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Abstract. The group Spin(7) belongs to the list of possible holon-
omy of an eight-dimensional Riemannian manifold. The weaker no-
tion of Spin(7)-structures plays for manifolds with holonomy Spin(7),
the analogue of almost Hermitian for K&hler manifolds. As part of a
more general scheme, a notion of harmonicity of Spin(7)-structures
is developed with the objective of comparing isometric Spin(7)-
structures among themselves. We present here an account of our
study in [12] of the harmonic flow of Spin(7)-structures and its ana-
lytical properties.
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1 Introduction

At the confluence of holonomy theory and harmonic maps lies the
calculus of variations for geometric structures. The catalogue of holon-
omy groups Hol(M, g) of an irreducible non-symmetric simply-connected

n-dimensional Riemannian manifold is rather brief: SO(n) (generic), U(%)
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(Kahler), SU(%) (Calabi-Yau), Sp(%) (HyperKéhler), Sp(1)Sp(%) (Quater-
nionic Kéhler), Gy (n = 7) and Spin(7) (n = 8). Its main repercussion
is on the symmetries of the curvature tensor which then must live in the
Lie algebra $ol(M, g), so that Calabi-Yau, HyperKéhler, Go and Spin(7)
manifolds are Ricci flat. Our interest is with the last case. As explained in
[22], the Clifford algebra Cl7 is isomorphic to R[8] & R[8], so as the group
Spin(7) lives in Clg, which is isomorphic to one of these two factors, it
admits one irreducible representation of dimension eight. Since it must
be unitary, Spin(7) can be seen as a 21-dimensional subgroup of SO(8)
(cf. [31] for an exposé on its conjugacy classes).

It has been know for quite a while [5, 6, 7| that holonomy in Spin(7)

is equivalent to the existence of a parallel 4-form ® point-wise equal to

‘bp :d330123 _ dx0167 _ d.%'0527 _ d.l‘0563 _ d$0415 o d:L’O426 _ d330437 + dx4567

4523 4163 4127 2637 1537 1526
—dx —dx —dx —dx —dx —dx ™",

where dz*! = da® A dad A da® A dxt (though there exist 480 different ways
to write down this Euclidean model on R?®).

The group Spin(7) can then be thought of as the group of automor-
phisms of ®,. This geometry comes from the octonions, much like G2, and
has long been suspected to be an impostor waiting to be removed from the
list, as happened to Spin(9) with Alekseevsky [1].

The first examples of Riemannian manifolds with Spin(7) holonomy
are due to Bryant [8] in 1985 on open subsets of Euclidean spaces and
complete examples followed four years later [9] on the spinor bundle of
S*. For compact examples, we had to wait for Joyce in 1996 [19], and
a comprehensive account can be found in [20]. Foscolo [15] recently con-
structed complete non-compact Spin(7)-manifolds with arbitrarily large
second Betti number and infinitely many distinct families of asymptoti-
cally locally conical Spin(7)-metrics on the same smooth topological M.
Kovalev [25] adapted in 2003 a conical asymptotical gluing argument to
obtain Spin(7)-manifolds from twisted connected sums. More explicit is

Salamon’s example of the product of RT with the nearly-Go manifold
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SO(5)/SO(3). Spin(7)-Manifolds are hard to find but they are interesting

for at least two other reasons:

a) One can define a higher gauge theory of Spin(7)-instantons with the
(still fairly remote) hope of defining moduli spaces and invariants,
and perhaps a (partial) classification of 8-dimensional manifolds.
These “twisted D-T instantons” are vector bundles with a connec-
tion A such that their curvature tensor F) lies in some (irreducible)
component 03, (cf. the next section for conventions and notations),
equivalently satisfies

FAN® =x%Fy.

See [10, 30] for some Spin(7)-instanton constructions.

b) Supersymmetry and string theory have invested a lot in of hope in
Spin(7)-manifolds to construct solutions to the gravitino and dilatino

equations [18].

However, all these constructions are hard but there exists the softer,

more abundant, notion of a Spin(7)-structure.

2 Spin(7)-structures

The best reference for this section, especially pertaining to flows, is
Karigiannis’ notes [21].

A Spin(7)-structure on an 8-dimensional manifold M is a reduction of
the structure group of the frame bundle Fr(M) to the Lie group Spin(7) C
SO(8). From the point of view of differential geometry, a Spin(7)-structure
is a 4-form ® on M. The existence of such a structure is (equivalent to)
a topological condition, cf. [22, Theorem 10.7|: the vanishing of the first

and second Stiefel-Whitney classes and, for some orientation
Pl —4p2 +8x =0.

The space of 4-forms which determine a Spin(7)-structure on M is a sub-
bundle A of Q*(M), called the bundle of admissible 4-forms. This is not
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a vector subbundle and it is not even an open subbundle, unlike the case
for Go-structures.

A Spin(7)-structure determines a Riemannian metric and an orienta-
tion on M in a nonlinear way. Explicit formulas can be found in [21], they
are highly involved and it is hard to picture how they could be exploited.
But it is crucial to our approach that several Spin(7)-structures will give
rise to the same Riemannian metric, much like for the Ga-case. The metric
and the orientation determine a Hodge star operator x, and the 4-form is
self-dual, i.e., x® = O.

Definition 2.1. Let V be the Levi-Civita connection of the metric gg.
The pair (M, ®) is a Spin(7)-manifold if V& = 0. This is a non-linear
partial differential equation for @, since V depends on g, which in turn
depends non-linearly on ®. A Spin(7)-manifold has Riemannian holonomy
contained in the subgroup Spin(7) C SO(8). Such a parallel Spin(7)-

structure is also called torsion-free.

2.1 Decomposition of the space of forms

The existence of a Spin(7)-structure ® induces a decomposition of the
space of differential forms on M into irreducible Spin(7) representations.

We have the following orthogonal decomposition, with respect to gs:
P =000,  Q=0ie0, 0 = Q) © 07 © gy © Vi,

where Qf has pointwise dimension . Explicitly, Q2 and Q3 are described

as follows:
0F={BeQ|«(2Ap)=-38}, Q3 ={Be[x(PAB)=74},
and
Q3 ={X10| X cT(TM)}, Qig={y€Q®|yA®=0}.
In local coordinates, these spaces of forms are described as, for 3 € Q?(M),
Bij € O3 <= BuParij = —6pij, (2.1)
Bij € 031 == Bav®abij = 26y (2.2)
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and, for v € Q3(M),

Yijk € Qg — Vijk = Xl(bijkl for some X € F(TM), (2.3)
Yijk € Qs == YijkPijp = 0. (2.4)

If 7 and 791 are the projection operators on Q2] it follows from (2.1) and
(2.2) that

1 1

m7(B)ij = Z/Bij - gﬁabq)abijv
3 1

m21(8)ij = Z/Bz'j + gﬁabq’asz-

Finally, for 8;; € Q%,
ﬁabq)bqur = /Bpiq)iqra + quq)irpa + Bri@ipqa’

so Q3, = 50(7) is the Lie algebra of Spin(7).
To describe Q* in local coordinates, we use the operator ¢ for a (p, ¢)-
tensor £ and A € End(T'M):

o¢: End(TM)— TP

d
A—Acg = 7 eth g
t=0

Now, given A € I'(T*M ® T M), define
Aod = i(Aip@pjk, + Ajp@ipit + Arp @it + Aip@ijp)da’ A dz? A da® A dat,
(2.5)
and hence
(Ao @)t = Aip@Ppjrt + AjpPiprs + ArpP@ijpt + ApPijip- (2.6)

Recall that T(T*M @ TM) = Q° @ Sp @ Q2, and Q2 splits further orthog-

onally, so

D(T*M @TM) =03 Sy @ 02003,
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With respect to this splitting, we can write A = %(tr A)g+ Ao+ A7+ Ay
where Ay is a symmetric traceless 2-tensor. The diamond contraction (2.6)
defines a linear map A — Ao ®, from Q° ® Sy ® Q2 & Q02 to Q*(M). The
following proposition is proved in [21, Prop. 2.3].

Proposition 2.2. The kernel of the map A — Ao ® is isomorphic to the
subspace Q3. The remaining three summands Q°, Sy and Q2 are mapped

isomorphically onto the subspaces )3, Q§5 and Q‘% respectively.

To understand Q3,, we need another characterization of the space of 4-

forms using the Spin(7)-structure. Following [21], we adopt the following:

Definition 2.3. On (M, ®), define a ®-equivariant linear operator Ag on
0% as follows. Let o € Q*(M) and let (o - D)iikt = OijmnPmnki- Then

(Ao (0))ijrr =(0 - P)ijrr + (0 @)igtj + (0 - Pigjr + (0 - ®)jrit + (0 - @)t

+ (0 ) kiij-

Proposition 2.4. The spaces Qf, Q3, Q3. and Qi< are all eigenspaces of

Ao with distinct eigenvalues:

Ol ={o e | Ap(0) = —240}, QU ={ocecQ|As(0) =120},
Q3 = {0 € Q| Ap(0) = 4o}, Q35 = {0 € Q| Ag(0) = 0}.

Moreover, the decomposition of Q*(M) into self-dual and anti-self-dual

parts is

QW ={cecQ|xo=0}=000a0;5;, O ={ccQ|x0=—0}=05.

Before we discuss the torsion of a Spin(7)-structure, we note some con-
traction identities involving the 4-form ®. In local coordinates {z?!,--- , 28},
the 4-form @ is

1 . .
P D5 dx' A dx? N\ dz® A dat

T 24
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where ®;;1; is totally skew-symmetric. We have the following identities, as
always summing on repeated indices, which encapsulate the symmetries of

a Spin(7)-structure

D;ikiPabel = Gia9jvIke + JivGjcIka + GicGiaJkb
— Gia9jcIkb — gib9ja9kc — Jicdjb9ka
= 9ia®Pjkbe — 9ibPjkca — GicPjrab

- gja(bkibc - gjbcbkica - gjccbkiab

— GkaPijoe — I Pijca — JkePijab (2.7)
Dk Pavkt = 69iagjp — 69ivgja — 4Pijab (2.8)
Dk Pajrr = 42Gia (2.9)
D i1 Pijry = 336. (2.10)

We also have contraction identities involving V& and &

(Vin®@ijrt) Pavkt = —Pijit (Vi Pavkt) — 4V Pijan
(Vin®@ijrt) Pajri = —Pijit (Vi Pajnr)
(Vi ®ijr)Pijr = 0.

We now describe the torsion of a Spin(7)-structure. Given X € I'(T'M),
we know from [21, Lemma 2.10] that Vx® lies in the subbundle Q3 ¢ Q*.

Definition 2.5. The torsion tensor of a Spin(7)-structure @ is the element
of O ® Q2 defined by expressing V@ in the light of Proposition 2.2:

Vi ®@ijer = (T © P)ijkt = TonsipPpjnt + TmsipPipkt + TrnskpPijpt + TonsipPiep
(2.11)

where T)y,.qp € Q%, for each fixed m.

Directly in terms of V&, the torsion T is given by

1
Trnzab = %(qu)ajkzl)q)bjkl (2.12)
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Remark 2.6. We remark that the notation T, should not be confused
with taking two covariant derivatives of T},. The torsion tensor T is an
element of Qé ® Q% and thus for each fixed index m, T},.q € Q%, but T is
not in Q3.

Theorem 2.7. [1/] The Spin(7)-structure ® is torsion-free if, and only
if, d® = 0. Since x® = ®, this is equivalent to d*® = 0.

Finally, the torsion satisfies a ‘Bianchi-type identity’. This was first
proved in |21, Theorem 4.2|, using the diffeomorphism invariance of the
torsion tensor. A different proof can be found in [12, Theorem 3.9], using
the Ricci identity

ViViX; — ViV Xi = —Rpiym X

Theorem 2.8. The torsion tensor T satisfies the following ‘Bianchi-type
identity’
1 1
vijy;ab - vjjﬂi;ab = QE;amj};mb - 2Tj;amﬂ;mb + sziab - gRjimn(I)mnab-
(2.13)

Using the Riemannian Bianchi identity, we see that
Rijri®ajrr = —(Rjkir + Rrijt) Pajri = —RijrParjx — RikjiPakji,
hence
Rijp1®ajr = 0.

Using this and contracting (2.13) on j and b gives the expression for the

Ricci curvature of a metric induced by a Spin(7)-structure:
sz == 4ViTa;ja - 4VaTz';ja - 8Ti;ija;ba + 8Ta;jb,I1i;ba' (214)

This also proves that the metric of a torsion-free Spin(7)-structure is Ricci-
flat, a result originally due to Bonan [5|. Taking the trace of (2.14) gives

the scalar curvature R:

R = 4V2‘Ta;ia - 4vaTi;z’a + 8‘T|2 + 8Ta;ijj;ba'
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Remark 2.9. 1. A classification of Spin(7)-structures was given by
Fernandez in [14] and a formulation in terms of spinors can be found
in [27].

2. Compact simply-connected Riemannian symmetric spaces cannot
carry any invariant Spin(7)-structures and the compact simply-connected
almost effective homogeneous space with invariant Spin(7)-structures
are SU(3)/{e}, some torus bundles over (SU(Q)/U(l))X3 and the
Calabi-Eckmann SU(3)/SU(2) x SU(2).

3. Without requiring invariance of the structure, the 8-dimensional
compact simply-connected Riemannian symmetric spaces admitting
a Spin(7)-structures are SU(3), 3 x S% x §%, §° x S, HP?, Gry(C*)
and the Wolf space Ga/SO(4) [2].

3 Harmonicity

The ultimate goal in Spin(7)-geometry is to find parallel structures.
Not only is it quite a difficult task involving a non-linear equation and
hard analysis but topological obstructions also apply.

An alternative strategy to finding the best among all possible Spin(7)-
structures is to introduce a variational problem, for example measuring
the default of parallelism, and search for minimisers.

This is the junction point between Spin(7)-geometry and harmonic
map theory, though the price to pay is we need to fix the metric, i.e. work

within the isometric class of Spin(7)-structures.

Definition 3.1. Two Spin(7)-structures ®; and ®3 on M are called iso-
metric if they induce the same Riemannian metric, that is, if go, = go,.
We will denote by [®] the space of Spin(7)-structures that are isometric
to a given Spin(7)-structure ®.

Definition 3.2. Let ®; be a fixed initial Spin(7)-structure on M. The
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energy functional E on the set [®¢] is

1

B(®) =5 /M Ty | volg,, , (3.1)

where T is the torsion of ®.

Once the variational problem has been delineated, the next step is to
derive the corresponding Euler-Lagrange equation. We will call critical
points of E|jg, harmonic Spin(7)-structures and work out the harmonic
equation for Spin(7)-structures and the corresponding isometric flow.

The main ingredient is the representation theory properties outlined
in the previous section and the recipe is to follow the treatment of the
G case in [26, Section 6], only slightly adapted to specific properties of
Spin(7)-geometry.

The link with harmonic map theory is the one-one correspondence
between Spin(7)-structures ® and sections o of an ad-hoc Spin(7)-twistor
bundle N, constructed as the Spin(7) quotient of the SO(8) frame bundle
of (M8,g). The fibres are isometric to RP7 and parametrise isometric
Spin(7)-structures on (M8, g).

To obtain the equation of harmonicity, one must first and foremost
identify the tangent space of fibres in order to be able to consider vertical
variations and compare (isometric) Spin(7)-structures among themselves.

The first constituent is the connection form f, which identifies the
vertical of the tangent bundle of the “twistor space” with m the (naturally
reductive) complement of s0(7)(= spin(7)) in s0(8). Sections of this space
correspond to Spin(7)-structures and restricting ourselves to the vertical
part means we only look at variations through Spin(7)-structures.

If ® is the universal Spin(7)-structure, a sort of ideal Spin(7)-structure
living a couple of fibre bundles above the manifold M (cf. [26] for partic-

ulars), then the connection form is characterised by
Va® = f(A).®.

Here f(A) is in m.
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We identify so(8) with Q? and m is then identified with Q2.

Since ® is in Q* (of the appropriate space), the term f(A).® should be
understood as the diamond operator of Equation (2.5), which is just the
derivation of the natural action of GL(8) by pulling back forms.

To obtain f we need to find an inverse of the ¢ operator and to do
this introduce the triple contraction ug between two four-forms (we follow
notations and conventions of |21]):

Ifpg= %ﬂijda:i A dz’ then B o ® € Q* and put (8o ®)13® to be the
two-form defined by

(Bo®)® = %((ﬁ o ®) 1) gda? A daf,

where
(B0 ®)13P)pg = (B0 P)pijkPaijk-

Because we are interested in the case 3 = f(A) € Q2, we can use BabPapij =
—603;; to compute that
(B0 ®)3d = 96.

Once we have this, the rest follows relatively easily, if one knows where

to pick information in [21]:
e The connection form is then given by
96f(A) = V4 P3®

and, since Spin(7)-structures ® and sections o : M — N of the
twistor space are related by ® = P o o, we can pull back the above

formula to obtain
[(do(X)) = &(Vx®) 5
which is precisely the torsion T'(X) of (2.12) in the space Q2.
e The (vertical) energy density of the section o : M — N is

|d°o* = |T,



114 E. Loubeau

so the functional we take, the L?-norm of the torsion, is exactly the
Dirichlet energy of o (at least up to an additive constant due to the

contribution of the horizontal part).

e The vertical tension field is

8
I(7°(0)) = Y Ve, (T(e;)) = T(Vee) = div T.
1

e The flow of sections o; : M — N

do
CT; =T7"(01)
is equivalent to
do
(%) = 16" (00),

where I plays the role of an extended f. We know that I(7%(0¢)) =
div T} and, generalising to M x R (or at least on an interval) all the
previous objects, we have that
doy

) T

On the other hand, since div T} is in Q%

I

div Ty = g5 (div T} o ) 3Py,

and u3®; is an isomorphism on Q2 (its kernel is 3;), we have the

isometric flow, with initial value:

(HF)

2@ — divT o
D(0) = Do.

Remark 3.3. e The divT equation is the vertical part of the har-
monic map equation of o, which is known to admit short-time exis-

tence, so this property carries over to our heat flow.

e As (the fibres of ) the target are isometric to the real seven-dimensional
projective space, they have positive sectional curvature, so there can

be no certainty about the long-time existence of the flow (cf. [13]).
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e Solitons of such flows are studied for a general group H in [12] and
[24].

4 Analysis of the flow 1

This section develops tools for the analysis of the isometric flow of
Spin(7)-structures. Some proofs of the statements in this section have
appeared in full in [12] and we refer to them. Others were consequences of
more general arguments and here we present their Spin(7) versions, though

they are only adaptations of their Go counterparts found in [11].

Let {0, e1,...,er} be an orthonormal (geodesic) frame. First, we use

the formula

(R(ei, e5)T)(€a, ep, €c) = — T(R(es, €j)ea; €v, €c) — T'(€a, R(€i, €5)ep, €c)
- T(6a7 eba R(ei7 6]')6@)

to derive a formula for the Laplacian of the torsion of a Spin(7)-structure.
Lemma 4.1. [12, Lemma 4.12] Let A = tr V., V., be the Laplacian, then
(AT)m;ab :vmviﬂ;ab - Tq;abRimiq - ,I%;quimaq - E;aqRimbq + 2viTi;ame;bp

+ 2Ti;apviTm;bp - 2viTm;apTz‘;bp - 2Tm;apvij—‘i;pb + %Vz‘Rmiub

1 1
- EviRmquq)pqab - §Rmipqvi¢’pqab'

This allows us to compute a local expression for the evolution of the

torsion T'.

Proposition 4.2. [12, Proposition 4.13] Let {®;} be a solution of the har-
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monic Spin(7)-flow (HF), then its torsion evolves according to the equation

4;1Tm;is = 4(AT) s

+ Vil e <4Ta;bp(I)pcis + To;ipPoeps + Ta;qu)bcip> + Tonpe VaTappPpeis
+ 3VaTasipTmips + VaTaspTmpi — 2Ta5ipVaTmsp + 2VaTmyipTa;sp

o Tonve o Tospa@acis + Tozea®pais + 2Tasiqpeqs + 2Tassq pei )

+ %Tm;bcTa;ip (Ta;pqq)bcqs + 2Ta;8q@b0pq> + %Tm;bCTa;SPTa;pqq)bciq

+ 4T i Ramaq — (VaRimais — 5 VaRinapg@pais)

+ Togs Ramiq + TasiqRamsq + 3 RmapqVaPpgis — Tasqe RambgPocis

- %Rmapqvaq)qucq)bcis‘
But the real information is the evolution of the norm of the torsion.

Proposition 4.3. [12, Proposition 4.14] If {®.} is a solution of the har-
monic Spin(7)-flow (HF), then the evolution equation for |T|? is

0
2a|T|2 = 2A|T|2 - 4|VT|2 + 16Ta;prm;bcTa;qum;qc =+ 16Ta;prm;bcTa;chm;pq
+ 16Ta;qum;isRamiq + 4Tq;isTm;isRamaq - 4Tm;isvaRmais-

Both the doubling-time estimate and Shi-type estimates can be derived
from general properties of the harmonic flow of H-structures (cf. [24]) and

do not feature in [12] but proofs specific to Spin(7) can be written.

Lemma 4.4. [12, Corollary 4.9] There exists 6 > 0 such that
T(t) <27(0)
for all 0 <t <6, where
T(t) =sup|T(x,t)]
M

Proof. We follow the arguments of [11, Proposition 3.2] and adapt them
to the group Spin(7).
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Wlog, we can assume that |T'| > 1. Then

;m? = 2AT,T)+2(VNT +« T+« ®,T) + 2T« T x T, T)

+2(T+VR+R*®,T)

= AT =2|VT? +2(VT « T ®,T) + 2T« T T, T)
+2(T*VR*«R*®,T)

< AIT]> = 2|VT? + C|VT||T)? + C|T|* + C|T|* + C|T|

because of the bounded geometry.
Use Young Inequality ab < £a® + £b? to get rid of the term |VT'||T|*:

9
5 TP S AITE + (=2+ £)IVTP + C(1+ 9)ITI* + C|T + CIT],

with € large enough to ensure that (—2 4 %) < 0.
Then, using |T'| > 1, we obtain a formula similar to |11, (3.10)]

9
ST SAITPE + (=2+ LIVIP+CA+ T + CITP, (41)

and argue as in [11, page 22| with the maximal principle to get the DTE.
O

Shi-type estimates are crucial at several steps of our various arguments
in the next section. They essentially control higher-derivatives from a
bounds on the (norm of the) torsion and the geometry of the manifold.

A much more general version of these Shi-type estimates can be found in
[12].

Lemma 4.5 (Shi-type estimates). [12, Corollary 4.10] There exist con-
stants Cy, such that if (Vj € N)

IT| < K and |V/R| < B;K*"J
on M x [0,1/K?] then (Ym € N)

VT < Ot~ 2 K.
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Remark 4.6. Note that this version has a conclusion valid over an interval
slightly larger than in [12], up to 1/K? instead of 1/K*, but this has no

bearing on the issue.

Proof. We closely follow the proof by induction in [11], mutatis mutandis,
and only indicate the key steps and differences. We use the symbol * to
denote various tensor contractions, the precise form of which is unimpor-
tant.

The base case of the induction:

We start with the evolution equation for VT

aatVT:AVT+V(VT*T*CI>)+VT*T*T*<I)+T*T*T*V<I>

+VT*R4+T*«VR+V?’R*x®+VR*V®+ VR« VD *® + Rx* V2D« D
+ R«VO«xVO+ VI« RxP+T+«VRxP+TxRx VO,

therefore

%WT;Q = A|VT|? - 2|V°T)?

+2AVT,V(VT « T+ @)+ VT «T+«T+«P+T+«T*xT*xV®+VT xR
+T+«VR+V?R«®+VR*VP+VR*« VD« d+ R V2D % d
+RxVP«VOP+ VT *«RxP+T+«VR*xP+TxRxVP),

therefore

%\VTP SAIVT? = 2|V2T)? + 2(VT,V(VT + T * ®))

+ C|VT?|T|? + C|VT||T|* + C|VT|*|R| + C|VT||T||VR|
+ C|VT||V?R| + C|VT||T|?|R].

Since, by assumption, |R| < BoK?, |[VR| < B K3, |V2R| < ByK* and
|T| < K we have

;VTF < AIVT]? = 2IV2T|2 + 2(VT,V(VT + T + ®)) + CK?|VT|> + CKY|VT)|.
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(VI,V(VT + T  ®)) < CK|VT||V?T| + C|VT|® + CK?|VT|?,
with Young Inequality we have
20K|VT||V*T| < CE2 VT2 4 Ce| VT2,
and

%NTP < AIVT? — (2 - Co)|VT|? + CK?|VT|? + CKYVT| + C|VT)>.
(4.2)

The problem lies with the |VT|? term.

In local coordinates the expression of 4(VT x T x ®) is

4(VT * T (I))m;is = vajjm;bc (4Ta;bp®pcis + Ta;ipq)bcps + Ta;spcbbcip>

+ Tm;bcvaTa;bpq)pcis + 3vaTa;ime;ps + vaTa;sme;pi - 2Ta;ipvaTm;sp
+ zvaTm;ipTa;sp7

so the terms making up |VT|? are

AV o Ton:be Vi Tasbp Ppeis Vi Tinsis
1)V aTinpeV ik TasipPoeps V ik Tmsis;
118)V o Trnibe Vi T a5p Pocip Vi Tmsis;
10) Vi Tinpe VaTabp Ppcis Vi Tinsis;
0)3VaTa:ipV ik Tinips Vi Tinsis
V)V aTa:p Vi Tnipi Vi Timsis;

Vii) = 2V TasipVaTssp Vi Tosis
Vii1)2V o TrsipV 5 Tassp Ve T

Using skew-symmetry and the Bianchi-type identity of ®, the terms ii)

and vii) can be re-written:
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Z‘i)va,Tm;bcvaa;ipq)bcpsvkjjm;is = %vaa;ipvam;isq)bcps(VaTm;bc - vaa;bc)
=VTs«VT«TxTx®+VT+«VTxRx®xP;
'Uii) - 2vaa;ipvaTm;spvam;is = *vaa;ipvam;is(vaTm;sp - vaa;sp)
=VT*«VT*«T+«T+ VT +«VT xRx®.
Exchanging ¢ and s we have that the term iii) equals ii) and the term

viii) equals the term vii), while vi) is the opposite of v).

Since Trp.s is in 02, the term iv) can be re-written

)V D mbeValaibpPpeis Vi Tmiis = ViTmibeVaTa:bp (Vi (PpeisTnsis) — Vi Ppeis Tmsis)
= ViTrbeValubp(—6Vie(Tmipe) — ViPpeisTmsis)
= —ViTnpeVaTlupp Vi PpeisTmsis
=VIT VT T xVo.

We do a similar thing to the first term (forgetting the factor 4):
DV aTmbeVETabpPpeis Vi Tmsis = VaTmbe ViTap(Vi(PpeisTmsis) — ViPpeisTmsis)
= =6Vl Vil Vilmpe + VT« VT + T x T,
and exchanging a and m and then b and ¢, we have
2V aTrnbe ViTa0p Vi Tinpe = ViTowp Vi Tmpe(VaTmbe — VinTabe)s

so we can use the Bianchi-type equality again.
In conclusion, the terms leading to the problematic term |VT|? can be

re-written in terms of the type:

VT VT +«TxT+VT*xVT«Rx®+VT «VTxTx*xTx*x®
+ VTV« Rx®x®+ VT x«VT xT %V,

and
VT < CK*|VT|?,
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so, for a suitable €, Inequality (4.2) becomes
0
§|VT|2 < A|VT]? + CKYVT|)? + CK*|VT),

which is exactly equation (3.22) in [11].

For the function f = t|VT|?* + B|T|?, combining results for %]VTP
and %\TP, keeping in mind that ¢ < 1/K? and choosing 3 large enough,
this implies that

9 o2 O o2y 59 2
£ f = IVTP + 2 VTP + 6 [T

< Af+CBK*™.

As f(x,0) = B|T|?> < BK? then sup,, f(z,t) < CK? + CptK* < CK?
hence t|VT|? < CK?2.

The m-step of the induction:

Assume that |VIT| < C’jKt_% forj=1,...,m—1

The evolution equation for [V™T|? is

0

o VT = AV"T + Y VTIT« VR4 V™(VT + T x ®)

1=0

m
+ Z VT % VT % VT % Vi + Z VT« V™ 'R
a+b+ct+d=m =0

+Y VPR« VIS 4+ Y VIRx VIR« VD

=0 a+b+c=m
+ ) VT xV'RxVD,
a+b+c=m

therefore
a mm2 m|2 m+1 2 m m—1 7
o[V TIP = AT — 2|9 +Y VT« VTTx V'R
—i—VmT*Vm(VT*T*q))+ZVmT*V“T*VbT*VCT*Vd®
+Y VT« VT« V" 'R+ Y V"« V"R« V'
+ZVmT*V“R*Vb+1<I>*VC<I>+ZVmT*V“T*VbR*VC<I>.
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Third term: separating the ¢ = 0 from the others, we get
; ; 2 2 3,5
1> VT« VTIT « VIR < CK? VT + CK* 2 [V ).

By induction we show that [V'®| < C Y7t K/t~ 2

Fifth term: Separating the cases where a or b equals m and using K27 < 1

we have
Y VT« VT« VT VT V40| < CK?|V™ T + CK3|V™ Tt 2 .
Seventh term: Using K2T < 1 we have

S VT« VIR« ViR < CK VT 2

Sixth term: Separate the case i = m from the others and use KT < 1 to

obtain
|S" VT« VT« VIR < CKP VT 4+ CK3V T2

Eighth term: Separate the b = m term from the others, use Vit1® =
VT + lot and K2T < 1 to obtain

m+1

Y VT« VIR % VT 0« VoD| < CKP|VT? + CK V™ Tt 2

Ninth term: Separate the a = m term from the others and use K27 < 1

to obtain

|S" VT« VOT « VPR + VOB| < CK*V™T” + CK3|V™ T~ 2.
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Fourth term: Using V(T « ®) = VT «® 4+ T T % ®,

VT« V™(VT * T * ®)|
< |V™T « VT 5 T 5 ®)| + VT % VT % V(T + D)

m—1
H VT > VT« V(T @)+ [V'T % VT« V(T % B))|

=2
< CK|V™T||V™HT| +cyva| (Kt~ > +K2)

m—1 . g

i—j

+CIV'T| Y Kt ZKt TZK

=2 =1

1 m—i k—

+cyva\Kt—§(|va|+Zm— 2 ZK’%T

1

=1

< OK|N™T||N™ T + C|V™T A (Kt~

N 3

+ K?) +CK2\VmT|t‘mT+1

In conclusion

g\vmﬂ? < AyvayQ — 9V £ CK2 VT + CK3 2 VT

+ CK*~ \va| + CK|V™T||V™ T+ CKt~ > VT2,

which is exactly Equation (3.32) in [11].
As the rest of the proof completely relies on this equation, it can be
read in [11]. O

5 Analysis of the flow II

Let (M, g) be a complete Riemannian manifold. For zg € M, let u be
the fundamental solution of the backward heat equation, starting with the

delta function at xq [16]:
0
<6t * A) =0, Jim = os,
et
(4n(to—1))"

and set u =
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For a solution {®(t)}4¢[0,4,) of the harmonic Spin(7)-flow on (M, g), we
define the function

emwﬂmzw—q@mm%m@ (5.1)

We start off with a derivation of the function © o ® and give a little
bit more details of the proof than in |12, Lemma 5.1]|.

Lemma 5.1.

d
—O0 = —2(ty — t)/ |divT — f.T|*u volg
dt M

VnuViu + UGml
2(t0 —1

- 2(t0 - t)/ (vmvlu - )Tm;isTl;is VOlg
M )
- (tU - t) / Uleis(2Tl;irTm;rs - 2Tm;irTl;rs + %leis - %leabq)abis) VOlg
M
- Q(to — t)/ Tm;isulemlis VOlg .
M
Proof. By direct computation, we have
d 0 0
—0= [ (to—t)u=|T|*—|T|? to —t)|T|* =
50 = [ (o= Oug TP~ [TPu-+ ta— TP S
0
:/ (to — yu TP = TP — (1 — )| TP Au
M
0
_ / 2ty — uTymis 3 T — |71 = (tg — TP A
M t
= / 2(t0 - t)UTm;is (vrTr;ime;ps - vrTr;sme;pi + W?(vm(vrTr;is)))>
M
TP = (to — £)|T?Au,
but

1. Tis Vo TripTinps = 0 because Tip.isTim:ps is symmetric in (¢, p) and

V, T,.ip is skew-symmetric in (4, p);

2. Tn:is Vi TrispTimpi = 0 because TpyisTim:pi is symmetric in (s, p) and

V, Ty.sp is skew-symmetric in (s, p);
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3. Tm;is S A2,
therefore
d 2 2
@9 = 2(to — t)ulmsis (Vi (ViTris)) — |T)"u — (to — t)| T Au.
M
Integrating by parts and using the Bianchi identity, we have

d
£@ = / —2(tg — )uV i Tonis ViTris — 2(to — )V tuTis Vi Tris — |T)*u
M
-+ 2(t0 — t)Tm.isVle;iSVlu
/ 2(tg — t | div T'|*u + Vo ttT:is Vi, ,8) — |Tu
M

+ 2(t0 - t)Tm zsvle zsvlu

/M to — 1) |dwT\2u + VorttTonsis Vi T ) — |Tu
+2(t — t)Tm;wvlu(vams + 2T35r Tonirs — 2Tonsis Tirs + 3 Ronis
— %leab@abm)
= [ =2tt0 = (1div TPu+ Vi Tr) — 7P
o+ 2(t0 — ) (Tonsis VirTm T + 2Tonsis Vit Tiie Tgrs = 2omsis V1t Ty T

+ Tmsis Vit Rniis — %Tm;isleleab(I)abis)y
but, as previously,
L. TosisThir Tinsrs = 0;
2. TniisTinirTirs = 0;

1 1
3. Tm;is(Zleis - nglabq)abis) = Tm;isleis;
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SO
d .
so= / ~2(t0 — 1) (| div TP+ VT ¥, Trss ) — [T
M
+ 2(t0 - t) (Tm;isvluva’l;is + Tm;isVZUleis)
_ / “9(ty — 1) (| div T2u + VmuTm;isV,nTr;is> TP
M
- 2(t0 - t) / vam;isleTl;is + Tm;isvmvluﬂ;is
M
- 2(t0 - t) / VZTm;iSUleis + Tm;isulemlis
M
— / —2(ty — t) (| div T|%u + QVmuTmﬂSVTTT;iS> —|T*u
M
—2(tg — t) / Tinsis Vin Viudys
M
- (tO - t) / Uleis(vle;is - va’l;is)
M
- 2(t(] - t) / Tm;isulemlz’s
M
— / —2(tg — 1) (y div Tu + 2VmuTm;Z-SVTTT;iS> — |Tu
M
M
- (tO - t) / Uleis(QT‘l;irTm;rs - 2Tm;i7“7—‘l;rs + ileis - %leab@abis)
M
- Q(tO - t) / Tm;isulemlis
M
_ / 9ty — t)(y div T?u — 2(div T, VfJT)U)
M
Uu
— Q(to — t) /M (valu + %)Tm;isﬂ;is
- (tO - t) / Uleis(QTl;irTm;rs - 2Tm;irTl;rs + ileis - %leabq)abis)
M
- 2(t0 - t) / Tm;isulemlis
M

_ / 9ty — t)(y div T|?u — 2(div T, V f o TYu + ]fJT|2u>
M

Vmuvlu 4 Ugmil

TonisTli
Q(to—t)) m;istliis

—2(to — t) /M (Vi Viu —



The analysis of the harmonic-Spin(7) flow 127

- (tO - t) / Uleis(z,Tl;irTm;rs - 2Tm;ir,-rl;rs + ileis - %leabq)abis)
M
- 2(t0 - t) / Tm;isulemlis7
M
and we obtain the formula we wish for. O

Theorem 5.2 (almost monotonicity formula). [12, Theorem 5.2/
Let {®(t)} be a solution of the harmonic Spin(7)-flow (HF) on (M?,g).

1. If M is compact, then, for any 0 < 1 < 10 < tg, there exist K,
K5 > 0 depending only on the geometry of (M, g) such that

O(P(m)) < K10(P(11)) + Kao(m1 — m2)(E(0) + 1).

2. When (M, g) = (R®, ggual), then, for any z0 € R® and 0 < 7 < 7
we have
O(2(72)) < O(2(71)).

Proof. We sketch the proof following |11, Theorem 5.3].

1. The following equation is a direct adaptation of [11, Lemma 5.2],
using the Spin(7)-Bianchi identity (2.13):

d .
Clt@(mto)((l)(t)):—2(t0—t)/ | divT — V£ T
M
VnuViu UGml
—2(tg — t m - Tm'isT'is
to=0) J, TV = 23 4 B T,

—(to—1t) /M URmiis (2T050 Tonirs — 2T mir Tirs + 5 Romtis
— L RiniavPabis) — 2(to — 1) /M TrnsisuVi R (5.2)
2. The third and fourth terms of Lemma (5.1) are bounded by
C(1+0(2(1)),

due to the bounded geometry of (M,g), Young’s inequality and
Jyyu =1
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For the second term of Lemma (5.1), use [17] and the decreasing of

E(®(t)) along the harmonic Spin(7)-flow to bound it by
o(e(t))),

C(E(®(0)) + log i

so that
d

%@(é(t)) < —2(tg — t) /M |divT — VfT)u

+ O (1+1og( 4))@@@))+02(1+E(<1>(0))).

_B
(to — 1)

To control the logarithmic term, let £(¢) be any function satisfying

B
") =1+log ———.
§(t) =1+ R P
The claim is then obtained by integration over [tg — 1, %[ of
d
= e—le“)@(@(t))] < K(E(®(0)) + 1).

3. On (M8, g) = (R®, gguea), the backward heat kernel is

S SN B (e
“%”‘uﬂm—m4‘{ am—w}

so indeed %@(q)(t)) <0.
U

There exists a more direct and cost-effective to obtain a decreasing

quantity from |T'|?, though its importance remains uncertain.

Lemma 5.3 (a simpler monotonicity formula). Put e(t) = |T'|? and con-

sider the function

2(0) = (b =) [ ok vl 054< s
M

where k is any (positive) solution of the backward heat equation Ok = —Ak
on My, ... Then

Z(t) < Z(0)e!

for0 <t <46 (from DTE).
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Proof. Since

GtZ = —/ ek + (tmax - t)/ katé + e@tk.
M M

By self-adjointness of the Laplacian and the ‘reaction-diffusion’ Bochner
formula of Equation (4.1), the second integral satisfies the following upper
bound:

/ kOse + €Otk = / kOe — eAk = / ke — kAe
M M M

:/ k(Ore — Ae)
M
< / k(Cie + Cae?),

M

and therefore
Z < CLZ(t) + (bmax — t)/ ke(Cae), 0 <t < tmax.
M

Then by DTE, we have

CQE(SL’,t) S CQT(t) § 202T(0) = Co

50
OZ < CLZ(t) + (tmax — 1) /M ke(Cae)
< ClZ(t) + CO<tmaX — t) /M ke
< CZ(t)
SO

Z(t) < Z(0)e’.

O

Definition 5.4. Let (M® ®,g) be a compact manifold with a Spin(7)-
structure. Let u(,4)(y,s) = u?m) (y,s) be the backward heat kernel, start-
ing from d(x,t) as s — t. For o > 0 we define

A@,0) =  max {/ym o )volg}. (5.3)

(z,t)eM x(0,0]
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One should think of ¢ as the “scale” at which we are analyzing the flow.
Since M is compact, the maximum in (5.3) is achieved.
We can now state the e-regularity theorem for the harmonic Spin(7)-

flow.

Theorem 5.5 (e-regularity). [12, Theorem 5.5] Let (M8, g) be compact
and Ey > 0. There exist ¢, p > 0 such that, for every p € (0,p], there
exist r € (0,p) and C < oo such that the following holds:

Suppose {P(t) }1c(0,40) 15 a solution of the harmonic Spin(7)-flow (HF),
with induced metric g, satisfying E(®(0)) < Ey. Whenever

Q(xo,to)(q)(to - p2)) <e, forsomexy€ M,

then, setting A,(x,t) = min (1 —rldy(z0, ), /1 — 17 2(to — t)), we have

A (z,t)|To (2, )] <

~1Q

V (x,t) € B(xg,r) ¥ [to — 12, to].

An immediate corollary of the e-regularity theorem is the following
result, which states that if the entropy of the initial Spin(7)-structure is
small then the torsion is controlled at all times. Again, the proof is similar

to [11, Cor. 5.8].

Corollary 5.6 (small initial entropy controls torsion). [12, Corollary 5.6]
Let {®(t)} be a solution of the harmonic Spin(7)-flow (HF) on compact
(M, g), starting at ®y. For every o > 0, there exist €,tg > 0 and C < oo
such that, if ®g induces g and its entropy (5.3) satisfies

)‘((I)Oa U) <g,
then

T. < —.
max |To(| <

Vit

Theorem 5.7 (small initial torsion gives long-time existence). [12, The-

orem 5.9] Let (M, ®q,g) be a compact Spin(7)-structure manifold. For
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every § > 0, there exists £(0,g) > 0 such that, if |Te,| < €, then a har-
monic Spin(7)-flow (HF) starting at ®q exists for all time and converges

subsequentially smoothly to a Spin(7)-structure ®o, such that
div Tcpoo =0, |T<I><>o| < 4.

Sketch of proof. 1) If |Tg,| < €o then by the (DTE) there exists 6 > 0 such
that

te :=max{t >0 : [Tyy| < 280} > 6. (5.4)
2) If t, < oo then the Shi-type estimates on |t, — d, t.[ would imply
[VTgt,)| < co. (5.5)

3) But our flow is the negative gradient so E(®(t.)) < E(Pp) so we can
invoke the interpolation lemma (which is a static result): If |VT'| < C and

no collapsing, i.e.
volg(B(z,7)) > vor®, for 0 < r <1,

for some constant vy(M,g) > 0, then, for every € > 0, there exists
d(e,C,vp) > 0 such that, if E(®) < § then |T| < e.

4) Conclude taking e < min(eo, v, 50 that [VTg )| < g0 implies |T'(t.)] <
2e0 which contradicts the maximality of ¢, and forces t, = +oc.

5) If A is the first eigenvalue of the Laplacian on 2-forms we can easily
show that (cf. [12, Lemma 5.7])

d—Q — D divT]?
GEEW) = [ (=3P,

- A
so if [T|? < ¢
d _ , & A , ,
dt/M|d1VT<1>(t)’ = —@E(‘b(ﬂ) < —2/M|d1VTq>(t)| :

If we take € < min(eo, 'yggo,*y\/x) then we obtain the decay estimate
6

/|divT¢>(t)|2§e_A2t/ |div Typ)*, V¢ >0. (5.6)
M M
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) Take s1 < s2 and integrate to obtain

S2
/|<1> 52) (31)|§// |8t<I>(s)|ds:/ /|divT¢(S)|ds
M Jsq S1 M

1
/ (/ | div T (s 2> S ds (5.7)
s1
<c / e F ds.
s1

7) ®(t) converges in L' to ®o,

8) The uniform bound on T' combined with Shi-type estimates gives esti-
mates on all |V™T| and smooth convergence to ®o,

9) The exponential decay of the integrals implies that divTe_ = 0, and

by the interpolation lemma, we also achieve that [T | < 0. O

Theorem 5.8 (small entropy gives long-time existence). [12, Theorem
5.10] On a compact Spin(7)-structure manifold (M, ®g, g), there exist con-
stants Ci(M, g) < +00, such that the following holds. For each ¢ > 0 and
o > 0, there exists \:(g,0) > 0 such that, if the entropy (5.3) satisfies

Ay, 0) < A, (5.8)

then the torsion becomes eventually pointwise small along the harmonic
Spin(7)-flow (HF) starting at ®g. Therefore the flow exists for all time

and subsequentially converges to a Spin(7)-structure P, such that
divls, =0, |To,|<e and |V¥Ty_|<Ch, ¥V Ek>1.

Sketch of proof. 1) Az small enough implies |T'| < = for allt < 7.
2) Shi-type estimates imply |VT(7)| < C".

3) Interpolation lemma: Ve > 0, for small enough A., |T'(7)| < e.

4) Small |T'(7)| implies long-time existence.

)

5) We conclude as with the previous result. O

Let € and p be the quantities from the e-regularity Theorem 5.5. We
define the singular set of the flow by

S={reM : Op(P(r— p?)) > ¢, for all p € (0,7]}. (5.9)
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The following lemma explains why S is called the singular set of the flow.

Lemma 5.9. The harmonic Spin(7)-flow {®(t)}4c[0,) restricted to M\ S
converges as t — T, smoothly and uniformly away from S, to a smooth
harmonic Spin(7)-structure ®(7) on M \ S. Moreover, for every x € S,

there is a sequence (x;,t;) — (x,7) such that
lim \Tq)(x,-, tz)| =0
1
Thus, S is indeed the singular set of the flow.
Theorem 5.10 (Hausdorff measure of the singularity set). [12, Theorem
DJ
1 2
E((I)()) = 5 ‘T’l)o‘ VOlg < EQ. (5.10)
M

Suppose that the mazimal smooth harmonic Spin(7)-flow {®(t) }¢(o,r) start-
ing at ®g blows up at time T < 4+o0. Then, ast — 7, (HF) converges
smoothly to a Spin(7)-structure Spin(7), away from a closed set S, with

finite 6-dimensional Hausdorff measure satisfying
HO(S) < CEy,

for some constant C' < oo depending on g. In particular, the Hausdorff

dimension of S is at most 6.

Sketch of proof. The proof relies on the following computation:

HO(S) = u/edﬂﬁ L/() " — %) dHS (2)

< [ [ AirPudnta)
SJM
g/ﬁm%

M
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