Matemática
 Contemporânea

Vol. 60, 103-136
http://doi.org/10.21711/231766362024/rmc606

The analysis of the harmonic-Spin(7) flow

E. Loubeau (iD
Univ. Brest, CNRS UMR 6205, LMBA, F-29238 Brest, France

Abstract

The group $\operatorname{Spin}(7)$ belongs to the list of possible holonomy of an eight-dimensional Riemannian manifold. The weaker notion of $\operatorname{Spin}(7)$-structures plays for manifolds with holonomy $\operatorname{Spin}(7)$, the analogue of almost Hermitian for Kähler manifolds. As part of a more general scheme, a notion of harmonicity of $\operatorname{Spin}(7)$-structures is developed with the objective of comparing isometric $\operatorname{Spin}(7)$ structures among themselves. We present here an account of our study in [12] of the harmonic flow of $\operatorname{Spin}(7)$-structures and its analytical properties.

Keywords: Special geometries, Harmonic maps, Geometric structures on manifolds.

2020 Mathematics Subject Classification: 53C29, 58E20, 53 C 15.

1 Introduction

At the confluence of holonomy theory and harmonic maps lies the calculus of variations for geometric structures. The catalogue of holonomy groups $\operatorname{Hol}(M, g)$ of an irreducible non-symmetric simply-connected n-dimensional Riemannian manifold is rather brief: $\mathrm{SO}(n)$ (generic), $\mathrm{U}\left(\frac{n}{2}\right)$

[^0](Kähler), $\operatorname{SU}\left(\frac{n}{2}\right)$ (Calabi-Yau), $\operatorname{Sp}\left(\frac{n}{4}\right)$ (HyperKähler), $\operatorname{Sp}(1) \operatorname{Sp}\left(\frac{n}{4}\right)$ (Quaternionic Kähler), $\mathrm{G}_{2}(n=7)$ and $\operatorname{Spin}(7)(n=8)$. Its main repercussion is on the symmetries of the curvature tensor which then must live in the Lie algebra $\mathfrak{H o l}(M, g)$, so that Calabi-Yau, HyperKähler, G_{2} and $\operatorname{Spin}(7)$ manifolds are Ricci flat. Our interest is with the last case. As explained in [22], the Clifford algebra Cl_{7} is isomorphic to $\mathbb{R}[8] \oplus \mathbb{R}[8]$, so as the group $\operatorname{Spin}(7)$ lives in Cl_{6}, which is isomorphic to one of these two factors, it admits one irreducible representation of dimension eight. Since it must be unitary, $\operatorname{Spin}(7)$ can be seen as a 21 -dimensional subgroup of $\mathrm{SO}(8)$ (cf. [31] for an exposé on its conjugacy classes).

It has been know for quite a while $[5,6,7]$ that holonomy in $\operatorname{Spin}(7)$ is equivalent to the existence of a parallel 4 -form Φ point-wise equal to

$$
\begin{aligned}
\Phi_{p}= & d x^{0123}-d x^{0167}-d x^{0527}-d x^{0563}-d x^{0415}-d x^{0426}-d x^{0437}+d x^{4567} \\
& -d x^{4523}-d x^{4163}-d x^{4127}-d x^{2637}-d x^{1537}-d x^{1526}
\end{aligned}
$$

where $d x^{i j k l}=d x^{i} \wedge d x^{j} \wedge d x^{k} \wedge d x^{l}$ (though there exist 480 different ways to write down this Euclidean model on \mathbb{R}^{8}).

The group $\operatorname{Spin}(7)$ can then be thought of as the group of automorphisms of Φ_{p}. This geometry comes from the octonions, much like G_{2}, and has long been suspected to be an impostor waiting to be removed from the list, as happened to $\operatorname{Spin}(9)$ with Alekseevsky [1].

The first examples of Riemannian manifolds with $\operatorname{Spin}(7)$ holonomy are due to Bryant [8] in 1985 on open subsets of Euclidean spaces and complete examples followed four years later [9] on the spinor bundle of \mathbb{S}^{4}. For compact examples, we had to wait for Joyce in 1996 [19], and a comprehensive account can be found in [20]. Foscolo [15] recently constructed complete non-compact $\operatorname{Spin}(7)$-manifolds with arbitrarily large second Betti number and infinitely many distinct families of asymptotically locally conical $\operatorname{Spin}(7)$-metrics on the same smooth topological M^{8}. Kovalev [25] adapted in 2003 a conical asymptotical gluing argument to obtain $\operatorname{Spin}(7)$-manifolds from twisted connected sums. More explicit is Salamon's example of the product of \mathbb{R}^{+}with the nearly- G_{2} manifold
$\mathrm{SO}(5) / \mathrm{SO}(3) . \operatorname{Spin}(7)$-Manifolds are hard to find but they are interesting for at least two other reasons:
a) One can define a higher gauge theory of Spin(7)-instantons with the (still fairly remote) hope of defining moduli spaces and invariants, and perhaps a (partial) classification of 8-dimensional manifolds. These "twisted D-T instantons" are vector bundles with a connection A such that their curvature tensor F_{A} lies in some (irreducible) component Ω_{21}^{2} (cf. the next section for conventions and notations), equivalently satisfies

$$
F_{A} \wedge \Phi=\star F_{A} .
$$

See [10, 30] for some $\operatorname{Spin}(7)$-instanton constructions.
b) Supersymmetry and string theory have invested a lot in of hope in Spin(7)-manifolds to construct solutions to the gravitino and dilatino equations [18].

However, all these constructions are hard but there exists the softer, more abundant, notion of a $\operatorname{Spin}(7)$-structure.

2 Spin(7)-structures

The best reference for this section, especially pertaining to flows, is Karigiannis' notes [21].

A Spin(7)-structure on an 8-dimensional manifold M is a reduction of the structure group of the frame bundle $\operatorname{Fr}(M)$ to the Lie group $\operatorname{Spin}(7) \subset$ $\mathrm{SO}(8)$. From the point of view of differential geometry, a $\operatorname{Spin}(7)$-structure is a 4 -form Φ on M. The existence of such a structure is (equivalent to) a topological condition, cf. [22, Theorem 10.7]: the vanishing of the first and second Stiefel-Whitney classes and, for some orientation

$$
p_{1}^{2}-4 p_{2}+8 \chi=0 .
$$

The space of 4 -forms which determine a $\operatorname{Spin}(7)$-structure on M is a subbundle \mathcal{A} of $\Omega^{4}(M)$, called the bundle of admissible 4 -forms. This is not
a vector subbundle and it is not even an open subbundle, unlike the case for G_{2}-structures.

A $\operatorname{Spin}(7)$-structure determines a Riemannian metric and an orientation on M in a nonlinear way. Explicit formulas can be found in [21], they are highly involved and it is hard to picture how they could be exploited. But it is crucial to our approach that several $\operatorname{Spin}(7)$-structures will give rise to the same Riemannian metric, much like for the G_{2}-case. The metric and the orientation determine a Hodge star operator \star, and the 4 -form is self-dual, i.e., $\star \Phi=\Phi$.

Definition 2.1. Let ∇ be the Levi-Civita connection of the metric g_{Φ}. The pair (M, Φ) is a $\operatorname{Spin}(7)$-manifold if $\nabla \Phi=0$. This is a non-linear partial differential equation for Φ, since ∇ depends on g, which in turn depends non-linearly on Φ. A $\operatorname{Spin}(7)$-manifold has Riemannian holonomy contained in the subgroup $\operatorname{Spin}(7) \subset \mathrm{SO}(8)$. Such a parallel $\operatorname{Spin}(7)-$ structure is also called torsion-free.

2.1 Decomposition of the space of forms

The existence of a $\operatorname{Spin}(7)$-structure Φ induces a decomposition of the space of differential forms on M into irreducible $\operatorname{Spin}(7)$ representations. We have the following orthogonal decomposition, with respect to g_{Φ} :

$$
\Omega^{2}=\Omega_{7}^{2} \oplus \Omega_{21}^{2}, \quad \Omega^{3}=\Omega_{8}^{3} \oplus \Omega_{48}^{3}, \quad \Omega^{4}=\Omega_{1}^{4} \oplus \Omega_{7}^{4} \oplus \Omega_{27}^{4} \oplus \Omega_{35}^{4},
$$

where Ω_{l}^{k} has pointwise dimension l. Explicitly, Ω^{2} and Ω^{3} are described as follows:

$$
\Omega_{7}^{2}=\left\{\beta \in \Omega^{2} \mid \star(\Phi \wedge \beta)=-3 \beta\right\}, \quad \Omega_{21}^{2}=\left\{\beta \in \Omega^{2} \mid \star(\Phi \wedge \beta)=\beta\right\},
$$

and

$$
\left.\Omega_{8}^{3}=\{X\lrcorner \Phi \mid X \in \Gamma(T M)\right\}, \quad \Omega_{48}^{3}=\left\{\gamma \in \Omega^{3} \mid \gamma \wedge \Phi=0\right\} .
$$

In local coordinates, these spaces of forms are described as, for $\beta \in \Omega^{2}(M)$,

$$
\begin{align*}
\beta_{i j} \in \Omega_{7}^{2} & \Longleftrightarrow \beta_{a b} \Phi_{a b i j}=-6 \beta_{i j}, \tag{2.1}\\
\beta_{i j} \in \Omega_{21}^{2} & \Longleftrightarrow \beta_{a b} \Phi_{a b i j}=2 \beta_{i j} \tag{2.2}
\end{align*}
$$

and, for $\gamma \in \Omega^{3}(M)$,

$$
\begin{align*}
\gamma_{i j k} \in \Omega_{8}^{3} & \Longleftrightarrow \gamma_{i j k}=X_{l} \Phi_{i j k l} \quad \text { for some } X \in \Gamma(T M) \tag{2.3}\\
\gamma_{i j k} \in \Omega_{48}^{3} & \Longleftrightarrow \gamma_{i j k} \Phi_{i j k l}=0 \tag{2.4}
\end{align*}
$$

If π_{7} and π_{21} are the projection operators on Ω^{2}, it follows from (2.1) and (2.2) that

$$
\begin{aligned}
\pi_{7}(\beta)_{i j} & =\frac{1}{4} \beta_{i j}-\frac{1}{8} \beta_{a b} \Phi_{a b i j} \\
\pi_{21}(\beta)_{i j} & =\frac{3}{4} \beta_{i j}+\frac{1}{8} \beta_{a b} \Phi_{a b i j}
\end{aligned}
$$

Finally, for $\beta_{i j} \in \Omega_{21}^{2}$,

$$
\beta_{a b} \Phi_{b p q r}=\beta_{p i} \Phi_{i q r a}+\beta_{q i} \Phi_{i r p a}+\beta_{r i} \Phi_{i p q a}
$$

so $\Omega_{21}^{2} \equiv \mathfrak{s o}(7)$ is the Lie algebra of $\operatorname{Spin}(7)$.
To describe Ω^{4} in local coordinates, we use the operator \diamond for a (p, q) tensor ξ and $A \in \operatorname{End}(T M)$:

$$
\begin{aligned}
\diamond \xi: \quad \operatorname{End}(T M) & \rightarrow T^{p, q} \\
& A \mapsto A \diamond \xi:=\left.\frac{d}{d t}\right|_{t=0} e^{t A} \cdot \xi
\end{aligned}
$$

Now, given $A \in \Gamma\left(T^{*} M \otimes T M\right)$, define

$$
\begin{equation*}
A \diamond \Phi=\frac{1}{24}\left(A_{i p} \Phi_{p j k l}+A_{j p} \Phi_{i p k l}+A_{k p} \Phi_{i j p l}+A_{l p} \Phi_{i j k p}\right) d x^{i} \wedge d x^{j} \wedge d x^{k} \wedge d x^{l} \tag{2.5}
\end{equation*}
$$

and hence

$$
\begin{equation*}
(A \diamond \Phi)_{i j k l}=A_{i p} \Phi_{p j k l}+A_{j p} \Phi_{i p k l}+A_{k p} \Phi_{i j p l}+A_{l p} \Phi_{i j k p} \tag{2.6}
\end{equation*}
$$

Recall that $\Gamma\left(T^{*} M \otimes T M\right)=\Omega^{0} \oplus S_{0} \oplus \Omega^{2}$, and Ω^{2} splits further orthogonally, so

$$
\Gamma\left(T^{*} M \otimes T M\right)=\Omega^{0} \oplus S_{0} \oplus \Omega_{7}^{2} \oplus \Omega_{21}^{2}
$$

With respect to this splitting, we can write $A=\frac{1}{8}(\operatorname{tr} A) g+A_{0}+A_{7}+A_{21}$ where A_{0} is a symmetric traceless 2 -tensor. The diamond contraction (2.6) defines a linear map $A \mapsto A \diamond \Phi$, from $\Omega^{0} \oplus S_{0} \oplus \Omega_{7}^{2} \oplus \Omega_{21}^{2}$ to $\Omega^{4}(M)$. The following proposition is proved in [21, Prop. 2.3].

Proposition 2.2. The kernel of the map $A \mapsto A \diamond \Phi$ is isomorphic to the subspace Ω_{21}^{2}. The remaining three summands Ω^{0}, S_{0} and Ω_{7}^{2} are mapped isomorphically onto the subspaces $\Omega_{1}^{4}, \Omega_{35}^{4}$ and Ω_{7}^{4} respectively.

To understand Ω_{27}^{4}, we need another characterization of the space of 4forms using the $\operatorname{Spin}(7)$-structure. Following [21], we adopt the following:

Definition 2.3. On (M, Φ), define a Φ-equivariant linear operator Λ_{Φ} on Ω^{4} as follows. Let $\sigma \in \Omega^{4}(M)$ and let $(\sigma \cdot \Phi)_{i j k l}=\sigma_{i j m n} \Phi_{m n k l}$. Then

$$
\begin{aligned}
\left(\Lambda_{\Phi}(\sigma)\right)_{i j k l}= & (\sigma \cdot \Phi)_{i j k l}+(\sigma \cdot \Phi)_{i k l j}+(\sigma \cdot \Phi)_{i l j k}+(\sigma \cdot \Phi)_{j k i l}+(\sigma \cdot \Phi)_{j l k i} \\
& +(\sigma \cdot \Phi)_{k l i j} .
\end{aligned}
$$

Proposition 2.4. The spaces $\Omega_{1}^{4}, \Omega_{7}^{4}, \Omega_{27}^{4}$ and Ω_{35}^{4} are all eigenspaces of Λ_{Φ} with distinct eigenvalues:

$$
\begin{aligned}
\Omega_{1}^{4} & =\left\{\sigma \in \Omega^{4} \mid \Lambda_{\Phi}(\sigma)=-24 \sigma\right\}, & \Omega_{7}^{4} & =\left\{\sigma \in \Omega^{4} \mid \Lambda_{\Phi}(\sigma)=-12 \sigma\right\}, \\
\Omega_{27}^{4} & =\left\{\sigma \in \Omega^{4} \mid \Lambda_{\Phi}(\sigma)=4 \sigma\right\}, & \Omega_{35}^{4} & =\left\{\sigma \in \Omega^{4} \mid \Lambda_{\Phi}(\sigma)=0\right\} .
\end{aligned}
$$

Moreover, the decomposition of $\Omega^{4}(M)$ into self-dual and anti-self-dual parts is
$\Omega_{+}^{4}=\left\{\sigma \in \Omega^{4} \mid \star \sigma=\sigma\right\}=\Omega_{1}^{4} \oplus \Omega_{7}^{4} \oplus \Omega_{27}^{4}, \quad \Omega_{-}^{4}=\left\{\sigma \in \Omega^{4} \mid \star \sigma=-\sigma\right\}=\Omega_{35}^{4}$.

Before we discuss the torsion of a $\operatorname{Spin}(7)$-structure, we note some contraction identities involving the 4 -form Φ. In local coordinates $\left\{x^{1}, \cdots, x^{8}\right\}$, the 4 -form Φ is

$$
\Phi=\frac{1}{24} \Phi_{i j k l} d x^{i} \wedge d x^{j} \wedge d x^{k} \wedge d x^{l}
$$

where $\Phi_{i j k l}$ is totally skew-symmetric. We have the following identities, as always summing on repeated indices, which encapsulate the symmetries of a $\operatorname{Spin}(7)$-structure

$$
\begin{align*}
\Phi_{i j k l} \Phi_{a b c l}= & g_{i a} g_{j b} g_{k c}+g_{i b} g_{j c} g_{k a}+g_{i c} g_{j a} g_{k b} \\
& -g_{i a} g_{j c} g_{k b}-g_{i b} g_{j a} g_{k c}-g_{i c} g_{j b} g_{k a} \\
& -g_{i a} \Phi_{j k b c}-g_{i b} \Phi_{j k c a}-g_{i c} \Phi_{j k a b} \\
& -g_{j a} \Phi_{k i b c}-g_{j b} \Phi_{k i c a}-g_{j c} \Phi_{k i a b} \\
& -g_{k a} \Phi_{i j b c}-g_{k b} \Phi_{i j c a}-g_{k c} \Phi_{i j a b} \tag{2.7}\\
\Phi_{i j k l} \Phi_{a b k l}= & 6 g_{i a} g_{j b}-6 g_{i b} g_{j a}-4 \Phi_{i j a b} \tag{2.8}\\
\Phi_{i j k l} \Phi_{a j k l}= & 42 g_{i a} \tag{2.9}\\
\Phi_{i j k l} \Phi_{i j k l}= & 336 \tag{2.10}
\end{align*}
$$

We also have contraction identities involving $\nabla \Phi$ and Φ

$$
\begin{aligned}
\left(\nabla_{m} \Phi_{i j k l}\right) \Phi_{a b k l} & =-\Phi_{i j k l}\left(\nabla_{m} \Phi_{a b k l}\right)-4 \nabla_{m} \Phi_{i j a b} \\
\left(\nabla_{m} \Phi_{i j k l}\right) \Phi_{a j k l} & =-\Phi_{i j k l}\left(\nabla_{m} \Phi_{a j k l}\right) \\
\left(\nabla_{m} \Phi_{i j k l}\right) \Phi_{i j k l} & =0
\end{aligned}
$$

We now describe the torsion of a Spin(7)-structure. Given $X \in \Gamma(T M)$, we know from [21, Lemma 2.10] that $\nabla_{X} \Phi$ lies in the subbundle $\Omega_{7}^{4} \subset \Omega^{4}$.

Definition 2.5. The torsion tensor of a $\operatorname{Spin}(7)$-structure Φ is the element of $\Omega_{8}^{1} \otimes \Omega_{7}^{2}$ defined by expressing $\nabla \Phi$ in the light of Proposition 2.2:
$\nabla_{m} \Phi_{i j k l}=\left(T_{m} \diamond \Phi\right)_{i j k l}=T_{m ; i p} \Phi_{p j k l}+T_{m ; j p} \Phi_{i p k l}+T_{m ; k p} \Phi_{i j p l}+T_{m ; l p} \Phi_{i j k p}$
where $T_{m ; a b} \in \Omega_{7}^{2}$, for each fixed m.
Directly in terms of $\nabla \Phi$, the torsion T is given by

$$
\begin{equation*}
T_{m ; a b}=\frac{1}{96}\left(\nabla_{m} \Phi_{a j k l}\right) \Phi_{b j k l} \tag{2.12}
\end{equation*}
$$

Remark 2.6. We remark that the notation $T_{m ; a b}$ should not be confused with taking two covariant derivatives of T_{m}. The torsion tensor T is an element of $\Omega_{8}^{1} \otimes \Omega_{7}^{2}$ and thus for each fixed index $m, T_{m ; a b} \in \Omega_{7}^{2}$, but T is not in Ω^{3}.

Theorem 2.7. [14] The $\operatorname{Spin}(7)$-structure Φ is torsion-free if, and only if, $d \Phi=0$. Since $\star \Phi=\Phi$, this is equivalent to $d^{*} \Phi=0$.

Finally, the torsion satisfies a 'Bianchi-type identity'. This was first proved in [21, Theorem 4.2], using the diffeomorphism invariance of the torsion tensor. A different proof can be found in [12, Theorem 3.9], using the Ricci identity

$$
\nabla_{k} \nabla_{i} X_{l}-\nabla_{i} \nabla_{k} X_{l}=-R_{k i l m} X_{m} .
$$

Theorem 2.8. The torsion tensor T satisfies the following 'Bianchi-type identity'

$$
\begin{equation*}
\nabla_{i} T_{j ; a b}-\nabla_{j} T_{i ; a b}=2 T_{i ; a m} T_{j ; m b}-2 T_{j ; a m} T_{i ; m b}+\frac{1}{4} R_{j i a b}-\frac{1}{8} R_{j i m n} \Phi_{m n a b} \tag{2.13}
\end{equation*}
$$

Using the Riemannian Bianchi identity, we see that

$$
R_{i j k l} \Phi_{a j k l}=-\left(R_{j k i l}+R_{k i j l}\right) \Phi_{a j k l}=-R_{i l j k} \Phi_{a l j k}-R_{i k j l} \Phi_{a k j l},
$$

hence

$$
R_{i j k l} \Phi_{a j k l}=0
$$

Using this and contracting (2.13) on j and b gives the expression for the Ricci curvature of a metric induced by a $\operatorname{Spin}(7)$-structure:

$$
\begin{equation*}
R_{i j}=4 \nabla_{i} T_{a ; j a}-4 \nabla_{a} T_{i ; j a}-8 T_{i ; j b} T_{a ; b a}+8 T_{a ; j b} T_{i ; b a} \tag{2.14}
\end{equation*}
$$

This also proves that the metric of a torsion-free $\operatorname{Spin}(7)$-structure is Ricciflat, a result originally due to Bonan [5]. Taking the trace of (2.14) gives the scalar curvature R :

$$
R=4 \nabla_{i} T_{a ; i a}-4 \nabla_{a} T_{i ; i a}+8|T|^{2}+8 T_{a ; j b} T_{j ; b a} .
$$

Remark 2.9. 1. A classification of $\operatorname{Spin}(7)$-structures was given by Fernandez in [14] and a formulation in terms of spinors can be found in [27].
2. Compact simply-connected Riemannian symmetric spaces cannot carry any invariant $\operatorname{Spin}(7)$-structures and the compact simply-connected almost effective homogeneous space with invariant $\operatorname{Spin}(7)$-structures are $\mathrm{SU}(3) /\{e\}$, some torus bundles over $(\mathrm{SU}(2) / \mathrm{U}(1))^{\times 3}$ and the Calabi-Eckmann $\operatorname{SU}(3) / \mathrm{SU}(2) \times \mathrm{SU}(2)$.
3. Without requiring invariance of the structure, the 8 -dimensional compact simply-connected Riemannian symmetric spaces admitting a $\operatorname{Spin}(7)$-structures are $\operatorname{SU}(3), \mathbb{S}^{3} \times \mathbb{S}^{3} \times \mathbb{S}^{2}, \mathbb{S}^{5} \times \mathbb{S}^{3}, \mathbb{H P}^{2}, \operatorname{Gr}_{2}\left(\mathbb{C}^{4}\right)$ and the Wolf space $\mathrm{G}_{2} / \mathrm{SO}(4)$ [2].

3 Harmonicity

The ultimate goal in $\operatorname{Spin}(7)$-geometry is to find parallel structures. Not only is it quite a difficult task involving a non-linear equation and hard analysis but topological obstructions also apply.

An alternative strategy to finding the best among all possible $\operatorname{Spin}(7)-$ structures is to introduce a variational problem, for example measuring the default of parallelism, and search for minimisers.

This is the junction point between $\operatorname{Spin}(7)$-geometry and harmonic map theory, though the price to pay is we need to fix the metric, i.e. work within the isometric class of $\operatorname{Spin}(7)$-structures.

Definition 3.1. Two $\operatorname{Spin}(7)$-structures Φ_{1} and Φ_{2} on M are called isometric if they induce the same Riemannian metric, that is, if $g_{\Phi_{1}}=g_{\Phi_{2}}$. We will denote by $\llbracket \Phi \rrbracket$ the space of $\operatorname{Spin}(7)$-structures that are isometric to a given $\operatorname{Spin}(7)$-structure Φ.

Definition 3.2. Let Φ_{0} be a fixed initial $\operatorname{Spin}(7)$-structure on M. The
energy functional E on the set $\llbracket \Phi_{0} \rrbracket$ is

$$
\begin{equation*}
E(\Phi)=\frac{1}{2} \int_{M}\left|T_{\Phi}\right|^{2} \operatorname{vol}_{g_{\Phi}}, \tag{3.1}
\end{equation*}
$$

where T_{Φ} is the torsion of Φ.
Once the variational problem has been delineated, the next step is to derive the corresponding Euler-Lagrange equation. We will call critical points of $\left.E\right|_{\llbracket \Phi_{0} \rrbracket}$ harmonic $\operatorname{Spin}(7)$-structures and work out the harmonic equation for $\operatorname{Spin}(7)$-structures and the corresponding isometric flow.

The main ingredient is the representation theory properties outlined in the previous section and the recipe is to follow the treatment of the G_{2} case in [26, Section 6], only slightly adapted to specific properties of $\operatorname{Spin}(7)$-geometry.

The link with harmonic map theory is the one-one correspondence between $\operatorname{Spin}(7)$-structures Φ and sections σ of an ad-hoc $\operatorname{Spin}(7)$-twistor bundle N, constructed as the $\operatorname{Spin}(7)$ quotient of the $\mathrm{SO}(8)$ frame bundle of $\left(M^{8}, g\right)$. The fibres are isometric to $\mathbb{R P}^{7}$ and parametrise isometric $\operatorname{Spin}(7)$-structures on $\left(M^{8}, g\right)$.

To obtain the equation of harmonicity, one must first and foremost identify the tangent space of fibres in order to be able to consider vertical variations and compare (isometric) $\operatorname{Spin}(7)$-structures among themselves.

The first constituent is the connection form f, which identifies the vertical of the tangent bundle of the "twistor space" with \mathfrak{m} the (naturally reductive) complement of $\mathfrak{s o}(7)(=\mathfrak{s p i n}(7))$ in $\mathfrak{s o}(8)$. Sections of this space correspond to $\operatorname{Spin}(7)$-structures and restricting ourselves to the vertical part means we only look at variations through $\operatorname{Spin}(7)$-structures.

If $\tilde{\Phi}$ is the universal $\operatorname{Spin}(7)$-structure, a sort of ideal $\operatorname{Spin}(7)$-structure living a couple of fibre bundles above the manifold M (cf. [26] for particulars), then the connection form is characterised by

$$
\nabla_{A} \tilde{\Phi}=f(A) \cdot \tilde{\Phi}
$$

Here $f(A)$ is in \mathfrak{m}.

We identify $\mathfrak{s o}(8)$ with Ω^{2} and \mathfrak{m} is then identified with Ω_{7}^{2}.
Since $\tilde{\Phi}$ is in Ω^{4} (of the appropriate space), the term $f(A) . \tilde{\Phi}$ should be understood as the diamond operator of Equation (2.5), which is just the derivation of the natural action of GL(8) by pulling back forms.

To obtain f we need to find an inverse of the \diamond operator and to do this introduce the triple contraction \lrcorner_{3} between two four-forms (we follow notations and conventions of [21]):

If $\beta=\frac{1}{2} \beta_{i j} d x^{i} \wedge d x^{j}$ then $\beta \diamond \Phi \in \Omega^{4}$ and put $\left.(\beta \diamond \Phi)\right\lrcorner_{3} \Phi$ to be the two-form defined by

$$
\left.(\beta \diamond \Phi)\lrcorner_{3} \Phi=\frac{1}{2}((\beta \diamond \Phi)\lrcorner_{3} \Phi\right)_{p q} d x^{p} \wedge d x^{q},
$$

where

$$
\left.((\beta \diamond \Phi)\lrcorner_{3} \Phi\right)_{p q}=(\beta \diamond \Phi)_{p i j k} \Phi_{q i j k}
$$

Because we are interested in the case $\beta=f(A) \in \Omega_{7}^{2}$, we can use $\beta_{a b} \Phi_{a b i j}=$ $-6 \beta_{i j}$ to compute that

$$
(\beta \diamond \Phi)\lrcorner_{3} \Phi=96 \beta .
$$

Once we have this, the rest follows relatively easily, if one knows where to pick information in [21]:

- The connection form is then given by

$$
\left.96 f(A)=\nabla_{A} \tilde{\Phi}\right\lrcorner_{3} \tilde{\Phi}
$$

and, since $\operatorname{Spin}(7)$-structures Φ and sections $\sigma: M \rightarrow N$ of the twistor space are related by $\Phi=\tilde{\Phi} \circ \sigma$, we can pull back the above formula to obtain

$$
\left.f(d \sigma(X))=\frac{1}{96}\left(\nabla_{X} \Phi\right)\right\lrcorner_{3} \Phi
$$

which is precisely the torsion $T(X)$ of (2.12) in the space Ω_{7}^{2}.

- The (vertical) energy density of the section $\sigma: M \rightarrow \mathrm{~N}$ is

$$
\left|d^{v} \sigma\right|^{2}=|T|^{2},
$$

so the functional we take, the L^{2}-norm of the torsion, is exactly the Dirichlet energy of σ (at least up to an additive constant due to the contribution of the horizontal part).

- The vertical tension field is

$$
I\left(\tau^{v}(\sigma)\right)=\sum_{1}^{8} \nabla_{e_{i}}\left(T\left(e_{i}\right)\right)-T\left(\nabla_{e_{i}} e_{i}\right)=\operatorname{div} T .
$$

- The flow of sections $\sigma_{t}: M \rightarrow N$

$$
\frac{d \sigma_{t}}{d t}=\tau^{v}\left(\sigma_{t}\right)
$$

is equivalent to

$$
I\left(\frac{d \sigma_{t}}{d t}\right)=I\left(\tau^{v}\left(\sigma_{t}\right)\right)
$$

where I plays the role of an extended f. We know that $I\left(\tau^{v}\left(\sigma_{t}\right)\right)=$ $\operatorname{div} T_{t}$ and, generalising to $M \times \mathbb{R}$ (or at least on an interval) all the previous objects, we have that

$$
\left.I\left(\frac{d \sigma_{t}}{d t}\right)=\frac{1}{96} \frac{d \Phi_{t}}{d t}\right\lrcorner_{3} \Phi_{t} .
$$

On the other hand, since $\operatorname{div} T_{t}$ is in Ω_{7}^{2}

$$
\left.\operatorname{div} T_{t}=\frac{1}{96}\left(\operatorname{div} T_{t} \diamond \Phi_{t}\right)\right\lrcorner 3 \Phi_{t}
$$

and $\lrcorner_{3} \Phi_{t}$ is an isomorphism on Ω_{7}^{2} (its kernel is Ω_{21}^{2}), we have the isometric flow, with initial value:

$$
\left\{\begin{array}{l}
\frac{d \Phi}{d t}=\operatorname{div} T \diamond \Phi \tag{HF}\\
\Phi(0)=\Phi_{0} .
\end{array}\right.
$$

Remark 3.3. - The $\operatorname{div} T$ equation is the vertical part of the harmonic map equation of σ, which is known to admit short-time existence, so this property carries over to our heat flow.

- As (the fibres of) the target are isometric to the real seven-dimensional projective space, they have positive sectional curvature, so there can be no certainty about the long-time existence of the flow (cf. [13]).
- Solitons of such flows are studied for a general group H in [12] and [24].

4 Analysis of the flow I

This section develops tools for the analysis of the isometric flow of $\operatorname{Spin}(7)$-structures. Some proofs of the statements in this section have appeared in full in [12] and we refer to them. Others were consequences of more general arguments and here we present their $\operatorname{Spin}(7)$ versions, though they are only adaptations of their G_{2} counterparts found in [11].

Let $\left\{\partial_{t}, e_{1}, \ldots, e_{7}\right\}$ be an orthonormal (geodesic) frame. First, we use the formula

$$
\begin{aligned}
\left(R\left(e_{i}, e_{j}\right) T\right)\left(e_{a}, e_{b}, e_{c}\right)= & -T\left(R\left(e_{i}, e_{j}\right) e_{a}, e_{b}, e_{c}\right)-T\left(e_{a}, R\left(e_{i}, e_{j}\right) e_{b}, e_{c}\right) \\
& -T\left(e_{a}, e_{b}, R\left(e_{i}, e_{j}\right) e_{c}\right)
\end{aligned}
$$

to derive a formula for the Laplacian of the torsion of a $\operatorname{Spin}(7)$-structure.

Lemma 4.1. [12, Lemma 4.12] Let $\Delta=\operatorname{tr} \nabla_{e_{i}} \nabla_{e_{i}}$ be the Laplacian, then

$$
\begin{aligned}
(\Delta T)_{m ; a b}= & \nabla_{m} \nabla_{i} T_{i ; a b}-T_{q ; a b} R_{i m i q}-T_{i ; q b} R_{i m a q}-T_{i ; a q} R_{i m b q}+2 \nabla_{i} T_{i ; a p} T_{m ; b p} \\
& +2 T_{i ; a p} \nabla_{i} T_{m ; b p}-2 \nabla_{i} T_{m ; a p} T_{i ; b p}-2 T_{m ; a p} \nabla_{i} T_{i ; p b}+\frac{1}{4} \nabla_{i} R_{m i a b} \\
& -\frac{1}{8} \nabla_{i} R_{m i p q} \Phi_{p q a b}-\frac{1}{8} R_{m i p q} \nabla_{i} \Phi_{p q a b} .
\end{aligned}
$$

This allows us to compute a local expression for the evolution of the torsion T.

Proposition 4.2. [12, Proposition 4.13] Let $\left\{\Phi_{t}\right\}$ be a solution of the har-
monic $\operatorname{Spin}(7)$-flow (HF), then its torsion evolves according to the equation

$$
\begin{aligned}
4 \frac{\partial}{\partial t} T_{m ; i s}= & 4(\Delta T)_{m ; i s} \\
& +\nabla_{a} T_{m ; b c}\left(4 T_{a ; b p} \Phi_{p c i s}+T_{a ; i p} \Phi_{b c p s}+T_{a ; s p} \Phi_{b c i p}\right)+T_{m ; b c} \nabla_{a} T_{a ; b p} \Phi_{p c i s} \\
& +3 \nabla_{a} T_{a ; i p} T_{m ; p s}+\nabla_{a} T_{a ; s p} T_{m ; p i}-2 T_{a ; i p} \nabla_{a} T_{m ; s p}+2 \nabla_{a} T_{m ; i p} T_{a ; s p} \\
& +T_{m ; b c} T_{a ; b p}\left(T_{a ; p q} \Phi_{q c i s}+T_{a ; c q} \Phi_{p q i s}+2 T_{a ; i q} \Phi_{p c q s}+2 T_{a ; s q} \Phi_{p c i q}\right) \\
& +\frac{1}{2} T_{m ; b c} T_{a ; i p}\left(T_{a ; p q} \Phi_{b c q s}+2 T_{a ; s q} \Phi_{b c p q}\right)+\frac{1}{2} T_{m ; b c} T_{a ; s p} T_{a ; p q} \Phi_{b c i q} \\
& +4 T_{q ; i s} R_{a m a q}-\left(\nabla_{a} R_{m a i s}-\frac{1}{2} \nabla_{a} R_{m a p q} \Phi_{p q i s}\right) \\
& +T_{a ; q s} R_{a m i q}+T_{a ; i q} R_{a m s q}+\frac{1}{8} R_{m a p q} \nabla_{a} \Phi_{p q i s}-T_{a ; q c} R_{a m b q} \Phi_{b c i s} \\
& -\frac{1}{16} R_{m a p q} \nabla_{a} \Phi_{p q b c} \Phi_{b c i s} .
\end{aligned}
$$

But the real information is the evolution of the norm of the torsion.
Proposition 4.3. [12, Proposition 4.14] If $\left\{\Phi_{t}\right\}$ is a solution of the harmonic $\operatorname{Spin}(7)$-flow (HF), then the evolution equation for $|T|^{2}$ is

$$
\begin{aligned}
2 \frac{\partial}{\partial t}|T|^{2}= & 2 \Delta|T|^{2}-4|\nabla T|^{2}+16 T_{a ; b p} T_{m ; b c} T_{a ; p q} T_{m ; q c}+16 T_{a ; b p} T_{m ; b c} T_{a ; c q} T_{m ; p q} \\
& +16 T_{a ; q s} T_{m ; i s} R_{a m i q}+4 T_{q ; i s} T_{m ; i s} R_{a m a q}-4 T_{m ; i s} \nabla_{a} R_{m a i s} .
\end{aligned}
$$

Both the doubling-time estimate and Shi-type estimates can be derived from general properties of the harmonic flow of H-structures (cf. [24]) and do not feature in [12] but proofs specific to $\operatorname{Spin}(7)$ can be written.

Lemma 4.4. [12, Corollary 4.9] There exists $\delta>0$ such that

$$
\mathcal{T}(t) \leq 2 \mathcal{T}(0)
$$

for all $0 \leq t \leq \delta$, where

$$
\mathcal{T}(t)=\sup _{M}|T(x, t)|
$$

Proof. We follow the arguments of [11, Proposition 3.2] and adapt them to the group $\operatorname{Spin}(7)$.

Wlog, we can assume that $|T|>1$. Then

$$
\begin{aligned}
\frac{\partial}{\partial t}|T|^{2}= & 2\langle\Delta T, T\rangle+2\langle\nabla T * T * \Phi, T\rangle+2\langle T * T * T, T\rangle \\
& \quad+2\langle T * \nabla R * R * \Phi, T\rangle \\
= & \Delta|T|^{2}-2|\nabla T|^{2}+2\langle\nabla T * T * \Phi, T\rangle+2\langle T * T * T, T\rangle \\
& +2\langle T * \nabla R * R * \Phi, T\rangle \\
\leq & \Delta|T|^{2}-2|\nabla T|^{2}+C|\nabla T||T|^{2}+C|T|^{4}+C|T|^{2}+C|T|
\end{aligned}
$$

because of the bounded geometry.
Use Young Inequality $a b \leq \frac{1}{2 \epsilon} a^{2}+\frac{\epsilon}{2} b^{2}$ to get rid of the term $|\nabla T||T|^{2}$:

$$
\frac{\partial}{\partial t}|T|^{2} \leq \Delta|T|^{2}+\left(-2+\frac{C}{2 \epsilon}\right)|\nabla T|^{2}+C\left(1+\frac{\epsilon}{2}\right)|T|^{4}+C|T|^{2}+C|T|,
$$

with ϵ large enough to ensure that $\left(-2+\frac{C}{2 \epsilon}\right)<0$.
Then, using $|T|>1$, we obtain a formula similar to [11, (3.10)]

$$
\begin{equation*}
\frac{\partial}{\partial t}|T|^{2} \leq \Delta|T|^{2}+\left(-2+\frac{C}{2 \epsilon}\right)|\nabla T|^{2}+C\left(1+\frac{\epsilon}{2}\right)|T|^{4}+C|T|^{2} \tag{4.1}
\end{equation*}
$$

and argue as in [11, page 22] with the maximal principle to get the DTE.

Shi-type estimates are crucial at several steps of our various arguments in the next section. They essentially control higher-derivatives from a bounds on the (norm of the) torsion and the geometry of the manifold. A much more general version of these Shi-type estimates can be found in [12].

Lemma 4.5 (Shi-type estimates). [12, Corollary 4.10] There exist constants C_{m} such that if $(\forall j \in \mathbb{N})$

$$
|T| \leq K \text { and }\left|\nabla^{j} R\right| \leq B_{j} K^{2+j}
$$

on $M \times\left[0,1 / K^{2}\right]$ then $(\forall m \in \mathbb{N})$

$$
\left|\nabla^{m} T\right| \leq C_{m} t^{-\frac{m}{2}} K
$$

Remark 4.6. Note that this version has a conclusion valid over an interval slightly larger than in [12], up to $1 / K^{2}$ instead of $1 / K^{4}$, but this has no bearing on the issue.

Proof. We closely follow the proof by induction in [11], mutatis mutandis, and only indicate the key steps and differences. We use the symbol $*$ to denote various tensor contractions, the precise form of which is unimportant.

The base case of the induction:
We start with the evolution equation for ∇T :

$$
\begin{aligned}
& \frac{\partial}{\partial t} \nabla T=\Delta \nabla T+\nabla(\nabla T * T * \Phi)+\nabla T * T * T * \Phi+T * T * T * \nabla \Phi \\
& +\nabla T * R+T * \nabla R+\nabla^{2} R * \Phi+\nabla R * \nabla \Phi+\nabla R * \nabla \Phi * \Phi+R * \nabla^{2} \Phi * \Phi \\
& +R * \nabla \Phi * \nabla \Phi+\nabla T * R * \Phi+T * \nabla R * \Phi+T * R * \nabla \Phi
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \frac{\partial}{\partial t}|\nabla T|^{2}=\Delta|\nabla T|^{2}-2\left|\nabla^{2} T\right|^{2} \\
& +2\langle\nabla T, \nabla(\nabla T * T * \Phi)+\nabla T * T * T * \Phi+T * T * T * \nabla \Phi+\nabla T * R \\
& +T * \nabla R+\nabla^{2} R * \Phi+\nabla R * \nabla \Phi+\nabla R * \nabla \Phi * \Phi+R * \nabla^{2} \Phi * \Phi \\
& +R * \nabla \Phi * \nabla \Phi+\nabla T * R * \Phi+T * \nabla R * \Phi+T * R * \nabla \Phi\rangle
\end{aligned}
$$

therefore

$$
\begin{aligned}
\frac{\partial}{\partial t}|\nabla T|^{2} \leq & \Delta|\nabla T|^{2}-2\left|\nabla^{2} T\right|^{2}+2\langle\nabla T, \nabla(\nabla T * T * \Phi)\rangle \\
& +C|\nabla T|^{2}|T|^{2}+C|\nabla T||T|^{4}+C|\nabla T|^{2}|R|+C|\nabla T||T||\nabla R| \\
& +C|\nabla T|\left|\nabla^{2} R\right|+C|\nabla T||T|^{2}|R|
\end{aligned}
$$

Since, by assumption, $|R| \leq B_{0} K^{2},|\nabla R| \leq B_{1} K^{3},\left|\nabla^{2} R\right| \leq B_{2} K^{4}$ and $|T| \leq K$ we have
$\frac{\partial}{\partial t}|\nabla T|^{2} \leq \Delta|\nabla T|^{2}-2\left|\nabla^{2} T\right|^{2}+2\langle\nabla T, \nabla(\nabla T * T * \Phi)\rangle+C K^{2}|\nabla T|^{2}+C K^{4}|\nabla T|$.

As

$$
\langle\nabla T, \nabla(\nabla T * T * \Phi)\rangle \leq C K|\nabla T|\left|\nabla^{2} T\right|+C|\nabla T|^{3}+C K^{2}|\nabla T|^{2}
$$

with Young Inequality we have

$$
2 C K|\nabla T|\left|\nabla^{2} T\right| \leq \frac{C K^{2}}{\epsilon}|\nabla T|^{2}+C \epsilon\left|\nabla^{2} T\right|^{2},
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial t}|\nabla T|^{2} \leq \Delta|\nabla T|^{2}-(2-C \epsilon)\left|\nabla^{2} T\right|^{2}+C K^{2}|\nabla T|^{2}+C K^{4}|\nabla T|+C|\nabla T|^{3} \tag{4.2}
\end{equation*}
$$

The problem lies with the $|\nabla T|^{3}$ term.
In local coordinates the expression of $4(\nabla T * T * \Phi)$ is

$$
\begin{aligned}
& 4(\nabla T * T * \Phi)_{m ; i s}=\nabla_{a} T_{m ; b c}\left(4 T_{a ; b p} \Phi_{p c i s}+T_{a ; i p} \Phi_{b c p s}+T_{a ; s p} \Phi_{b c i p}\right) \\
& +T_{m ; b c} \nabla_{a} T_{a ; b p} \Phi_{p c i s}+3 \nabla_{a} T_{a ; i p} T_{m ; p s}+\nabla_{a} T_{a ; s p} T_{m ; p i}-2 T_{a ; i p} \nabla_{a} T_{m ; s p} \\
& +2 \nabla_{a} T_{m ; i p} T_{a ; s p}
\end{aligned}
$$

so the terms making up $|\nabla T|^{3}$ are

$$
\begin{aligned}
& \text { i) } 4 \nabla_{a} T_{m ; b c} \nabla_{k} T_{a ; b p} \Phi_{p c i s} \nabla_{k} T_{m ; i s} ; \\
& i i) \nabla_{a} T_{m ; b c} \nabla_{k} T_{a ; i p} \Phi_{b c p s} \nabla_{k} T_{m ; i s} ; \\
& i i i) \nabla_{a} T_{m ; b c} \nabla_{k} T_{a ; s p} \Phi_{b c i p} \nabla_{k} T_{m ; i s} ; \\
& i v) \nabla_{k} T_{m ; b c} \nabla_{a} T_{a ; b p} \Phi_{p c i s} \nabla_{k} T_{m ; i s} ; \\
& v) 3 \nabla_{a} T_{a ; i p} \nabla_{k} T_{m ; p s} \nabla_{k} T_{m ; i s} ; \\
& v i) \nabla_{a} T_{a ; s p} \nabla_{k} T_{m ; p i} \nabla_{k} T_{m ; i s} ; \\
& v i i)-2 \nabla_{k} T_{a ; i p} \nabla_{a} T_{m ; s p} \nabla_{k} T_{m ; i s} ; \\
& v i i i) 2 \nabla_{a} T_{m ; i p} \nabla_{k} T_{a ; s p} \nabla_{k} T_{m ; i s} .
\end{aligned}
$$

Using skew-symmetry and the Bianchi-type identity of Φ, the terms ii) and vii) can be re-written:

$$
\begin{aligned}
i i) \nabla_{a} T_{m ; b c} \nabla_{k} T_{a ; i p} \Phi_{b c p s} \nabla_{k} T_{m ; i s} & =\frac{1}{2} \nabla_{k} T_{a ; i p} \nabla_{k} T_{m ; i s} \Phi_{b c p s}\left(\nabla_{a} T_{m ; b c}-\nabla_{m} T_{a ; b c}\right) \\
& =\nabla T * \nabla T * T * T * \Phi+\nabla T * \nabla T * R * \Phi * \Phi ; \\
v i i)-2 \nabla_{k} T_{a ; i p} \nabla_{a} T_{m ; s p} \nabla_{k} T_{m ; i s} & =-\nabla_{k} T_{a ; i p} \nabla_{k} T_{m ; i s}\left(\nabla_{a} T_{m ; s p}-\nabla_{m} T_{a ; s p}\right) \\
& =\nabla T * \nabla T * T * T+\nabla T * \nabla T * R * \Phi .
\end{aligned}
$$

Exchanging i and s we have that the term iii) equals ii) and the term viii) equals the term vii), while vi) is the opposite of v).

Since $T_{m ; i s}$ is in Ω_{7}^{2}, the term iv) can be re-written

$$
\begin{aligned}
i v) \nabla_{k} T_{m ; b c} \nabla_{a} T_{a ; b p} \Phi_{p c i s} \nabla_{k} T_{m ; i s} & =\nabla_{k} T_{m ; b c} \nabla_{a} T_{a ; b p}\left(\nabla_{k}\left(\Phi_{p c i s} T_{m ; i s}\right)-\nabla_{k} \Phi_{p c i s} T_{m ; i s}\right) \\
& =\nabla_{k} T_{m ; b c} \nabla_{a} T_{a ; b p}\left(-6 \nabla_{k}\left(T_{m ; p c}\right)-\nabla_{k} \Phi_{p c i s} T_{m ; i s}\right) \\
& =-\nabla_{k} T_{m ; b c} \nabla_{a} T_{a ; b p} \nabla_{k} \Phi_{p c i s} T_{m ; i s} \\
& =\nabla T * \nabla T * T * \nabla \Phi .
\end{aligned}
$$

We do a similar thing to the first term (forgetting the factor 4):

$$
\begin{aligned}
i) \nabla_{a} T_{m ; b c} \nabla_{k} T_{a ; b p} \Phi_{p c i s} \nabla_{k} T_{m ; i s} & =\nabla_{a} T_{m ; b c} \nabla_{k} T_{a ; b p}\left(\nabla_{k}\left(\Phi_{p c i s} T_{m ; i s}\right)-\nabla_{k} \Phi_{p c i s} T_{m ; i s}\right) \\
& =-6 \nabla_{a} T_{m ; b c} \nabla_{k} T_{a ; b p} \nabla_{k} T_{m ; p c}+\nabla T * \nabla T * T * T,
\end{aligned}
$$

and exchanging a and m and then b and c , we have

$$
2 \nabla_{a} T_{m ; b c} \nabla_{k} T_{a ; b p} \nabla_{k} T_{m ; p c}=\nabla_{k} T_{a ; b p} \nabla_{k} T_{m ; p c}\left(\nabla_{a} T_{m ; b c}-\nabla_{m} T_{a ; b c}\right),
$$

so we can use the Bianchi-type equality again.
In conclusion, the terms leading to the problematic term $|\nabla T|^{3}$ can be re-written in terms of the type:

$$
\begin{aligned}
& \nabla T * \nabla T * T * T+\nabla T * \nabla T * R * \Phi+\nabla T * \nabla T * T * T * \Phi \\
& +\nabla T * \nabla T * R * \Phi * \Phi+\nabla T * \nabla T * T * \nabla \Phi
\end{aligned}
$$

and

$$
|\nabla T|^{3} \leq C K^{2}|\nabla T|^{2}
$$

so, for a suitable ϵ, Inequality (4.2) becomes

$$
\frac{\partial}{\partial t}|\nabla T|^{2} \leq \Delta|\nabla T|^{2}+C K^{2}|\nabla T|^{2}+C K^{4}|\nabla T|,
$$

which is exactly equation (3.22) in [11].
For the function $f=t|\nabla T|^{2}+\beta|T|^{2}$, combining results for $\frac{\partial}{\partial t}|\nabla T|^{2}$ and $\frac{\partial}{\partial t}|T|^{2}$, keeping in mind that $t \leq 1 / K^{2}$ and choosing β large enough, this implies that

$$
\begin{aligned}
\frac{\partial}{\partial t} f & =|\nabla T|^{2}+t \frac{\partial}{\partial t}|\nabla T|^{2}+\beta \frac{\partial}{\partial t}|T|^{2} \\
& \leq \Delta f+C \beta K^{4} .
\end{aligned}
$$

As $f(x, 0)=\beta|T|^{2} \leq \beta K^{2}$ then $\sup _{M} f(x, t) \leq C K^{2}+C \beta t K^{4} \leq C K^{2}$ hence $t|\nabla T|^{2} \leq C K^{2}$.

The m-step of the induction:
Assume that $\left|\nabla^{j} T\right| \leq C_{j} K t^{-\frac{j}{2}}$ for $j=1, \ldots, m-1$.
The evolution equation for $\left|\nabla^{m} T\right|^{2}$ is

$$
\begin{aligned}
& \frac{\partial}{\partial t} \nabla^{m} T=\Delta \nabla^{m} T+\sum_{i=0}^{m} \nabla^{m-i} T * \nabla^{i} R+\nabla^{m}(\nabla T * T * \Phi) \\
& +\sum_{a+b+c+d=m} \nabla^{a} T * \nabla^{b} T * \nabla^{c} T * \nabla^{d} \Phi+\sum_{i=0}^{m} \nabla^{i} T * \nabla^{m-i} R \\
& +\sum_{i=0}^{m} \nabla^{m+1-i} R * \nabla^{i} \Phi+\sum_{a+b+c=m} \nabla^{a} R * \nabla^{b+1} \Phi * \nabla^{c} \Phi \\
& +\sum_{a+b+c=m} \nabla^{a} T * \nabla^{b} R * \nabla^{c} \Phi,
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left|\nabla^{m} T\right|^{2}=\Delta\left|\nabla^{m} T\right|^{2}-2\left|\nabla^{m+1} T\right|^{2}+\sum \nabla^{m} T * \nabla^{m-i} T * \nabla^{i} R \\
& +\nabla^{m} T * \nabla^{m}(\nabla T * T * \Phi)+\sum \nabla^{m} T * \nabla^{a} T * \nabla^{b} T * \nabla^{c} T * \nabla^{d} \Phi \\
& +\sum \nabla^{m} T * \nabla^{i} T * \nabla^{m-i} R+\sum \nabla^{m} T * \nabla^{m+1-i} R * \nabla^{i} \Phi \\
& +\sum \nabla^{m} T * \nabla^{a} R * \nabla^{b+1} \Phi * \nabla^{c} \Phi+\sum \nabla^{m} T * \nabla^{a} T * \nabla^{b} R * \nabla^{c} \Phi .
\end{aligned}
$$

Third term: separating the $i=0$ from the others, we get

$$
\left|\sum \nabla^{m} T * \nabla^{m-i} T * \nabla^{i} R\right| \leq C K^{2}\left|\nabla^{m} T\right|^{2}+C K^{3} t^{-\frac{m}{2}}\left|\nabla^{m} T\right| .
$$

By induction we show that $\left|\nabla^{i} \Phi\right| \leq C \sum_{j=1}^{i} K^{j} t^{-\frac{j-i}{2}}$.
Fifth term: Separating the cases where a or b equals m and using $K^{2} T \leq 1$ we have

$$
\left|\sum \nabla^{m} T * \nabla^{a} T * \nabla^{b} T * \nabla^{c} T * \nabla^{d} \Phi\right| \leq C K^{2}\left|\nabla^{m} T\right|^{2}+C K^{3}\left|\nabla^{m} T\right| t^{-\frac{m}{2}} .
$$

Seventh term: Using $K^{2} T \leq 1$ we have

$$
\left|\sum \nabla^{m} T * \nabla^{m+1-i} R * \nabla^{i} \Phi\right| \leq C K^{3}\left|\nabla^{m} T\right| t^{-\frac{m}{2}}
$$

Sixth term: Separate the case $i=m$ from the others and use $K^{2} T \leq 1$ to obtain

$$
\left|\sum \nabla^{m} T * \nabla^{i} T * \nabla^{m-i} R\right| \leq C K^{2}\left|\nabla^{m} T\right|^{2}+C K^{3}\left|\nabla^{m} T\right| t^{-\frac{m}{2}} .
$$

Eighth term: Separate the $b=m$ term from the others, use $\nabla^{i+1} \Phi=$ $\nabla^{i} T+$ lot and $K^{2} T \leq 1$ to obtain

$$
\left|\sum \nabla^{m} T * \nabla^{a} R * \nabla^{b+1} \Phi * \nabla^{c} \Phi\right| \leq C K^{2}\left|\nabla^{m} T\right|^{2}+C K^{2}\left|\nabla^{m} T\right| t^{-\frac{m+1}{2}} .
$$

Ninth term: Separate the $a=m$ term from the others and use $K^{2} T \leq 1$ to obtain

$$
\left|\sum \nabla^{m} T * \nabla^{a} T * \nabla^{b} R * \nabla^{c} \Phi\right| \leq C K^{2}\left|\nabla^{m} T\right|^{2}+C K^{3}\left|\nabla^{m} T\right| t^{-\frac{m}{2}}
$$

Fourth term: Using $\nabla(T * \Phi)=\nabla T * \Phi+T * T * \Phi$,

$$
\begin{aligned}
& \left|\nabla^{m} T * \nabla^{m}(\nabla T * T * \Phi)\right| \\
& \left.\leq \mid \nabla^{m} T * \nabla^{m+1} T * T * \Phi\right)\left|+\left|\nabla^{m} T * \nabla^{m} T * \nabla(T * \Phi)\right|\right. \\
& +\left|\nabla^{m} T * \sum_{i=2}^{m-1} \nabla^{m+1-i} T * \nabla^{i}(T * \Phi)\right|+\left|\nabla^{m} T * \nabla T * \nabla^{m}(T * \Phi)\right| \\
& \leq C K\left|\nabla^{m} T\right|\left|\nabla^{m+1} T\right|+C\left|\nabla^{m} T\right|^{2}\left(K t^{-\frac{1}{2}}+K^{2}\right) \\
& +C\left|\nabla^{m} T\right| \sum_{i=2}^{m-1} K t^{-\frac{m+1-i}{2}} \sum_{j=0}^{i} K t^{-\frac{i-j}{2}} \sum_{k=1}^{j} K^{k} t^{\frac{k-j}{2}} \\
& +C\left|\nabla^{m} T\right| K t^{-\frac{1}{2}}\left(\left|\nabla^{m} T\right|+\sum_{j=1}^{m} K t^{-\frac{m-i}{2}} \sum_{k=1}^{i} K^{k} t^{\frac{k-i}{2}}\right. \\
& \leq C K\left|\nabla^{m} T\right|\left|\nabla^{m+1} T\right|+C\left|\nabla^{m} T\right|^{2}\left(K t^{-\frac{1}{2}}+K^{2}\right)+C K^{2}\left|\nabla^{m} T\right| t^{-\frac{m+1}{2}}
\end{aligned}
$$

In conclusion

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left|\nabla^{m} T\right|^{2} \leq \Delta\left|\nabla^{m} T\right|^{2}-2\left|\nabla^{m+1} T\right|^{2}+C K^{2}\left|\nabla^{m} T\right|^{2}+C K^{3} t^{-\frac{m}{2}}\left|\nabla^{m} T\right| \\
& +C K^{2} t^{-\frac{m+1}{2}}\left|\nabla^{m} T\right|+C K\left|\nabla^{m} T\right|\left|\nabla^{m+1} T\right|+C K t^{-\frac{1}{2}}\left|\nabla^{m} T\right|^{2}
\end{aligned}
$$

which is exactly Equation (3.32) in [11].
As the rest of the proof completely relies on this equation, it can be read in [11].

5 Analysis of the flow II

Let (M, g) be a complete Riemannian manifold. For $x_{0} \in M$, let u be the fundamental solution of the backward heat equation, starting with the delta function at $x_{0}[16]$:

$$
\left(\frac{\partial}{\partial t}+\Delta\right) u=0, \quad \lim _{t \rightarrow t_{0}} u=\delta_{x_{0}}
$$

and set $u=\frac{e^{-f}}{\left(4 \pi\left(t_{0}-t\right)\right)^{4}}$.

For a solution $\{\Phi(t)\}_{t \in\left[0, t_{0}\right)}$ of the harmonic $\operatorname{Spin}(7)$-flow on (M, g), we define the function

$$
\begin{equation*}
\Theta_{\left(x_{0}, t_{0}\right)}(\Phi(t))=\left(t_{0}-t\right) \int_{M}\left|T_{\Phi(t)}\right|^{2} u \operatorname{vol}_{\mathrm{g}} . \tag{5.1}
\end{equation*}
$$

We start off with a derivation of the function $\Theta \circ \Phi$ and give a little bit more details of the proof than in [12, Lemma 5.1].

Lemma 5.1.

$$
\begin{aligned}
\frac{d}{d t} \Theta & \left.=-2\left(t_{0}-t\right) \int_{M} \mid \operatorname{div} T-f\right\lrcorner\left. T\right|^{2} u \operatorname{vol}_{\mathrm{g}} \\
& -2\left(t_{0}-t\right) \int_{M}\left(\nabla_{m} \nabla_{l} u-\frac{\nabla_{m} u \nabla_{l} u}{u}+\frac{u g_{m l}}{2\left(t_{0}-t\right)}\right) T_{m ; i s} T_{l ; i s} \operatorname{vol}_{\mathrm{g}} \\
& -\left(t_{0}-t\right) \int_{M} u R_{m l i s}\left(2 T_{l ; i r} T_{m ; r s}-2 T_{m ; i r} T_{l ; r s}+\frac{1}{4} R_{m l i s}-\frac{1}{8} R_{m l a b} \Phi_{a b i s}\right) \operatorname{vol}_{\mathrm{g}} \\
& -2\left(t_{0}-t\right) \int_{M} T_{m ; i s} u \nabla_{l} R_{m l i s} \operatorname{vol}_{\mathrm{g}} .
\end{aligned}
$$

Proof. By direct computation, we have

$$
\begin{aligned}
& \frac{d}{d t} \Theta=\int_{M}\left(t_{0}-t\right) u \frac{\partial}{\partial t}|T|^{2}-|T|^{2} u+\left(t_{0}-t\right)|T|^{2} \frac{\partial}{\partial t} u \\
& =\int_{M}\left(t_{0}-t\right) u \frac{\partial}{\partial t}|T|^{2}-|T|^{2} u-\left(t_{0}-t\right)|T|^{2} \Delta u \\
& =\int_{M} 2\left(t_{0}-t\right) u T_{m ; i s} \frac{\partial}{\partial t} T_{m ; i s}-|T|^{2} u-\left(t_{0}-t\right)|T|^{2} \Delta u \\
& \left.=\int_{M} 2\left(t_{0}-t\right) u T_{m ; i s}\left(\nabla_{r} T_{r ; i p} T_{m ; p s}-\nabla_{r} T_{r ; s p} T_{m ; p i}+\pi_{7}\left(\nabla_{m}\left(\nabla_{r} T_{r ; i s}\right)\right)\right)\right) \\
& -|T|^{2} u-\left(t_{0}-t\right)|T|^{2} \Delta u,
\end{aligned}
$$

but

1. $T_{m ; i s} \nabla_{r} T_{r ; i p} T_{m ; p s}=0$ because $T_{m ; i s} T_{m ; p s}$ is symmetric in (i, p) and $\nabla_{r} T_{r ; i p}$ is skew-symmetric in (i, p);
2. $T_{m ; i s} \nabla_{r} T_{r ; s p} T_{m ; p i}=0$ because $T_{m ; i s} T_{m ; p i}$ is symmetric in (s, p) and $\nabla_{r} T_{r ; s p}$ is skew-symmetric in (s, p);

3. $T_{m ; i s} \in \Lambda_{7}^{2}$,

therefore

$$
\frac{d}{d t} \Theta=\int_{M} 2\left(t_{0}-t\right) u T_{m ; i s}\left(\nabla_{m}\left(\nabla_{r} T_{r ; i s}\right)\right)-|T|^{2} u-\left(t_{0}-t\right)|T|^{2} \Delta u
$$

Integrating by parts and using the Bianchi identity, we have

$$
\begin{aligned}
& \frac{d}{d t} \Theta=\int_{M}-2\left(t_{0}-t\right) u \nabla_{m} T_{m ; i s} \nabla_{r} T_{r ; i s}-2\left(t_{0}-t\right) \nabla_{m} u T_{m ; i s} \nabla_{r} T_{r ; i s}-|T|^{2} u \\
& +2\left(t_{0}-t\right) T_{m ; i s} \nabla_{l} T_{m ; i s} \nabla_{l} u \\
& =\int_{M}-2\left(t_{0}-t\right)\left(|\operatorname{div} T|^{2} u+\nabla_{m} u T_{m ; i s} \nabla_{r} T_{r ; i s}\right)-|T|^{2} u \\
& \quad+2\left(t_{0}-t\right) T_{m ; i s} \nabla_{l} T_{m ; i s} \nabla_{l} u \\
& =\int_{M}-2\left(t_{0}-t\right)\left(|\operatorname{div} T|^{2} u+\nabla_{m} u T_{m ; i s} \nabla_{r} T_{r ; i s}\right)-|T|^{2} u \\
& +2\left(t_{0}-t\right) T_{m ; i s} \nabla_{l} u\left(\nabla_{m} T_{l ; i s}+2 T_{l ; i r} T_{m ; r s}-2 T_{m ; i r} T_{l ; r s}+\frac{1}{4} R_{m l i s}\right. \\
& \left.\quad-\frac{1}{8} R_{m l a b} \Phi_{a b i s}\right) \\
& =\int_{M}-2\left(t_{0}-t\right)\left(|\operatorname{div} T|^{2} u+\nabla_{m} u T_{m ; i s} \nabla_{r} T_{r ; i s}\right)-|T|^{2} u \\
& \quad+2\left(t_{0}-t\right)\left(T_{m ; i s} \nabla_{l} u \nabla_{m} T_{l ; i s}+2 T_{m ; i s} \nabla_{l} u T_{l ; i r} T_{m ; r s}-2 T_{m ; i s} \nabla_{l} u T_{m ; i r} T_{l ; r s}\right. \\
& \left.\quad+T_{m ; i s} \nabla_{l} u \frac{1}{4} R_{m l i s}-\frac{1}{8} T_{m ; i s} \nabla_{l} u R_{m l a b} \Phi_{a b i s}\right)
\end{aligned}
$$

but, as previously,

1. $T_{m ; i s} T_{l ; i r} T_{m ; r s}=0$;
2. $T_{m ; i s} T_{m ; i r} T_{l ; r s}=0$;
3. $T_{m ; i s}\left(\frac{1}{4} R_{m l i s}-\frac{1}{8} R_{m l a b} \Phi_{a b i s}\right)=T_{m ; i s} R_{m l i s}$,

SO

$$
\begin{aligned}
& \frac{d}{d t} \Theta=\int_{M}-2\left(t_{0}-t\right)\left(|\operatorname{div} T|^{2} u+\nabla_{m} u T_{m ; i s} \nabla_{r} T_{r ; i s}\right)-|T|^{2} u \\
& \quad \quad+2\left(t_{0}-t\right)\left(T_{m ; i s} \nabla_{l} u \nabla_{m} T_{l ; i s}+T_{m ; i s} \nabla_{l} u R_{m l i s}\right) \\
& =\int_{M}-2\left(t_{0}-t\right)\left(|\operatorname{div} T|^{2} u+\nabla_{m} u T_{m ; i s} \nabla_{r} T_{r ; i s}\right)-|T|^{2} u \\
& -2\left(t_{0}-t\right) \int_{M} \nabla_{m} T_{m ; i s} \nabla_{l} u T_{l ; i s}+T_{m ; i s} \nabla_{m} \nabla_{l} u T_{l ; i s} \\
& -2\left(t_{0}-t\right) \int_{M} \nabla_{l} T_{m ; i s} u R_{m l i s}+T_{m ; i s} u \nabla_{l} R_{m l i s} \\
& =\int_{M}-2\left(t_{0}-t\right)\left(|\operatorname{div} T|^{2} u+2 \nabla_{m} u T_{m ; i s} \nabla_{r} T_{r ; i s}\right)-|T|^{2} u \\
& -2\left(t_{0}-t\right) \int_{M} T_{m ; i s} \nabla_{m} \nabla_{l} u T_{l ; i s} \\
& - \\
& -\left(t_{0}-t\right) \int_{M} u R_{m l i s}\left(\nabla_{l} T_{m ; i s}-\nabla_{m} T_{l ; i s}\right) \\
& -2\left(t_{0}-t\right) \int_{M} T_{m ; i s} u \nabla_{l} R_{m l i s} \\
& =\int_{M}-2\left(t_{0}-t\right)\left(|\operatorname{div} T|^{2} u+2 \nabla_{m} u T_{m ; i s} \nabla_{r} T_{r ; i s}\right)-|T|^{2} u \\
& -2\left(t_{0}-t\right) \int_{M} T_{m ; i s} \nabla_{m} \nabla_{l} u T_{l ; i s} \\
& -\left(t_{0}-t\right) \int_{M} u R_{m l i s}\left(2 T_{l ; i r} T_{m ; r s}-2 T_{m ; i r} T_{l ; r s}+\frac{1}{4} R_{m l i s}-\frac{1}{8} R_{m l a b} \Phi_{a b i s}\right) \\
& -2\left(t_{0}-t\right) \int_{M} T_{m ; i s} u \nabla_{l} R_{m l i s} \\
& \left.=\int_{M}-2\left(t_{0}-t\right)\left(|\operatorname{div} T|^{2} u-2\langle\operatorname{div} T, \nabla f\lrcorner T\right\rangle u\right) \\
& -2\left(t_{0}-t\right) \int_{M}\left(\nabla_{m} \nabla_{l} u+\frac{u g_{m l}}{2\left(t_{0}-t\right)}\right) T_{m ; i s} T_{l ; i s} \\
& -\left(t_{0}-t\right) \int_{M} u R_{m l i s}\left(2 T_{l ; i r} T_{m ; r s}-2 T_{m ; i r} T_{l ; r s}+\frac{1}{4} R_{m l i s}-\frac{1}{8} R_{m l a b} \Phi_{a b i s}\right) \\
& -2\left(t_{0}-t\right) \int_{M} T_{m ; i s} u \nabla_{l} R_{m l i s} \\
& \left.\left.=\int_{M}-2\left(t_{0}-t\right)\left(|\operatorname{div} T|^{2} u-2\langle\operatorname{div} T, \nabla f\lrcorner T\right\rangle u+\mid f\right\lrcorner\left.T\right|^{2} u\right) \\
& -2\left(t_{0}-t\right) \int_{M}\left(\nabla_{m} \nabla_{l} u-\frac{\nabla_{m} u \nabla_{l} u}{u}+\frac{u g_{m l}}{2\left(t_{0}-t\right)}\right) T_{m ; i s} T_{l ; i s} \\
& \\
& -
\end{aligned}
$$

$$
\begin{aligned}
& -\left(t_{0}-t\right) \int_{M} u R_{m l i s}\left(2 T_{l ; i r} T_{m ; r s}-2 T_{m ; i r} T_{l ; r s}+\frac{1}{4} R_{m l i s}-\frac{1}{8} R_{m l a b} \Phi_{a b i s}\right) \\
& -2\left(t_{0}-t\right) \int_{M} T_{m ; i s} u \nabla_{l} R_{m l i s},
\end{aligned}
$$

and we obtain the formula we wish for.
Theorem 5.2 (almost monotonicity formula). [12, Theorem 5.2]
Let $\{\Phi(t)\}$ be a solution of the harmonic $\operatorname{Spin}(7)$-flow (HF) on $\left(M^{8}, g\right)$.

1. If M is compact, then, for any $0<\tau_{1}<\tau_{2}<t_{0}$, there exist K_{1}, $K_{2}>0$ depending only on the geometry of (M, g) such that

$$
\Theta\left(\Phi\left(\tau_{2}\right)\right) \leq K_{1} \Theta\left(\Phi\left(\tau_{1}\right)\right)+K_{2}\left(\tau_{1}-\tau_{2}\right)(E(0)+1)
$$

2. When $(M, g)=\left(\mathbb{R}^{8}, g_{\text {Eucl }}\right)$, then, for any $x_{0} \in \mathbb{R}^{8}$ and $0 \leq \tau_{1}<\tau_{2}$ we have

$$
\Theta\left(\Phi\left(\tau_{2}\right)\right) \leq \Theta\left(\Phi\left(\tau_{1}\right)\right)
$$

Proof. We sketch the proof following [11, Theorem 5.3].

1. The following equation is a direct adaptation of [11, Lemma 5.2], using the $\operatorname{Spin}(7)$-Bianchi identity (2.13):

$$
\begin{align*}
& \left.\left.\frac{d}{d t} \Theta_{\left(x_{0}, t_{0}\right)}(\Phi(t))=-2\left(t_{0}-t\right) \int_{M} \right\rvert\, \operatorname{div} T-\nabla f\right\lrcorner\left. T\right|^{2} u \\
& -2\left(t_{0}-t\right) \int_{M}\left(\nabla_{m} \nabla_{l} u-\frac{\nabla_{m} u \nabla_{l} u}{u}+\frac{u g_{m l}}{2\left(t_{0}-t\right)}\right) T_{m ; i s} T_{l ; i s} \\
& -\left(t_{0}-t\right) \int_{M} u R_{m l i s}\left(2 T_{l ; i r} T_{m ; r s}-2 T_{m ; i r} T_{l ; r s}+\frac{1}{4} R_{m l i s}\right. \\
& \left.-\frac{1}{8} R_{m l a b} \Phi_{a b i s}\right)-2\left(t_{0}-t\right) \int_{M} T_{m ; i s} u \nabla_{l} R_{m l i s} . \tag{5.2}
\end{align*}
$$

2. The third and fourth terms of Lemma (5.1) are bounded by

$$
C(1+\Theta(\Phi(t)))
$$

due to the bounded geometry of (M, g), Young's inequality and $\int_{M} u=1$.

For the second term of Lemma (5.1), use [17] and the decreasing of $E(\Phi(t))$ along the harmonic $\operatorname{Spin}(7)$-flow to bound it by

$$
C\left(E(\Phi(0))+\log \frac{B}{\left(t_{0}-t\right)^{4}} \Theta(\Phi(t))\right)
$$

so that

$$
\begin{aligned}
\frac{d}{d t} \Theta(\Phi(t)) \leq & \left.-2\left(t_{0}-t\right) \int_{M} \mid \operatorname{div} T-\nabla f\right\lrcorner\left. T\right|^{2} u \\
& +C_{1}\left(1+\log \left(\frac{B}{\left(t_{0}-t\right)^{4}}\right)\right) \Theta(\Phi(t))+C_{2}(1+E(\Phi(0))) .
\end{aligned}
$$

To control the logarithmic term, let $\xi(t)$ be any function satisfying

$$
\xi^{\prime}(t)=1+\log \frac{B}{\left(t_{0}-t\right)^{4}}
$$

The claim is then obtained by integration over $\left[t_{0}-1, t_{0}[\right.$ of

$$
\frac{d}{d t}\left[e^{-C_{1} \xi(t)} \Theta(\Phi(t))\right] \leq K(E(\Phi(0))+1)
$$

3. On $\left(M^{8}, g\right)=\left(\mathbb{R}^{8}, g_{\text {Eucl }}\right)$, the backward heat kernel is

$$
u(x, t)=\frac{1}{\left(4 \pi\left(t_{0}-t\right)\right)^{4}} \exp \left\{-\frac{\left|x-x_{0}\right|^{2}}{4\left(t_{0}-t\right)}\right\}
$$

so indeed $\frac{d}{d t} \Theta(\Phi(t)) \leq 0$.

There exists a more direct and cost-effective to obtain a decreasing quantity from $|T|^{2}$, though its importance remains uncertain.

Lemma 5.3 (a simpler monotonicity formula). Put $\epsilon(t)=|T|^{2}$ and consider the function

$$
Z(t)=\left(t_{\max }-t\right) \int_{M} \epsilon k \operatorname{vol}_{\mathrm{g}}, \quad 0 \leq t<t_{\max }
$$

where k is any (positive) solution of the backward heat equation $\partial_{t} k=-\Delta k$ on $M_{t_{\text {max }}}$. Then

$$
Z(t) \leq Z(0) e^{C t}
$$

for $0 \leq t \leq \delta($ from DTE).

Proof. Since

$$
\partial_{t} Z=-\int_{M} \epsilon k+\left(t_{\max }-t\right) \int_{M} k \partial_{t} \epsilon+\epsilon \partial_{t} k .
$$

By self-adjointness of the Laplacian and the 'reaction-diffusion' Bochner formula of Equation (4.1), the second integral satisfies the following upper bound:

$$
\begin{aligned}
\int_{M} k \partial_{t} \epsilon+\epsilon \partial_{t} k & =\int_{M} k \partial_{t} \epsilon-\epsilon \Delta k=\int_{M} k \partial_{t} \epsilon-k \Delta \epsilon \\
& =\int_{M} k\left(\partial_{t} \epsilon-\Delta \epsilon\right) \\
& \leq \int_{M} k\left(C_{1} \epsilon+C_{2} \epsilon^{2}\right)
\end{aligned}
$$

and therefore

$$
\partial_{t} Z \leq C_{1} Z(t)+\left(t_{\max }-t\right) \int_{M} k \epsilon\left(C_{2} \epsilon\right), \quad 0 \leq t<t_{\max }
$$

Then by DTE, we have

$$
C_{2} \epsilon(x, t) \leq C_{2} \mathcal{T}(t) \leq 2 C_{2} \mathcal{T}(0)=C_{0}
$$

SO

$$
\begin{aligned}
\partial_{t} Z & \leq C_{1} Z(t)+\left(t_{\max }-t\right) \int_{M} k \epsilon\left(C_{2} \epsilon\right) \\
& \leq C_{1} Z(t)+C_{0}\left(t_{\max }-t\right) \int_{M} k \epsilon \\
& \leq C Z(t)
\end{aligned}
$$

SO

$$
Z(t) \leq Z(0) e^{C t}
$$

Definition 5.4. Let $\left(M^{8}, \Phi, g\right)$ be a compact manifold with a $\operatorname{Spin}(7)$ structure. Let $u_{(x, t)}(y, s)=u_{(x, t)}^{g}(y, s)$ be the backward heat kernel, starting from $\delta(x, t)$ as $s \rightarrow t$. For $\sigma>0$ we define

$$
\begin{equation*}
\lambda(\Phi, \sigma)=\max _{(x, t) \in M \times(0, \sigma]}\left\{t \int_{M}\left|T_{\Phi}\right|^{2}(y) u_{(x, t)}(y, 0) \operatorname{vol}_{g}\right\} . \tag{5.3}
\end{equation*}
$$

One should think of σ as the "scale" at which we are analyzing the flow. Since M is compact, the maximum in (5.3) is achieved.

We can now state the ε-regularity theorem for the harmonic $\operatorname{Spin}(7)-$ flow.

Theorem 5.5 (ε-regularity). [12, Theorem 5.5] Let $\left(M^{8}, g\right)$ be compact and $E_{0}>0$. There exist $\varepsilon, \bar{\rho}>0$ such that, for every $\rho \in(0, \bar{\rho}]$, there exist $r \in(0, \rho)$ and $C<\infty$ such that the following holds:

Suppose $\{\Phi(t)\}_{t \in\left[0, t_{0}\right)}$ is a solution of the harmonic $\operatorname{Spin}(7)$-flow (HF), with induced metric g, satisfying $E(\Phi(0)) \leq E_{0}$. Whenever

$$
\Theta_{\left(x_{0}, t_{0}\right)}\left(\Phi\left(t_{0}-\rho^{2}\right)\right)<\varepsilon, \quad \text { for some } x_{0} \in M,
$$

then, setting $\Lambda_{r}(x, t)=\min \left(1-r^{-1} d_{g}\left(x_{0}, x\right), \sqrt{1-r^{-2}\left(t_{0}-t\right)}\right)$, we have

$$
\Lambda_{r}(x, t)\left|T_{\Phi}(x, t)\right| \leq \frac{C}{r}, \quad \forall(x, t) \in B\left(x_{0}, r\right) \times\left[t_{0}-r^{2}, t_{0}\right] .
$$

An immediate corollary of the ε-regularity theorem is the following result, which states that if the entropy of the initial $\operatorname{Spin}(7)$-structure is small then the torsion is controlled at all times. Again, the proof is similar to [11, Cor. 5.8].

Corollary 5.6 (small initial entropy controls torsion). [12, Corollary 5.6] Let $\{\Phi(t)\}$ be a solution of the harmonic $\operatorname{Spin}(7)$-flow (HF) on compact (M, g), starting at Φ_{0}. For every $\sigma>0$, there exist $\varepsilon, t_{0}>0$ and $C<\infty$ such that, if Φ_{0} induces g and its entropy (5.3) satisfies

$$
\lambda\left(\Phi_{0}, \sigma\right)<\varepsilon,
$$

then

$$
\max _{M}\left|T_{\Phi(t)}\right| \leq \frac{C}{\sqrt{t}} .
$$

Theorem 5.7 (small initial torsion gives long-time existence). [12, Theorem 5.9] Let $\left(M, \Phi_{0}, g\right)$ be a compact $\operatorname{Spin}(7)$-structure manifold. For
every $\delta>0$, there exists $\varepsilon(\delta, g)>0$ such that, if $\left|T_{\Phi_{0}}\right|<\varepsilon$, then a harmonic $\operatorname{Spin}(7)$-flow (HF) starting at Φ_{0} exists for all time and converges subsequentially smoothly to a $\operatorname{Spin}(7)$-structure Φ_{∞} such that

$$
\operatorname{div} T_{\Phi_{\infty}}=0, \quad\left|T_{\Phi_{\infty}}\right|<\delta
$$

Sketch of proof. 1) If $\left|T_{\Phi_{0}}\right|<\varepsilon_{0}$ then by the (DTE) there exists $\delta>0$ such that

$$
\begin{equation*}
t_{*}:=\max \left\{t \geq 0:\left|T_{\Phi(t)}\right| \leq 2 \varepsilon_{0}\right\}>\delta . \tag{5.4}
\end{equation*}
$$

2) If $t_{*}<\infty$ then the Shi-type estimates on $] t_{*}-\delta, t_{*}[$ would imply

$$
\begin{equation*}
\left|\nabla T_{\Phi\left(t_{*}\right)}\right|<c_{0} . \tag{5.5}
\end{equation*}
$$

3) But our flow is the negative gradient so $E\left(\Phi\left(t_{*}\right)\right) \leq E\left(\Phi_{0}\right)$ so we can invoke the interpolation lemma (which is a static result): If $|\nabla T| \leq C$ and no collapsing, i.e.

$$
\operatorname{vol}_{\mathrm{g}}(B(x, r)) \geq v_{0} r^{8}, \text { for } 0<r \leq 1,
$$

for some constant $v_{0}(M, g)>0$, then, for every $\varepsilon>0$, there exists $\delta\left(\varepsilon, C, v_{0}\right) \geq 0$ such that, if $E(\Phi)<\delta$ then $|T|<\varepsilon$.
4) Conclude taking $\varepsilon<\min \left(\varepsilon_{0}, \gamma_{2 \varepsilon_{0}}\right.$ so that $\left|\nabla T_{\Phi\left(t_{*}\right)}\right|<\varepsilon_{0}$ implies $\left|T\left(t_{*}\right)\right|<$ $2 \varepsilon_{0}$ which contradicts the maximality of t_{*} and forces $t_{*}=+\infty$.
5) If Λ is the first eigenvalue of the Laplacian on 2 -forms we can easily show that (cf. [12, Lemma 5.7])

$$
\frac{d^{2}}{d t^{2}} E(\Phi(t)) \geq \int_{M}\left(\Lambda-3|T|^{2}\right)|\operatorname{div} T|^{2},
$$

so if $|T|^{2} \leq \frac{\Lambda}{6}$

$$
\frac{d}{d t} \int_{M}\left|\operatorname{div} T_{\Phi(t)}\right|^{2}=-\frac{d^{2}}{d t^{2}} E(\Phi(t)) \leq-\frac{\Lambda}{2} \int_{M}\left|\operatorname{div} T_{\Phi(t)}\right|^{2}
$$

If we take $\varepsilon<\min \left(\varepsilon_{0}, \gamma_{2 \varepsilon_{0}}, \gamma_{\sqrt{\frac{\Lambda}{6}}}\right)$ then we obtain the decay estimate

$$
\begin{equation*}
\int_{M}\left|\operatorname{div} T_{\Phi(t)}\right|^{2} \leq e^{-\frac{\Lambda t}{2}} \int_{M}\left|\operatorname{div} T_{\Phi(0)}\right|^{2}, \quad \forall t \geq 0 \tag{5.6}
\end{equation*}
$$

6) Take $s_{1}<s_{2}$ and integrate to obtain

$$
\begin{align*}
\int_{M}\left|\Phi\left(s_{2}\right)-\Phi\left(s_{1}\right)\right| & \leq \int_{M} \int_{s_{1}}^{s_{2}}\left|\partial_{t} \Phi(s)\right| d s=\int_{s_{1}}^{s_{2}} \int_{M}\left|\operatorname{div} T_{\Phi(s)}\right| d s \\
& \leq c \int_{s_{1}}^{s_{2}}\left(\int_{M}\left|\operatorname{div} T_{\Phi(s)}\right|^{2}\right)^{\frac{1}{2}} d s \tag{5.7}\\
& \leq c \int_{s_{1}}^{s_{2}} e^{-\frac{\Lambda s}{4}} d s .
\end{align*}
$$

7) $\Phi(t)$ converges in L^{1} to Φ_{∞}.
8) The uniform bound on T combined with Shi-type estimates gives estimates on all $\left|\nabla^{m} T\right|$ and smooth convergence to Φ_{∞}.
9) The exponential decay of the integrals implies that $\operatorname{div} T_{\Phi_{\infty}}=0$, and by the interpolation lemma, we also achieve that $\left|T_{\Phi_{\infty}}\right|<\delta$.

Theorem 5.8 (small entropy gives long-time existence). [12, Theorem 5.10] On a compact $\operatorname{Spin}(7)$-structure manifold $\left(M, \Phi_{0}, g\right)$, there exist constants $C_{k}(M, g)<+\infty$, such that the following holds. For each $\varepsilon>0$ and $\sigma>0$, there exists $\lambda_{\varepsilon}(g, \sigma)>0$ such that, if the entropy (5.3) satisfies

$$
\begin{equation*}
\lambda\left(\Phi_{0}, \sigma\right)<\lambda_{\varepsilon}, \tag{5.8}
\end{equation*}
$$

then the torsion becomes eventually pointwise small along the harmonic Spin(7)-flow (HF) starting at Φ_{0}. Therefore the flow exists for all time and subsequentially converges to a $\operatorname{Spin}(7)$-structure Φ_{∞} such that

$$
\operatorname{div} T_{\Phi_{\infty}}=0, \quad\left|T_{\Phi_{\infty}}\right|<\varepsilon \quad \text { and } \quad\left|\nabla^{k} T_{\Phi_{\infty}}\right|<C_{k}, \forall k \geq 1 .
$$

Sketch of proof. 1) λ_{ε} small enough implies $|T| \leq \frac{C}{\sqrt{t}}$ for all $t \leq \tau$.
2) Shi-type estimates imply $|\nabla T(\tau)|<C^{\prime}$.
3) Interpolation lemma: $\forall \epsilon>0$, for small enough $\lambda_{\varepsilon},|T(\tau)|<\epsilon$.
4) Small $|T(\tau)|$ implies long-time existence.
5) We conclude as with the previous result.

Let ε and $\bar{\rho}$ be the quantities from the ε-regularity Theorem 5.5. We define the singular set of the flow by

$$
\begin{equation*}
S=\left\{x \in M: \Theta_{(x, \tau)}\left(\Phi\left(\tau-\rho^{2}\right)\right) \geq \varepsilon, \text { for all } \rho \in(0, \bar{\rho}]\right\} . \tag{5.9}
\end{equation*}
$$

The following lemma explains why S is called the singular set of the flow.
Lemma 5.9. The harmonic $\operatorname{Spin}(7)$-flow $\{\Phi(t)\}_{t \in[0, \tau)}$ restricted to $M \backslash S$ converges as $t \rightarrow \tau$, smoothly and uniformly away from S, to a smooth harmonic $\operatorname{Spin}(7)$-structure $\Phi(\tau)$ on $M \backslash S$. Moreover, for every $x \in S$, there is a sequence $\left(x_{i}, t_{i}\right) \rightarrow(x, \tau)$ such that

$$
\lim _{i}\left|T_{\Phi}\left(x_{i}, t_{i}\right)\right|=\infty
$$

Thus, S is indeed the singular set of the flow.
Theorem 5.10 (Hausdorff measure of the singularity set). [12, Theorem D]

$$
\begin{equation*}
E\left(\Phi_{0}\right)=\frac{1}{2} \int_{M}\left|T_{\Phi_{0}}\right|^{2} \operatorname{vol}_{g} \leq E_{0} \tag{5.10}
\end{equation*}
$$

Suppose that the maximal smooth harmonic $\operatorname{Spin}(7)$-flow $\{\Phi(t)\}_{t \in[0, \tau)}$ starting at Φ_{0} blows up at time $\tau<+\infty$. Then, as $t \rightarrow \tau$, (HF) converges smoothly to a $\operatorname{Spin}(7)$-structure $\operatorname{Spin}(7)_{\tau}$ away from a closed set S, with finite 6-dimensional Hausdorff measure satisfying

$$
\mathcal{H}^{6}(S) \leq C E_{0}
$$

for some constant $C<\infty$ depending on g. In particular, the Hausdorff dimension of S is at most 6 .

Sketch of proof. The proof relies on the following computation:

$$
\begin{aligned}
\varepsilon \mathcal{H}^{6}(S)=\int_{S} \varepsilon d \mathcal{H}^{6}(x) & \leq \int_{S} \Theta\left(\Phi\left(\tau-\rho^{2}\right)\right) d \mathcal{H}^{6}(x) \\
& \leq \int_{S} \int_{M} \rho^{2}|T|^{2} u d \mathcal{H}^{6}(x) \\
& \leq \int_{M} \rho^{2}|T|^{2} u \\
& \leq C \int_{M}|T|^{2} \\
& \leq C E_{0}
\end{aligned}
$$

Acknowledgements

This work benefited from the projects CAPES-COFECUB MA 898/18, MathAmSud "Special geometries and moduli spaces" and PRCI ANRFAPESP Bridges: ANR-21-CE40-0017/Fapesp 2021/04065-6.

References

[1] D. Alekseevskij, Riemannian spaces with exceptional holonomy groups, Funct. Anal. Appl. 2(1968), 97-105.
[2] D. Alekseevsky, I. Chrysikos, A. Fino and A. Raffero, Homogeneous 8-manifolds admitting invariant $\operatorname{Spin}(7)$-structures, Int. J. Math. 31(2020), No. 8.
[3] B. Andrews and C. Hopper, The Ricci flow in Riemannian geometry: A complete proof of the differentiable 1/4-pinching sphere theorem, Vol. 2011 of Lecture Notes in Mathematics, Springer, Heidelberg, 2011.
[4] P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, London Math. Soc. Monogr. No. 29, Oxford University Press, 2003.
[5] E. Bonan, Sur des variétés riemanniennes à groupe d'holonomie G_{2} ou $\operatorname{Spin}(7)$, C. R. Acad. Sci., Paris, Sér. A 262(1966), 127-129.
[6] E. Bonan, Sur les G-structures de type quaternionien, Cah. Topologie Géom. Différ. Catégoriques 9(1967), 389-463.
[7] E. Bonan, Connections for Riemannian manifolds with structure group G_{2} ou $\operatorname{Spin}(7)$, C. R. Math. Acad. Sci., Paris, Sér. A 343(2006), 755-758.
[8] R. L. Bryant, Metrics with exceptional holonomy, Ann. Math. (2) 126(1987), 525-576.
[9] R. L. Bryant and S. M. Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58(1989), 829-850.
[10] A. Clarke and G. Oliveira, Spin(7)-instantons from evolution equations, J. Geom. Anal. 31(2021), 4328-4355.
[11] S. Dwivedi, P. Gianniotis, and S. Karigiannis, A gradient flow of isometric G_{2}-structures, J. Geom. Anal. 31(2021), No. 2, 18551933.
[12] S. Dwivedi, E. Loubeau, and H. Sa Earp, Harmonic flow of Spin(7)-structures, Annali della Scuola Normale Superiore di Pisa, accepted.
[13] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, American Journal of Mathematics 86(1964), 109-160.
[14] M. Fernández, A classification of Riemannian manifolds with structure group Spin(7), Ann. Mat. Pura Appl. 143(1986), No 4, 101-122.
[15] L. Foscolo, Complete noncompact Spin(7)-manifolds from self-dual Einstein 4-orbifolds, Geom. Topol. 25(2021), 339-408.
[16] R. S. Hamilton, Monotonicity formulas for parabolic flows on manifolds, Comm. Anal. Geom. 1(1993), No. 1, 127-137.
[17] R. S. Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117(1995), No. 3, 545-572.
[18] P. Ivanov and S. Ivanov, $S U(3)$-Instantons and $G_{2}, \operatorname{Spin}(7)-$ heterotic string solitons, Commun. Math. Phys. 259(2005), 79-102.
[19] D. D. Joyce, Compact Riemannian 7-manifolds with holonomy G_{2}, I and II, J. Diff. Geom. 43(1996), 291-328 and 329-375.
[20] D. D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000.
[21] S. Karigiannis, Flows of Spin(7)-structures, in: Differential geometry and its applications, World Sci. Publ., Hackensack, NJ, 2008, pp. 263-277.
[22] H. B. Lawson and M. L. Michelsohn, Spin Geometry, Princeton Mathematical Series, 1989.
[23] J. D. Lotay and Y. Wei, Laplacian flow for closed G_{2}-structures: Shi-type estimates, uniqueness and compactness, Geom. Funct. Anal. 27(2017), No. 1, 165-233.
[24] D. Fadel, E. Loubeau, A. J. Moreno and H. Sa Earp, Flows of geometric structures, arXiv:2211.05197.
[25] A. Kovalev, Asymptotically cylindrical manifolds with holonomy Spin(7) I, arXiv:1309.502\%.
[26] E. Loubeau and H. Sa Earp, Harmonic flow of geometric structures, Ann. Global Anal. Geom. 64(2023).
[27] L. Martín-Merchán, Spinorial classification of Spin(7)-structures, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 21(2020), 873-910.
[28] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J. 13(1966), 459-469.
[29] V. E. Papoulias, $\operatorname{Spin}(7)-$ Instantons and Hermitian Yang-Mills connections for the Stenzel metric, Commun. Math. Phys. 384(2021), 2009-2066.
[30] Y. Tanaka, A construction of $\operatorname{Spin}(7)$-instantons, Ann. Global Anal. Geom. 42(2021), 495-521.
[31] V. S. Varadarajan, $\operatorname{Spin}(7)$-Subgroups of $\operatorname{SO}(8)$ and $\operatorname{Spin}(8)$, Expo. Math. 19(2001), 163-177.
[32] T. Walpuski, Spin(7)-Instantons, Cayley submanifolds and Fueter sections, Commun. Math. Phys. 352(2017), 1-36.

[^0]: Email: loubeau@univ-brest.fr

