimensional
projective simplicial toric variety P2k+1

Σ .
Theorem 3.8 If the multiplication morphism on the Jacobian ring of

X

γk : R(f0)β ⊗R(f0)kβ−β0 → R(f0)(k+1)β−β0

is surjective, where β0 is the anticanonical class of P2k+1 then, for f
in the complement of a countable union of closed subschemes of positive
codimension, one has

Hk.k(Xf ,Q)/i∗(Hk,k(P2k+1
Σ ,Q)) = 0.

In Section 4, a survey of [11], we establish lower and upper bounds for
the codimension of the irreducible components of the Noether-Lefschetz
locus. In subsection 4.1, we obtain the lower bound, which, following the
terminology in [5], we call the “explicit Noether-Lefschetz theorem for toric
varieties”, namely:
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Theorem 4.1 Let P2k+1
Σ be a Gorenstein projective simplicial toric

variety, η a 0-regular primitive ample Cartier class, and β a Cartier class
such that kβ − β0 = nη (n > 0), where β0 is the anticanonical class of
P2k+1
Σ . Assume that the multiplication morphism Sβ ⊗ Snη → Sβ+nη is

surjective, and that Hq(P2k+1
Σ ,OP2k+1

Σ
(β− qη)) = 0 for q = 1, . . . , 2k; then

n+ 1 ≤ codimZ

for every irreducible component Z of the Noether-Lefschetz locus NLβ .

In subsection 4.2, using the Hodge theory for hypersurfaces in complete
simplicial toric varieties, and the orbifold structure of the quasi-smooth
hypersurfaces (see [3]), extending the ideas in [7] we establish an upper
bound, specifically:

Theorem 4.3 codimZ ≤ hk−1,k+1(Xf ) for every irreducible compo-
nent Z of the Noether-Lefschetz locus NLk,βλ,U .

In Section 5, we show a Noether-Lefschetz type theorem for quasi-
smooth intersection subvarieties, Theorem 2.5 in [11].

Finally, in Section 6 we present some open problems related to all the
previous sections which we divide into the following subsections:

• 6.1 Oda and Hodge conditions.

• 6.2 Constructing Noether-Lefschetz components of a given codimen-
sion.

• 6.3 Components of the Noether-Lefschetz locus with maximal codi-
mension and density.

• 6.4 A prediction of the Hodge conjecture.

• 6.5 An extended Noether-Lefschetz locus.
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2 Preliminaries and Notation

2.1 The Cox ring and toric varieties

Definition 2.1. Let Y be a complete normal variety with finitely gener-
ated Class group. The Cox ring of Y is the graded ring

Cox(Y ) :=
⊕

[D]∈Cl(Y )

H0(OY (D))

Definition 2.2. A toric variety is an irreducible variety Y containing a
torus T ≃ (C∗)n as a Zariski open subset such that the action, T ×T → T ,
of T on itself extends to an algebraic action of T on Y .

Theorem 2.3 (Corollary 4.4 in [4]). Let Y be a complete normal vari-
ety where any two points of Y are contained in a common open affine
neighborhood and it has finitely generated class group. Then Cox(Y ) is a
polynomial ring if and only if Y is a toric variety.

Remark 2.4. The Cox ring encodes a lot of information of a given variety,
see [1] for an exhaustive study of this ring. So, for example, Mori dream
spaces can be characterized via its Cox ring, see [20] for more details.

2.2 Construction of toric varieties via fans

Let M be a free abelian group of rank n, let N = Hom(M,Z), and
NR = N ⊗Z R.

Definition 2.5. • A convex subset σ ⊂ NR is a rational k-dimensional
simplicial cone if there exist k linearly independent primitive ele-
ments e1, . . . , ek ∈ N such that σ = {µ1e1 + · · ·+ µkek}.

• The generators ei are integral if for every i and any nonnegative
rational number µ the product µei is in N only if µ is an integer.

• Given two rational simplicial cones σ, σ′, one says that σ′ is a face
of σ (σ′ < σ) if the set of integral generators of σ′ is a subset of the
set of integral generators of σ.
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• A finite set Σ = {σ1, . . . , σt} of rational simplicial cones is called a
rational simplicial complete n-dimensional fan if:

1. all faces of cones in Σ are in Σ;

2. if σ, σ′ ∈ Σ then σ ∩ σ′ < σ and σ ∩ σ′ < σ′;

3. NR = σ1 ∪ · · · ∪ σt.

A rational simplicial complete n-dimensional fan Σ defines an n-dimensi-
onal toric variety PnΣ having only orbifold singularities which we assume
to be projective. Moreover, T := N ⊗Z C∗ ≃ (C∗)n is the torus action on
PnΣ. We denote by Σ(i) the i-dimensional cones of Σ and each ρ ∈ Σ cor-
responds to an irreducible T -invariant Weil divisor Dρ on PnΣ. Let Cl(Σ)

be the group of Weil divisors on PnΣ modulo rational equivalences.

The Cox ring of PnΣ is the polynomial ring S = C[xρ | ρ ∈ Σ(1)], S
has the Cl(Σ)-grading, a Weil divisor D =

∑
ρ∈Σ(1) uρDρ determines the

monomial xu :=
∏
ρ∈Σ(1) x

uρ
ρ ∈ S and conversely deg(xu) = [D] ∈ Cl(Σ).

For a cone σ ∈ Σ, σ̂ is the set of 1-dimensional cones in Σ that are not
contained in σ and xσ̂ :=

∏
ρ∈σ̂ xρ is the associated monomial in S.

Definition 2.6. The irrelevant ideal of PnΣ is the monomial ideal BΣ :=<

xσ̂ | σ ∈ Σ > and the zero locus Z(Σ) := V(BΣ) in the affine space
A#Σ(1) := Spec(S) is the irrelevant locus.

Proposition 2.7 (Theorem 5.1.11 [17]). The toric variety PnΣ is a cate-
gorical quotient A#Σ(1) \Z(Σ) by the group Hom(Cl(Σ),C∗) and the group
action is induced by the Cl(Σ)-grading of S.

Let us denote by U(Σ) the open set A#Σ(1) \ Z(Σ) and by D(Σ) the
group Hom(Cl(Σ),C∗).

Remark 2.8. The rank of the class group, the number of rays and the di-
mension of the toric variety are related by the following equation rk(Cl(Σ)) =
#Σ(1)− n.
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2.3 Quasi-smooth subvarieties.

Definition 2.9. A subvariety X ⊂ PnΣ is quasi-smooth if V(IX) ⊂ A#Σ(1)

is smooth outside Z(Σ).

Example 2.10. Quasi-smooth hypersurfaces or more generally quasi-smooth
intersections are quasi-smooth subvarieties (see [3] or [23] for more details).

Remark 2.11. Quasi-smooth subvarieties are suborbifolds of PnΣ in the
sense of Satake in [27]. Intuitively speaking they are subvarieties whose
only singularities come from the ambient space.

Proposition 2.12 (Proposition 4.15 in [3]). If f ∈ H0(OPn
Σ
(β)) is a gen-

eral section for β an ample class, then its zero locus X ⊂ PnΣ is a quasi-
smooth hypersurface.

2.4 Cayley trick

The Cayley trick is a way to associate to a quasi-smooth intersection
subvariety a quasi-smooth hypersurface. Let L1, . . . , Ls be line bundles on
PnΣ and let π : P(E) → PnΣ be the projective space bundle associated to the
vector bundle E = L1 ⊕ · · · ⊕ Ls. It is known that P(E) is a (n+ s− 1)-
dimensional simplicial toric variety whose fan depends on the degrees of
the line bundles and the fan Σ. Furthermore if the Cox ring, without
considering the grading, of PnΣ is C[x1, . . . , xr] then the Cox ring of P(E)

is
C[x1, . . . , xr, y1, . . . , ys]

Moreover forX a quasi-smooth intersection subvariety cut off by f1, . . . ,
fs such that deg(fi) = [Li], we relate the hypersurface Y cut off by
F = y1f1+ · · ·+ysfs which turns out to be quasi-smooth, for more details
see Section 2 in [23] and for an application of this trick see [24].

For simplicial toric varieties we have a Hilbert’s Nullstellensatz theo-
rem, i.e., there is a 1 − 1 correspondence between closed subvarieties and
radical homogeneous ideals. Furthermore, all the closed subvarieties arise
in this way.
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We denote P(E) as Pn+s−1
Σ,X to keep track of its relation with X and PnΣ.

Remark 2.13. There is a morphism ι : X → Y ⊂ Pn+s−1
Σ,X . Moreover every

point z = (x, y) ∈ Y with y ̸= 0 has a preimage. Hence any subvariety
W = V(IW ) ⊂ X ⊂ PnΣ has a natural interpretation in Y , i.e., V(IW ) =:

W ′ ⊂ Y ⊂ Pn+s−1
Σ,X such that π(W ′) =W .

2.5 Oda varieties

Definition 2.14. A toric variety PnΣ is an Oda variety if the multiplication
map Sα ⊗ Sγ → Sα+γ is surjective whenever α is an ample class and γ is
a nef one.

This definition was introduced in [26] by Oda in a more general setting
and it can be stated in terms of the Minkowski sum of polytopes, i.e., the
sum Pα+Pγ of the polytopes associated with the line bundles OPn

Σ
(α) and

OPn
Σ
(γ) is equal to the Minkowski sum Pα+γ , the polytope associated with

the line bundle OPn
Σ
(α+ γ).

Proposition 2.15 (Corollary 4.2 in [21]). 1. A smooth toric variety with
Picard number 2 is an Oda variety

2. A total space of a toric projective bundle over an Oda variety is also
an Oda variety

3 A Noether-Lefschetz type theorem

This section is an overview of the work of Bruzzo and Grassi in [6].

3.1 Primitive cohomology of a hypersurface

Let X be a quasi-smooth hypersurface in PnΣ, then the morphism
i∗ : Hn−1(PnΣ,C) → Hn−1(X,C) induced by the inclusion is injective by
propositionosition 10.8 in [3].
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Definition 3.1. The primitive cohomology Hn−1
prim(X) is the quotient

Hn−1(X,C)/i∗(Hn−1(PnΣ,C)).

Remark 3.2. Let i∗ : Hn−1(X,Q) → Hn+1(PnΣ,Q) be the Gysin map.
The ker i∗ is known in the literature as the variable cohomology or van-
ishing cohomology, see for example [12] and [31], respectively. In degree
n− 1 the variable or vanishing cohomology and the primitive cohomology
coincide.

The primitive cohomology has a pure Hodge structure

Hn−1
prim(X) =

n−1⊕
p=0

Hp,n−1−p
prim (X).

inherited from the pure Hodge structures ofHn−1(X,C) andHn−1(PnΣ,C).

Proposition 3.3 (Proposition 2.10 in [6]). There is a natural isomorphism

Hp,n−1−p
prim (X) ≃

H0(ΩnPn
Σ
(n+ 1− p)X)

H0(ΩnPn
Σ
(n− p)X) + dH0(ΩnPn

Σ
(n− p)X)

The resulting projection map multiplied by the factor (−1)p−1/(n +

1− p)! we denote by

rp : H
0(ΩnPn

Σ
(n+ 1− p)X) → Hp,n−1−p

prim (X)

and we call it the pth-residue map.

3.2 The moduli space of ample hypersurfaces

This is a summary of the principal results of Section 13 in [3] which are
key points of the proof of the Noether-Lefschetz theorem of this section.

Let Aut(PnΣ) be the automorphism group of PnΣ. Given β ∈ Cl(Σ), we
denote by Autβ(PnΣ) the subgroup of automorphism preserving β.
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When we describe PnΣ as the quotient U(Σ)/D(Σ), it is clear that
Aut(PnΣ) does not act on U(Σ) but Cox in [15] proved that there exists a
short exact sequence

1 → D(Σ) → Ãut(PnΣ) → Aut(PnΣ) → 1

where Ãut(PnΣ) is the group of automorphisms of A#Σ(1) which preserves
U(Σ) and normalizes D(Σ). Any element ψ ∈ Ãut(PnΣ) induces an auto-
morphim ψ : S → S satisfying ψ(Sγ) = Sψ(γ).

Definition 3.4. Given β ∈ Cl(Σ), let Ãutβ(PnΣ) be the subgroup of
Ãut(PnΣ) preserving β.

Let Ãut
0
(PnΣ) be the connected component of the identity of Ãut(PnΣ).

It is canonically isomorphic to the group Autg(S) of Cl(Σ)-graded auto-
morphisms of S.

If β ∈ Cl(Σ) is an ample class then,

Uβ/Ãutβ(PnΣ) := {f ∈ Sβ | f is quasi-smooth}/Ãutβ(PnΣ)

should be a coarse moduli space. The problem is that Ãutβ(PnΣ) does not
need to be a reductive group, i.e., the quotient may not exist. However,
there is a non-empty open set U such that the quotient

M0
β := U/Ãutβ(PnΣ)

exists (See Section 2 in [16] for more details).

Proposition 3.5 (Proposition 13.7 in [3]). If β is ample and f ∈ Sβ is
generic then R(f)β is naturally isomorphic to TXMβ, the tangent space of
the generic coarse moduli space of quasi-smooth hypersurfaces of PnΣ with
divisor class β.

Proposition 3.6 (Proposition 3.3 in [6]). There is a morphism

γp : TXMβ ⊗Hp,n−1−p
prim (X) → Hp−1,n−p

prim (X)
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such that the diagram

H0(OPn
Σ
(X))⊗H0(ΩnPn

Σ
(n− p)X)

ϕ⊗rp
��

∪ // H0(ΩnPn
Σ
(n+ 1− p)X)

rp−1

��
TXMβ ⊗Hp,n−1−p

prim (X) γp
// Hp−1,n−p

prim (X)

is commutative.

For X defined by the homogeneous polynomial f0, recall that the Ja-
cobian ring R(f0) is the quotient of S by the Jacobian ideal of X.

Proposition 3.7 (Proposition 3.4 in [6]). The morphism γp coincides with
the multiplication in the ring R(f0),

R(f0)β ⊗R(f0)(n−p)β−β0 → R(f0)(n−p+1)β−β0

Now we have all the machinery to enunciate a Noether-Lefschetz type
theorem.

Theorem 3.8 (Lemma 3.7 in [6]). If for n = 2k + 1, the multiplication
morphism γk is surjective, then for f in the complement of a countable
union of closed subschemes of positive codimension one has,

Hk.k
prim(Xf ,Q) = 0.

Corollary 3.9. Let P3
Σ be a 3-dimensional simplicial projective toric vari-

ety and let X be a very general hypersurface with degree β. If the morphism
γ2 is surjective, then X and P3

Σ have the same Picard number.

Remark 3.10. Oda varieties satisfy the surjectivity requirement in the
previous Theorem.

4 Codimension bounds for the Noether-Lefschetz
components for toric varieties

This section is an overview of [10], so see that paper for more details.
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4.1 An explicit Noether-Lefschetz theorem in toric vari-
eties

This section is a natural extension to higher dimensions of the ideas
developed in [7, 22] for the case of threefolds. To this end there are two
points to consider:

1. Let
S =

⊕
α∈Cl(Σ)

Sα

be the Cox ring of the toric variety P2k+1
Σ under consideration. In [7, 22]

the following assumption was made in the case k = 1. Let β and η be
ample classes in Pic(P3

Σ), with η primitive and 0-regular (in the sense of
Castelnuovo regularity), and β − β0 = nη for some n ≥ 0, where β0 is
the anticanonical class of P3

Σ. Then one assumes that the multiplication
map Sβ ⊗ Snη → Sβ+nη is surjective; this implies that a very general
quasi-smooth surface of degree β in P3

Σ has the same Picard number as
P3
Σ. In the higher dimensional case, if we assume again the surjectivity of

the multiplication map, using Theorem 10.13 and propositionosition 13.7
in [3], and Lemma 3.7 in [7], one proves that the primitive cohomology of
degree 2k of a very general quasi-smooth hypersurface of degree β is zero.
Of course we recover the result of [18] when k = 1.

2. In [7, 22] it was also assumed that H1(OP3
Σ
(β − η)) = H2(OP3

Σ
(β −

2η)) = 0, which allowed one to conclude that a certain vector bundle was
1-regular with respect to η. Here we assume

Hq(OP2k+1
Σ

(β − qη)) = 0 for 1 ≤ q ≤ 2k (4.1)

which is the same regularity for the analogue of that vector bundle.
The next Theorem establishes the lower bound for the codimension of

the components of the Noether-Lefschetz locus. Recall that a Gorenstein
variety is a variety whose canonical divisor is Cartier.

Theorem 4.1 (Theorem 2.1 in [10]). Let P2k+1
Σ be a Gorenstein projective

simplicial toric variety, η a 0-regular primitive ample Cartier class, and β a
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Cartier class such that kβ−β0 = nη (n > 0), where β0 is the anticanonical
class of P2k+1

Σ . Assume that the multiplication morphism Sβ ⊗ Snη →
Sβ+nη is surjective, and that Hq(OP2k+1

Σ
(β − qη)) = 0 for q = 1, . . . , 2k;

then
n+ 1 ≤ codimZ

for every irreducible component Z of the Noether-Lefschetz locus NLβ.

4.2 Upper bound for the Codimension of the Noether-
Lefschetz Components in Toric Varieties

The explicit Noether-Lefschetz Theorem has provided a lower bound
for the codimension of the Noether-Lefschetz components. Hodge theory
in toric varieties gives us the upper bound. For a class β as in the previous
Section, let f ∈ PH0(OP2k+1

Σ
(β)) such thatXf = {f = 0} is a quasi-smooth

hypersurface. Let Uβ ⊂ PH0(OP2k+1
Σ

(β)) be the open subset parametrizing
quasi-smooth hypersurfaces and let π : χβ → Uβ be its tautological family.
One considers the local system H2k = R2kπ∗C ⊗ OUβ

over Uβ . Let 0 ̸=
λf ∈ Hk,k

prim(Xf ,Q) and let U be a contractible open subset around f .
Finally, let λ ∈ H2k(U) be the section defined by λf and let λ̄ be its image
in (H2k/F kH2k)(U), where F kH2k = H2k,0 ⊕H2k−1,1 ⊕ · · · ⊕ Hk,k.

Definition 4.2. (Local Noether-Lefschetz locus). NLk,βλ,U = {g ∈ U | λ̄g =
0}.

Theorem 4.3. codimZ ≤ hk−1,k+1(Xf ) for every irreducible component
Z of the Noether-Lefschetz locus NLk,βλ,U .

This section is devoted to presenting this theorem. Classically it is a
consequence of Griffiths’ transversality, which we extended to the context
of projective simplicial toric varieties.

The tautological family π : Xβ ⊂ Uβ × PnΣ → Uβ is of finite type
and separated since Xβ and Uβ are varieties. By Corollary 5.1 in [29]
there exists a Zariski open set U ⊂ Uβ such that X = π−1(U) → U is a
locally trivial fibration in the classical topology, i.e., there exists an open
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cover of U by contractible open sets such that for every element U of the
cover and every point f0 ∈ U we have X|U ≃ π−1(U) ≃ U × X0, where
X0 = {f0 = 0}, which implies that Xf ≃ X0 for all f ∈ U as C∞-
orbifolds; moreover, Hk(Xf ) ≃ Hk(X0). Thanks to the local trivialization
and as quasi-smooth hypersurfaces are orbifolds [3], we can put an orbifold
structure on X = π−1(U).

The Cartan-Lie formula. For every k, let Hk be the complex vector
bundle on Uβ associated to the local system Rkπ∗C. Let Ω be a Zariski
k-form on the orbifold X such that Ωf = Ω|Xf

is closed for every f ∈ U ; we
can associate with it a local section ω of the vector bundle Hk by letting

ω(f) = [Ωf ] ∈ Hk(Xf ,C).

Definition 4.4. The interior product ιv(α) for a tangent vector v and a
differential form α is the (k−1)-form ιv(α)(v1, . . . , vk−1) := α(v, v1, . . . vk).

The following result computes the toric Gauss-Manin connection ∇ :

Hk → Hk ⊗ ΩUβ
in the direction w restricted to X0.

Proposition 4.5 (Cartan-Lie Formula). If w ∈ TU ,X0 and v ∈ Γ(TX|X0
)

are such that π∗,x(v) = w for all x ∈ X0, one has

∇w(ω) =
[
ιv(dΩ)|X0

]
(4.2)

Again we take U a contractible open set trivializing XU |U ≃ U ×X0.

Definition 4.6. The period map

Pp,k : U → Grass(bp,k, Hk(X,C))

is the map f 7→ F pHk(Xf ,C), where F pHk(Xf ,C) is the Hodge filtration
of Hk(Xf ,C) ≃ Hk(X0,C).

Here bp,k = dimF pHk(Xf ,C). Note that Pp,k is a map of complex
manifolds.
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Proposition 4.7. The period map Pp,k is holomorphic.

Remark 4.8. There is an intrinsic relation between the differential

dPp,k
f (w) : F pHk(Xf ) → Hk(X0)/F

pHk(Xf )

and the covariant derivative ∇w : Hk → Hk, namely, given σ ∈ F pHk(Xf )

one can construct a local section of Hk over U

σ̃ : U → Hk(Xu)

f ′ 7→ σ̃(f ′) ∈ F pH(Xf ′)

such that σ̃(f) = σ. Hence,

dPp,k
f (w)(σ) = ∇wσ̃ mod F pHk(Xf ).

Remark 4.9. The Hodge decomposition

Hk =
⊕
p+q=k

Hp,q

of the bundle Hk is not holomorphic, but the bundles of the Hodge filtra-
tion

F pHk =
k⊕
p=0

Hk−p,p

are. This can be shown using the period map. Indeed by the very definition
of the period map (see also [30], Section 10.2.1 for the smooth case) one
has

F pHk ≃ (Pp,k)∗Tp,k,

where Tp,k is the tautological bundle on the Grassmannian Grass(bp, H
k(X0,C)).

Thus the bundles F pHk are indeed holomorphic.

Proposition 4.10 (Griffiths Transversality).

∇F pHk ⊂ F p−1Hk
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Proof. By the Cartan-Lie formula and the above remark

dPp,k
w (σ) =

[
ιvdΩ|X0

]
mod F pHk(Xf ).

The fact that Pp,k is holomorphic implies that ιvdΩ|X0
∈ F pHk(Xf ) if v is

of type (0, 1), so that if v is of type (1, 0) we get ιvdΩ|X0
∈ F p−1Hk(Xf ).

Theorem 4.11. Each NLk,βλ,U ⊂ U can be defined locally by hk−1,k+1 holo-
morphic equations, where hk−1,k+1 = rkF k−1H2k/F kH2k.

Proof. Once Griffiths transversality has been generalized, the proof goes
as in the classical case, see Lemma 3.1 in [30] and section 5.3 in [31].

This proves Theorem 4.3.

5 A Noether-Lefschetz type theorem for quasi-
smooth intersection subvarieties

This Section is a natural extension of Section 3 to quasi-smooth inter-
section subvarieties.

5.1 A Lefschetz type theorem

Definition 5.1. X is a codimension s quasi-smooth intersection if

V (f1, . . . , fs) ∩ U(Σ)

is either empty or a smooth intersection subvariety of codimension s in
U(Σ).

Theorem 5.2 (Proposition 1.4 in [23]). Let X ⊂ PnΣ be a closed subset,
defined by homogeneous polynomials f1, . . . fs ∈ BΣ. Then the natural map
i∗ : H i(PnΣ) → H i(X) is an isomorphism for i < n − s and an injection
for i = n − s. In particular, this is true if the hypersurfaces cut by the
polynomials fi are ample.
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Thanks to the previous theorem we can give an extension of primitive
cohomology for quasi-smooth hypersurfaces to quasi-smooth intersection
subavarieties.

Definition 5.3. The primitive cohomology group Hn−s
prim(X) is the quo-

tient
Hn−s(X,C)/i∗

(
Hn−s(PnΣ)

)
5.2 Cayley propositionosition

The next propositionosition we called the Cayley propositionosition.

Proposition 5.4 (Proposition 2.3 in [10] ). Let X = X1 ∩ · · · ∩Xs be a
quasi-smooth intersection subvariety in PnΣ cut off by homogeneous polyno-
mials f1 . . . fs. Then for p ̸= n+s−1

2 , n+s−3
2

Hp−1,n+s−1−p
prim (Y ) ≃ Hp−s,n−p

prim (X).

Corollary 5.5. If n+ s = 2(k + 1),

Hk+1−s,k+1−s
prim (X) ≃ Hk,k

prim(Y )

Remark 5.6. The above isomorphisms are also true with rational coeffi-
cients since H•(X,C) = H•(X,Q)⊗Q C

See the beginning of Section 7.1 in [30] for more details.

5.3 Another Noether-Lefschetz type theorem

The following theorem is a natural extension of Theorem 3.8.

Theorem 5.7 (Theorem 2.5 in [11]). Let PnΣ be an Oda projective simpli-
cial toric variety. Then for a very general intersection subvariety X cut
off by f1, . . . fs such that n + s = 2(k + 1) and

∑s
i=1 deg(fi) − β0 is nef,

one has that

Hk+1−s,k+1−s(X,Q) ≃ i∗
(
Hk+1−s,k+1−s(PnΣ,Q)

)
.
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6 Some Open Problems

6.1 Oda and Hodge conditions

The assumption in the Noether-Lefschetz type theorem, Theorem 3.8,
is the surjectivity of the multiplication map

R(f)β ⊗R(f)kβ−β0 → R(f)(k+1)β−β0 ,

this assumption is named by Bruzzo and Grassi in [8] as the Hodge condi-
tion since the theorem tells us that on a very general hyper-surface with
degree β the Hodge conjecture holds, i.e., every rational (k, k)-cohomology
class is algebraic.

The Oda condition is a condition on the toric variety and it can be
expressed in terms of its Cox ring S, that is, the multiplication map

Sβ ⊗ Skβ−β0 → S(k+1)β−β0

is surjective. It is clear that Oda varieties satisfy the Oda condition and
that the Oda condition implies the Hodge condition but whether these two
conditions are equivalent is an open problem, see Section 6 in [8] for more
details.

6.2 Constructing Noether-Lefschetz components of a given
codimension

Combining the codimension bounds along Section 4 we have that every
irreducible component in the Noether-Lefschetz locus with codimension c
satisfies:

n+ 1 ≤ c ≤ hk−1,k+1(X). (6.1)

In [14] Ciliberto and Lopez proved for the 3-dimensional projective
space the existence of irreducible components of NLd for suitable values
of d and c. The existence of these components is another open problem
when P2k+1

Σ is not P3.
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6.3 Components of the Noether-Lefschetz locus with max-
imal codimension and their density

For the projective space P3 and more generally for projective normal
3-folds, the study of the components of the Noether-Lefschetz locus with
maximal codimension has been studied by many authors [19, 14, 9, 25].
The components of the Noether-Lefschetz locus with maximal codimension
are called general components since they are dense in the Classical and in
the Zariski topology.

The upper bound in (6.1) depends on X, an open problem is the inde-
pendence of the given hypersurface in the Noether-Lefschetz locus for the
upper bound codimension, a fact which is true for toric 3-folds, see the
propositionosition 4.6 in [7].

Also, it is expected but yet to be proved that the density proposition-
erty of the components with maximal codimension is also true for P2k+1

Σ

for k > 1.

6.4 A prediction of the Hodge conjecture

The Hodge conjecture predicts that the Local Noether-Lefschetz locus
is algebraic, a fact proved in 1995 by Cattani, Deligne and Kaplan in [13]
for the classical projective space. In Voisin’s words:

“This is a remarkable piece of evidence for the Hodge conjecture".
In 2020 Bakker, Klingler and Tsimerman presented a new proof of the

algebraicity of the local Noether-Lefschetz locus in [2] using model theory
results.

The algebraicity of this locus is an open problem for P2k+1
Σ different

from the projective space.

6.5 An extended Noether-Lefschetz locus

Having a Noether-Lefschetz type theorem for quasi-smooth intersection
subvarieties, Theorem 5.7, allows us to extend the Noether-Lefschetz locus,
namely:
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Definition 6.1. The Noether-Lefschetz locus NLβ1,...,βs of quasi-smooth
intersection subvarieties is the locus of s-tuples (f1, . . . , fs) ∈ |β1|×· · ·×|βs|
such that X = Xf1 ∩ · · · ∩Xfs is a quasi-smooth intersection with

Hk+1−s,k+1−s(X,Q) ̸= i∗(Hk+1−s,k+1−s(P2k+1
Σ ,Q)).

For these geometrical objects with s > 1, all the above-mentioned re-
sults and open problems in all previous sections are awaiting to be studied
and explored.
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