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The analysis of the harmonic-Spin(7) flow
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Abstract. The group Spin(7) belongs to the list of possible holon-
omy of an eight-dimensional Riemannian manifold. The weaker no-
tion of Spin(7)-structures plays for manifolds with holonomy Spin(7),
the analogue of almost Hermitian for Kähler manifolds. As part of a
more general scheme, a notion of harmonicity of Spin(7)-structures
is developed with the objective of comparing isometric Spin(7)-
structures among themselves. We present here an account of our
study in [12] of the harmonic flow of Spin(7)-structures and its ana-
lytical properties.
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1 Introduction

At the confluence of holonomy theory and harmonic maps lies the
calculus of variations for geometric structures. The catalogue of holon-
omy groups Hol(M, g) of an irreducible non-symmetric simply-connected
n-dimensional Riemannian manifold is rather brief: SO(n) (generic), U(n2 )
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(Kähler), SU(n2 ) (Calabi-Yau), Sp(n4 ) (HyperKähler), Sp(1)Sp(n4 ) (Quater-
nionic Kähler), G2 (n = 7) and Spin(7) (n = 8). Its main repercussion
is on the symmetries of the curvature tensor which then must live in the
Lie algebra Hol(M, g), so that Calabi-Yau, HyperKähler, G2 and Spin(7)

manifolds are Ricci flat. Our interest is with the last case. As explained in
[22], the Clifford algebra Cl7 is isomorphic to R[8]⊕R[8], so as the group
Spin(7) lives in Cl6, which is isomorphic to one of these two factors, it
admits one irreducible representation of dimension eight. Since it must
be unitary, Spin(7) can be seen as a 21-dimensional subgroup of SO(8)

(cf. [31] for an exposé on its conjugacy classes).
It has been know for quite a while [5, 6, 7] that holonomy in Spin(7)

is equivalent to the existence of a parallel 4-form Φ point-wise equal to

Φp =dx0123 − dx0167 − dx0527 − dx0563 − dx0415 − dx0426 − dx0437 + dx4567

− dx4523 − dx4163 − dx4127 − dx2637 − dx1537 − dx1526,

where dxijkl = dxi∧dxj ∧dxk ∧dxl (though there exist 480 different ways
to write down this Euclidean model on R8).

The group Spin(7) can then be thought of as the group of automor-
phisms of Φp. This geometry comes from the octonions, much like G2, and
has long been suspected to be an impostor waiting to be removed from the
list, as happened to Spin(9) with Alekseevsky [1].

The first examples of Riemannian manifolds with Spin(7) holonomy
are due to Bryant [8] in 1985 on open subsets of Euclidean spaces and
complete examples followed four years later [9] on the spinor bundle of
S4. For compact examples, we had to wait for Joyce in 1996 [19], and
a comprehensive account can be found in [20]. Foscolo [15] recently con-
structed complete non-compact Spin(7)-manifolds with arbitrarily large
second Betti number and infinitely many distinct families of asymptoti-
cally locally conical Spin(7)-metrics on the same smooth topological M8.
Kovalev [25] adapted in 2003 a conical asymptotical gluing argument to
obtain Spin(7)-manifolds from twisted connected sums. More explicit is
Salamon’s example of the product of R+ with the nearly-G2 manifold
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SO(5)/SO(3). Spin(7)-Manifolds are hard to find but they are interesting
for at least two other reasons:

a) One can define a higher gauge theory of Spin(7)-instantons with the
(still fairly remote) hope of defining moduli spaces and invariants,
and perhaps a (partial) classification of 8-dimensional manifolds.
These “twisted D-T instantons” are vector bundles with a connec-
tion A such that their curvature tensor FA lies in some (irreducible)
component Ω2

21 (cf. the next section for conventions and notations),
equivalently satisfies

FA ∧ Φ = ⋆FA.

See [10, 30] for some Spin(7)-instanton constructions.

b) Supersymmetry and string theory have invested a lot in of hope in
Spin(7)-manifolds to construct solutions to the gravitino and dilatino
equations [18].

However, all these constructions are hard but there exists the softer,
more abundant, notion of a Spin(7)-structure.

2 Spin(7)-structures

The best reference for this section, especially pertaining to flows, is
Karigiannis’ notes [21].

A Spin(7)-structure on an 8-dimensional manifold M is a reduction of
the structure group of the frame bundle Fr(M) to the Lie group Spin(7) ⊂
SO(8). From the point of view of differential geometry, a Spin(7)-structure
is a 4-form Φ on M . The existence of such a structure is (equivalent to)
a topological condition, cf. [22, Theorem 10.7]: the vanishing of the first
and second Stiefel-Whitney classes and, for some orientation

p21 − 4p2 + 8χ = 0.

The space of 4-forms which determine a Spin(7)-structure on M is a sub-
bundle A of Ω4(M), called the bundle of admissible 4-forms. This is not
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a vector subbundle and it is not even an open subbundle, unlike the case
for G2-structures.

A Spin(7)-structure determines a Riemannian metric and an orienta-
tion on M in a nonlinear way. Explicit formulas can be found in [21], they
are highly involved and it is hard to picture how they could be exploited.
But it is crucial to our approach that several Spin(7)-structures will give
rise to the same Riemannian metric, much like for the G2-case. The metric
and the orientation determine a Hodge star operator ⋆, and the 4-form is
self-dual, i.e., ⋆Φ = Φ.

Definition 2.1. Let ∇ be the Levi-Civita connection of the metric gΦ.
The pair (M,Φ) is a Spin(7)-manifold if ∇Φ = 0. This is a non-linear
partial differential equation for Φ, since ∇ depends on g, which in turn
depends non-linearly on Φ. A Spin(7)-manifold has Riemannian holonomy
contained in the subgroup Spin(7) ⊂ SO(8). Such a parallel Spin(7)-
structure is also called torsion-free.

2.1 Decomposition of the space of forms

The existence of a Spin(7)-structure Φ induces a decomposition of the
space of differential forms on M into irreducible Spin(7) representations.
We have the following orthogonal decomposition, with respect to gΦ:

Ω2 = Ω2
7 ⊕ Ω2

21, Ω3 = Ω3
8 ⊕ Ω3

48, Ω4 = Ω4
1 ⊕ Ω4

7 ⊕ Ω4
27 ⊕ Ω4

35,

where Ωk
l has pointwise dimension l. Explicitly, Ω2 and Ω3 are described

as follows:

Ω2
7 = {β ∈ Ω2 | ⋆(Φ ∧ β) = −3β}, Ω2

21 = {β ∈ Ω2 | ⋆(Φ ∧ β) = β},

and

Ω3
8 = {X⌟Φ | X ∈ Γ(TM)}, Ω3

48 = {γ ∈ Ω3 | γ ∧ Φ = 0}.

In local coordinates, these spaces of forms are described as, for β ∈ Ω2(M),

βij ∈ Ω2
7 ⇐⇒ βabΦabij = −6βij , (2.1)

βij ∈ Ω2
21 ⇐⇒ βabΦabij = 2βij (2.2)
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and, for γ ∈ Ω3(M),

γijk ∈ Ω3
8 ⇐⇒ γijk = XlΦijkl for some X ∈ Γ(TM), (2.3)

γijk ∈ Ω3
48 ⇐⇒ γijkΦijkl = 0. (2.4)

If π7 and π21 are the projection operators on Ω2, it follows from (2.1) and
(2.2) that

π7(β)ij =
1

4
βij −

1

8
βabΦabij ,

π21(β)ij =
3

4
βij +

1

8
βabΦabij .

Finally, for βij ∈ Ω2
21,

βabΦbpqr = βpiΦiqra + βqiΦirpa + βriΦipqa,

so Ω2
21 ≡ so(7) is the Lie algebra of Spin(7).

To describe Ω4 in local coordinates, we use the operator ⋄ for a (p, q)-
tensor ξ and A ∈ End(TM):

⋄ ξ : End(TM) → T p,q

A 7→A ⋄ ξ :=
d

dt

∣∣∣∣
t=0

etA.ξ.

Now, given A ∈ Γ(T ∗M ⊗ TM), define

A ⋄ Φ =
1

24
(AipΦpjkl +AjpΦipkl +AkpΦijpl +AlpΦijkp)dx

i ∧ dxj ∧ dxk ∧ dxl,

(2.5)

and hence

(A ⋄ Φ)ijkl = AipΦpjkl +AjpΦipkl +AkpΦijpl +AlpΦijkp. (2.6)

Recall that Γ(T ∗M ⊗ TM) = Ω0 ⊕ S0 ⊕Ω2, and Ω2 splits further orthog-
onally, so

Γ(T ∗M ⊗ TM) = Ω0 ⊕ S0 ⊕ Ω2
7 ⊕ Ω2

21.
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With respect to this splitting, we can write A = 1
8(trA)g+A0 +A7 +A21

where A0 is a symmetric traceless 2-tensor. The diamond contraction (2.6)
defines a linear map A 7→ A ⋄Φ, from Ω0 ⊕ S0 ⊕Ω2

7 ⊕Ω2
21 to Ω4(M). The

following proposition is proved in [21, Prop. 2.3].

Proposition 2.2. The kernel of the map A 7→ A ⋄Φ is isomorphic to the
subspace Ω2

21. The remaining three summands Ω0, S0 and Ω2
7 are mapped

isomorphically onto the subspaces Ω4
1, Ω4

35 and Ω4
7 respectively.

To understand Ω4
27, we need another characterization of the space of 4-

forms using the Spin(7)-structure. Following [21], we adopt the following:

Definition 2.3. On (M,Φ), define a Φ-equivariant linear operator ΛΦ on
Ω4 as follows. Let σ ∈ Ω4(M) and let (σ · Φ)ijkl = σijmnΦmnkl. Then

(ΛΦ(σ))ijkl =(σ · Φ)ijkl + (σ · Φ)iklj + (σ · Φ)iljk + (σ · Φ)jkil + (σ · Φ)jlki
+ (σ · Φ)klij .

Proposition 2.4. The spaces Ω4
1, Ω

4
7, Ω4

27 and Ω4
35 are all eigenspaces of

ΛΦ with distinct eigenvalues:

Ω4
1 = {σ ∈ Ω4 | ΛΦ(σ) = −24σ},

Ω4
27 = {σ ∈ Ω4 | ΛΦ(σ) = 4σ},

Ω4
7 = {σ ∈ Ω4 | ΛΦ(σ) = −12σ},

Ω4
35 = {σ ∈ Ω4 | ΛΦ(σ) = 0}.

Moreover, the decomposition of Ω4(M) into self-dual and anti-self-dual
parts is

Ω4
+ = {σ ∈ Ω4 | ⋆σ = σ} = Ω4

1 ⊕ Ω4
7 ⊕ Ω4

27, Ω4
− = {σ ∈ Ω4 | ⋆σ = −σ} = Ω4

35.

Before we discuss the torsion of a Spin(7)-structure, we note some con-
traction identities involving the 4-form Φ. In local coordinates {x1, · · · , x8},
the 4-form Φ is

Φ =
1

24
Φijkl dx

i ∧ dxj ∧ dxk ∧ dxl
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where Φijkl is totally skew-symmetric. We have the following identities, as
always summing on repeated indices, which encapsulate the symmetries of
a Spin(7)-structure

ΦijklΦabcl = giagjbgkc + gibgjcgka + gicgjagkb

− giagjcgkb − gibgjagkc − gicgjbgka

− giaΦjkbc − gibΦjkca − gicΦjkab

− gjaΦkibc − gjbΦkica − gjcΦkiab

− gkaΦijbc − gkbΦijca − gkcΦijab (2.7)

ΦijklΦabkl = 6giagjb − 6gibgja − 4Φijab (2.8)

ΦijklΦajkl = 42gia (2.9)

ΦijklΦijkl = 336. (2.10)

We also have contraction identities involving ∇Φ and Φ

(∇mΦijkl)Φabkl = −Φijkl(∇mΦabkl)− 4∇mΦijab

(∇mΦijkl)Φajkl = −Φijkl(∇mΦajkl)

(∇mΦijkl)Φijkl = 0.

We now describe the torsion of a Spin(7)-structure. Given X ∈ Γ(TM),
we know from [21, Lemma 2.10] that ∇XΦ lies in the subbundle Ω4

7 ⊂ Ω4.

Definition 2.5. The torsion tensor of a Spin(7)-structure Φ is the element
of Ω1

8 ⊗ Ω2
7 defined by expressing ∇Φ in the light of Proposition 2.2:

∇mΦijkl = (Tm ⋄ Φ)ijkl = Tm;ipΦpjkl + Tm;jpΦipkl + Tm;kpΦijpl + Tm;lpΦijkp

(2.11)

where Tm;ab ∈ Ω2
7, for each fixed m.

Directly in terms of ∇Φ, the torsion T is given by

Tm;ab =
1

96
(∇mΦajkl)Φbjkl (2.12)
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Remark 2.6. We remark that the notation Tm;ab should not be confused
with taking two covariant derivatives of Tm. The torsion tensor T is an
element of Ω1

8 ⊗ Ω2
7 and thus for each fixed index m, Tm;ab ∈ Ω2

7, but T is
not in Ω3.

Theorem 2.7. [14] The Spin(7)-structure Φ is torsion-free if, and only
if, dΦ = 0. Since ⋆Φ = Φ, this is equivalent to d∗Φ = 0.

Finally, the torsion satisfies a ‘Bianchi-type identity’. This was first
proved in [21, Theorem 4.2], using the diffeomorphism invariance of the
torsion tensor. A different proof can be found in [12, Theorem 3.9], using
the Ricci identity

∇k∇iXl −∇i∇kXl = −RkilmXm.

Theorem 2.8. The torsion tensor T satisfies the following ‘Bianchi-type
identity’

∇iTj;ab −∇jTi;ab = 2Ti;amTj;mb − 2Tj;amTi;mb +
1

4
Rjiab −

1

8
RjimnΦmnab.

(2.13)

Using the Riemannian Bianchi identity, we see that

RijklΦajkl = −(Rjkil +Rkijl)Φajkl = −RiljkΦaljk −RikjlΦakjl,

hence

RijklΦajkl = 0.

Using this and contracting (2.13) on j and b gives the expression for the
Ricci curvature of a metric induced by a Spin(7)-structure:

Rij = 4∇iTa;ja − 4∇aTi;ja − 8Ti;jbTa;ba + 8Ta;jbTi;ba. (2.14)

This also proves that the metric of a torsion-free Spin(7)-structure is Ricci-
flat, a result originally due to Bonan [5]. Taking the trace of (2.14) gives
the scalar curvature R:

R = 4∇iTa;ia − 4∇aTi;ia + 8|T |2 + 8Ta;jbTj;ba.
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Remark 2.9. 1. A classification of Spin(7)-structures was given by
Fernandez in [14] and a formulation in terms of spinors can be found
in [27].

2. Compact simply-connected Riemannian symmetric spaces cannot
carry any invariant Spin(7)-structures and the compact simply-connected
almost effective homogeneous space with invariant Spin(7)-structures

are SU(3)/{e}, some torus bundles over
(
SU(2)/U(1)

)×3
and the

Calabi-Eckmann SU(3)/SU(2)× SU(2).

3. Without requiring invariance of the structure, the 8-dimensional
compact simply-connected Riemannian symmetric spaces admitting
a Spin(7)-structures are SU(3), S3 × S3 × S2, S5 × S3, HP2, Gr2(C4)

and the Wolf space G2/SO(4) [2].

3 Harmonicity

The ultimate goal in Spin(7)-geometry is to find parallel structures.
Not only is it quite a difficult task involving a non-linear equation and
hard analysis but topological obstructions also apply.

An alternative strategy to finding the best among all possible Spin(7)-
structures is to introduce a variational problem, for example measuring
the default of parallelism, and search for minimisers.

This is the junction point between Spin(7)-geometry and harmonic
map theory, though the price to pay is we need to fix the metric, i.e. work
within the isometric class of Spin(7)-structures.

Definition 3.1. Two Spin(7)-structures Φ1 and Φ2 on M are called iso-
metric if they induce the same Riemannian metric, that is, if gΦ1 = gΦ2 .
We will denote by JΦK the space of Spin(7)-structures that are isometric
to a given Spin(7)-structure Φ.

Definition 3.2. Let Φ0 be a fixed initial Spin(7)-structure on M . The
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energy functional E on the set JΦ0K is

E(Φ) =
1

2

∫
M

|TΦ|2 volggΦ , (3.1)

where TΦ is the torsion of Φ.

Once the variational problem has been delineated, the next step is to
derive the corresponding Euler-Lagrange equation. We will call critical
points of E|JΦ0K harmonic Spin(7)-structures and work out the harmonic
equation for Spin(7)-structures and the corresponding isometric flow.

The main ingredient is the representation theory properties outlined
in the previous section and the recipe is to follow the treatment of the
G2 case in [26, Section 6], only slightly adapted to specific properties of
Spin(7)-geometry.

The link with harmonic map theory is the one-one correspondence
between Spin(7)-structures Φ and sections σ of an ad-hoc Spin(7)-twistor
bundle N , constructed as the Spin(7) quotient of the SO(8) frame bundle
of (M8, g). The fibres are isometric to RP7 and parametrise isometric
Spin(7)-structures on (M8, g).

To obtain the equation of harmonicity, one must first and foremost
identify the tangent space of fibres in order to be able to consider vertical
variations and compare (isometric) Spin(7)-structures among themselves.

The first constituent is the connection form f , which identifies the
vertical of the tangent bundle of the “twistor space” with m the (naturally
reductive) complement of so(7)(= spin(7)) in so(8). Sections of this space
correspond to Spin(7)-structures and restricting ourselves to the vertical
part means we only look at variations through Spin(7)-structures.

If Φ̃ is the universal Spin(7)-structure, a sort of ideal Spin(7)-structure
living a couple of fibre bundles above the manifold M (cf. [26] for partic-
ulars), then the connection form is characterised by

∇AΦ̃ = f(A).Φ̃.

Here f(A) is in m.
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We identify so(8) with Ω2 and m is then identified with Ω2
7.

Since Φ̃ is in Ω4 (of the appropriate space), the term f(A).Φ̃ should be
understood as the diamond operator of Equation (2.5), which is just the
derivation of the natural action of GL(8) by pulling back forms.

To obtain f we need to find an inverse of the ⋄ operator and to do
this introduce the triple contraction ⌟3 between two four-forms (we follow
notations and conventions of [21]):

If β = 1
2βijdx

i ∧ dxj then β ⋄ Φ ∈ Ω4 and put (β ⋄ Φ)⌟3Φ to be the
two-form defined by

(β ⋄ Φ)⌟3Φ =
1

2
((β ⋄ Φ)⌟3Φ)pqdxp ∧ dxq,

where
((β ⋄ Φ)⌟3Φ)pq = (β ⋄ Φ)pijkΦqijk.

Because we are interested in the case β = f(A) ∈ Ω2
7, we can use βabΦabij =

−6βij to compute that
(β ⋄ Φ)⌟3Φ = 96β.

Once we have this, the rest follows relatively easily, if one knows where
to pick information in [21]:

• The connection form is then given by

96f(A) = ∇AΦ̃⌟3Φ̃

and, since Spin(7)-structures Φ and sections σ : M → N of the
twistor space are related by Φ = Φ̃ ◦ σ, we can pull back the above
formula to obtain

f(dσ(X)) = 1
96(∇XΦ)⌟3Φ

which is precisely the torsion T (X) of (2.12) in the space Ω2
7.

• The (vertical) energy density of the section σ : M → N is

|dvσ|2 = |T |2,
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so the functional we take, the L2-norm of the torsion, is exactly the
Dirichlet energy of σ (at least up to an additive constant due to the
contribution of the horizontal part).

• The vertical tension field is

I(τv(σ)) =
8∑
1

∇ei(T (ei))− T (∇eiei) = div T.

• The flow of sections σt : M → N

dσt
dt

= τv(σt)

is equivalent to

I(
dσt
dt

) = I(τv(σt)),

where I plays the role of an extended f . We know that I(τv(σt)) =

div Tt and, generalising to M ×R (or at least on an interval) all the
previous objects, we have that

I(
dσt
dt

) = 1
96

dΦt

dt
⌟3Φt.

On the other hand, since div Tt is in Ω2
7

div Tt =
1
96(div Tt ⋄ Φt)⌟3Φt,

and ⌟3Φt is an isomorphism on Ω2
7 (its kernel is Ω2

21), we have the
isometric flow, with initial value:{

dΦ
dt = div T ⋄ Φ
Φ(0) = Φ0.

(HF)

Remark 3.3. • The div T equation is the vertical part of the har-
monic map equation of σ, which is known to admit short-time exis-
tence, so this property carries over to our heat flow.

• As (the fibres of) the target are isometric to the real seven-dimensional
projective space, they have positive sectional curvature, so there can
be no certainty about the long-time existence of the flow (cf. [13]).
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• Solitons of such flows are studied for a general group H in [12] and
[24].

4 Analysis of the flow I

This section develops tools for the analysis of the isometric flow of
Spin(7)-structures. Some proofs of the statements in this section have
appeared in full in [12] and we refer to them. Others were consequences of
more general arguments and here we present their Spin(7) versions, though
they are only adaptations of their G2 counterparts found in [11].

Let {∂t, e1, . . . , e7} be an orthonormal (geodesic) frame. First, we use
the formula

(R(ei, ej)T )(ea, eb, ec) =− T (R(ei, ej)ea, eb, ec)− T (ea, R(ei, ej)eb, ec)

− T (ea, eb, R(ei, ej)ec)

to derive a formula for the Laplacian of the torsion of a Spin(7)-structure.

Lemma 4.1. [12, Lemma 4.12] Let ∆ = tr∇ei∇ei be the Laplacian, then

(∆T )m;ab =∇m∇iTi;ab − Tq;abRimiq − Ti;qbRimaq − Ti;aqRimbq + 2∇iTi;apTm;bp

+ 2Ti;ap∇iTm;bp − 2∇iTm;apTi;bp − 2Tm;ap∇iTi;pb +
1
4∇iRmiab

− 1
8∇iRmipqΦpqab − 1

8Rmipq∇iΦpqab.

This allows us to compute a local expression for the evolution of the
torsion T .

Proposition 4.2. [12, Proposition 4.13] Let {Φt} be a solution of the har-
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monic Spin(7)-flow (HF), then its torsion evolves according to the equation

4
∂

∂t
Tm;is = 4(∆T )m;is

+∇aTm;bc

(
4Ta;bpΦpcis + Ta;ipΦbcps + Ta;spΦbcip

)
+ Tm;bc∇aTa;bpΦpcis

+ 3∇aTa;ipTm;ps +∇aTa;spTm;pi − 2Ta;ip∇aTm;sp + 2∇aTm;ipTa;sp

+ Tm;bcTa;bp

(
Ta;pqΦqcis + Ta;cqΦpqis + 2Ta;iqΦpcqs + 2Ta;sqΦpciq

)
+ 1

2Tm;bcTa;ip

(
Ta;pqΦbcqs + 2Ta;sqΦbcpq

)
+ 1

2Tm;bcTa;spTa;pqΦbciq

+ 4Tq;isRamaq − (∇aRmais − 1
2∇aRmapqΦpqis)

+ Ta;qsRamiq + Ta;iqRamsq +
1
8Rmapq∇aΦpqis − Ta;qcRambqΦbcis

− 1
16Rmapq∇aΦpqbcΦbcis.

But the real information is the evolution of the norm of the torsion.

Proposition 4.3. [12, Proposition 4.14] If {Φt} is a solution of the har-
monic Spin(7)-flow (HF), then the evolution equation for |T |2 is

2
∂

∂t
|T |2 = 2∆|T |2 − 4|∇T |2 + 16Ta;bpTm;bcTa;pqTm;qc + 16Ta;bpTm;bcTa;cqTm;pq

+ 16Ta;qsTm;isRamiq + 4Tq;isTm;isRamaq − 4Tm;is∇aRmais.

Both the doubling-time estimate and Shi-type estimates can be derived
from general properties of the harmonic flow of H-structures (cf. [24]) and
do not feature in [12] but proofs specific to Spin(7) can be written.

Lemma 4.4. [12, Corollary 4.9] There exists δ > 0 such that

T (t) ≤ 2T (0)

for all 0 ≤ t ≤ δ, where

T (t) = sup
M

|T (x, t)|

Proof. We follow the arguments of [11, Proposition 3.2] and adapt them
to the group Spin(7).
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Wlog, we can assume that |T | > 1. Then

∂

∂t
|T |2 = 2⟨∆T, T ⟩+ 2⟨∇T ∗ T ∗ Φ, T ⟩+ 2⟨T ∗ T ∗ T, T ⟩

+ 2⟨T ∗ ∇R ∗R ∗ Φ, T ⟩

= ∆|T |2 − 2|∇T |2 + 2⟨∇T ∗ T ∗ Φ, T ⟩+ 2⟨T ∗ T ∗ T, T ⟩

+ 2⟨T ∗ ∇R ∗R ∗ Φ, T ⟩

≤ ∆|T |2 − 2|∇T |2 + C|∇T ||T |2 + C|T |4 + C|T |2 + C|T |

because of the bounded geometry.
Use Young Inequality ab ≤ 1

2ϵa
2 + ϵ

2b
2 to get rid of the term |∇T ||T |2:

∂

∂t
|T |2 ≤ ∆|T |2 + (−2 + C

2ϵ)|∇T |2 + C(1 + ϵ
2)|T |

4 + C|T |2 + C|T |,

with ϵ large enough to ensure that (−2 + C
2ϵ) < 0.

Then, using |T | > 1, we obtain a formula similar to [11, (3.10)]

∂

∂t
|T |2 ≤ ∆|T |2 + (−2 + C

2ϵ)|∇T |2 + C(1 + ϵ
2)|T |

4 + C|T |2, (4.1)

and argue as in [11, page 22] with the maximal principle to get the DTE.

Shi-type estimates are crucial at several steps of our various arguments
in the next section. They essentially control higher-derivatives from a
bounds on the (norm of the) torsion and the geometry of the manifold.
A much more general version of these Shi-type estimates can be found in
[12].

Lemma 4.5 (Shi-type estimates). [12, Corollary 4.10] There exist con-
stants Cm such that if (∀j ∈ N)

|T | ≤ K and |∇jR| ≤ BjK
2+j

on M × [0, 1/K2] then (∀m ∈ N)

|∇mT | ≤ Cmt−
m
2 K.
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Remark 4.6. Note that this version has a conclusion valid over an interval
slightly larger than in [12], up to 1/K2 instead of 1/K4, but this has no
bearing on the issue.

Proof. We closely follow the proof by induction in [11], mutatis mutandis,
and only indicate the key steps and differences. We use the symbol ∗ to
denote various tensor contractions, the precise form of which is unimpor-
tant.

The base case of the induction:
We start with the evolution equation for ∇T :

∂

∂t
∇T = ∆∇T +∇(∇T ∗ T ∗ Φ) +∇T ∗ T ∗ T ∗ Φ+ T ∗ T ∗ T ∗ ∇Φ

+∇T ∗R+ T ∗ ∇R+∇2R ∗ Φ+∇R ∗ ∇Φ+∇R ∗ ∇Φ ∗ Φ+R ∗ ∇2Φ ∗ Φ

+R ∗ ∇Φ ∗ ∇Φ+∇T ∗R ∗ Φ+ T ∗ ∇R ∗ Φ+ T ∗R ∗ ∇Φ,

therefore

∂

∂t
|∇T |2 = ∆|∇T |2 − 2|∇2T |2

+ 2⟨∇T,∇(∇T ∗ T ∗ Φ) +∇T ∗ T ∗ T ∗ Φ+ T ∗ T ∗ T ∗ ∇Φ+∇T ∗R

+ T ∗ ∇R+∇2R ∗ Φ+∇R ∗ ∇Φ+∇R ∗ ∇Φ ∗ Φ+R ∗ ∇2Φ ∗ Φ

+R ∗ ∇Φ ∗ ∇Φ+∇T ∗R ∗ Φ+ T ∗ ∇R ∗ Φ+ T ∗R ∗ ∇Φ⟩,

therefore

∂

∂t
|∇T |2 ≤∆|∇T |2 − 2|∇2T |2 + 2⟨∇T,∇(∇T ∗ T ∗ Φ)⟩

+ C|∇T |2|T |2 + C|∇T ||T |4 + C|∇T |2|R|+ C|∇T ||T ||∇R|

+ C|∇T ||∇2R|+ C|∇T ||T |2|R|.

Since, by assumption, |R| ≤ B0K
2, |∇R| ≤ B1K

3, |∇2R| ≤ B2K
4 and

|T | ≤ K we have

∂

∂t
|∇T |2 ≤ ∆|∇T |2 − 2|∇2T |2 + 2⟨∇T,∇(∇T ∗ T ∗ Φ)⟩+ CK2|∇T |2 + CK4|∇T |.
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As

⟨∇T,∇(∇T ∗ T ∗ Φ)⟩ ≤ CK|∇T ||∇2T |+ C|∇T |3 + CK2|∇T |2,

with Young Inequality we have

2CK|∇T ||∇2T | ≤ CK2

ϵ |∇T |2 + Cϵ|∇2T |2,

and

∂

∂t
|∇T |2 ≤ ∆|∇T |2 − (2− Cϵ)|∇2T |2 + CK2|∇T |2 + CK4|∇T |+ C|∇T |3.

(4.2)

The problem lies with the |∇T |3 term.
In local coordinates the expression of 4(∇T ∗ T ∗ Φ) is

4(∇T ∗ T ∗ Φ)m;is = ∇aTm;bc

(
4Ta;bpΦpcis + Ta;ipΦbcps + Ta;spΦbcip

)
+ Tm;bc∇aTa;bpΦpcis + 3∇aTa;ipTm;ps +∇aTa;spTm;pi − 2Ta;ip∇aTm;sp

+ 2∇aTm;ipTa;sp,

so the terms making up |∇T |3 are

i)4∇aTm;bc∇kTa;bpΦpcis∇kTm;is;

ii)∇aTm;bc∇kTa;ipΦbcps∇kTm;is;

iii)∇aTm;bc∇kTa;spΦbcip∇kTm;is;

iv)∇kTm;bc∇aTa;bpΦpcis∇kTm;is;

v)3∇aTa;ip∇kTm;ps∇kTm;is;

vi)∇aTa;sp∇kTm;pi∇kTm;is;

vii)− 2∇kTa;ip∇aTm;sp∇kTm;is;

viii)2∇aTm;ip∇kTa;sp∇kTm;is.

Using skew-symmetry and the Bianchi-type identity of Φ, the terms ii)
and vii) can be re-written:



120 E. Loubeau

ii)∇aTm;bc∇kTa;ipΦbcps∇kTm;is =
1
2∇kTa;ip∇kTm;isΦbcps(∇aTm;bc −∇mTa;bc)

= ∇T ∗ ∇T ∗ T ∗ T ∗ Φ+∇T ∗ ∇T ∗R ∗ Φ ∗ Φ;

vii)− 2∇kTa;ip∇aTm;sp∇kTm;is = −∇kTa;ip∇kTm;is(∇aTm;sp −∇mTa;sp)

= ∇T ∗ ∇T ∗ T ∗ T +∇T ∗ ∇T ∗R ∗ Φ.

Exchanging i and s we have that the term iii) equals ii) and the term
viii) equals the term vii), while vi) is the opposite of v).

Since Tm;is is in Ω2
7, the term iv) can be re-written

iv)∇kTm;bc∇aTa;bpΦpcis∇kTm;is = ∇kTm;bc∇aTa;bp(∇k(ΦpcisTm;is)−∇kΦpcisTm;is)

= ∇kTm;bc∇aTa;bp(−6∇k(Tm;pc)−∇kΦpcisTm;is)

= −∇kTm;bc∇aTa;bp∇kΦpcisTm;is

= ∇T ∗ ∇T ∗ T ∗ ∇Φ.

We do a similar thing to the first term (forgetting the factor 4):

i)∇aTm;bc∇kTa;bpΦpcis∇kTm;is = ∇aTm;bc∇kTa;bp(∇k(ΦpcisTm;is)−∇kΦpcisTm;is)

= −6∇aTm;bc∇kTa;bp∇kTm;pc +∇T ∗ ∇T ∗ T ∗ T,

and exchanging a and m and then b and c, we have

2∇aTm;bc∇kTa;bp∇kTm;pc = ∇kTa;bp∇kTm;pc(∇aTm;bc −∇mTa;bc),

so we can use the Bianchi-type equality again.
In conclusion, the terms leading to the problematic term |∇T |3 can be

re-written in terms of the type:

∇T ∗ ∇T ∗ T ∗ T +∇T ∗ ∇T ∗R ∗ Φ+∇T ∗ ∇T ∗ T ∗ T ∗ Φ

+∇T ∗ ∇T ∗R ∗ Φ ∗ Φ+∇T ∗ ∇T ∗ T ∗ ∇Φ,

and
|∇T |3 ≤ CK2|∇T |2,
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so, for a suitable ϵ, Inequality (4.2) becomes

∂

∂t
|∇T |2 ≤ ∆|∇T |2 + CK2|∇T |2 + CK4|∇T |,

which is exactly equation (3.22) in [11].
For the function f = t|∇T |2 + β|T |2, combining results for ∂

∂t |∇T |2

and ∂
∂t |T |

2, keeping in mind that t ≤ 1/K2 and choosing β large enough,
this implies that

∂

∂t
f = |∇T |2 + t

∂

∂t
|∇T |2 + β

∂

∂t
|T |2

≤ ∆f + CβK4.

As f(x, 0) = β|T |2 ≤ βK2 then supM f(x, t) ≤ CK2 + CβtK4 ≤ CK2

hence t|∇T |2 ≤ CK2.
The m-step of the induction:

Assume that |∇jT | ≤ CjKt−
j
2 for j = 1, . . . ,m− 1.

The evolution equation for |∇mT |2 is

∂

∂t
∇mT = ∆∇mT +

m∑
i=0

∇m−iT ∗ ∇iR+∇m(∇T ∗ T ∗ Φ)

+
∑

a+b+c+d=m

∇aT ∗ ∇bT ∗ ∇cT ∗ ∇dΦ+

m∑
i=0

∇iT ∗ ∇m−iR

+

m∑
i=0

∇m+1−iR ∗ ∇iΦ+
∑

a+b+c=m

∇aR ∗ ∇b+1Φ ∗ ∇cΦ

+
∑

a+b+c=m

∇aT ∗ ∇bR ∗ ∇cΦ,

therefore
∂

∂t
|∇mT |2 = ∆|∇mT |2 − 2|∇m+1T |2 +

∑
∇mT ∗ ∇m−iT ∗ ∇iR

+∇mT ∗ ∇m(∇T ∗ T ∗ Φ) +
∑

∇mT ∗ ∇aT ∗ ∇bT ∗ ∇cT ∗ ∇dΦ

+
∑

∇mT ∗ ∇iT ∗ ∇m−iR+
∑

∇mT ∗ ∇m+1−iR ∗ ∇iΦ

+
∑

∇mT ∗ ∇aR ∗ ∇b+1Φ ∗ ∇cΦ+
∑

∇mT ∗ ∇aT ∗ ∇bR ∗ ∇cΦ.
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Third term: separating the i = 0 from the others, we get

|
∑

∇mT ∗ ∇m−iT ∗ ∇iR| ≤ CK2|∇mT |2 + CK3t−
m
2 |∇mT |.

By induction we show that |∇iΦ| ≤ C
∑i

j=1K
jt−

j−i
2 .

Fifth term: Separating the cases where a or b equals m and using K2T ≤ 1

we have

|
∑

∇mT ∗ ∇aT ∗ ∇bT ∗ ∇cT ∗ ∇dΦ| ≤ CK2|∇mT |2 + CK3|∇mT |t−
m
2 .

Seventh term: Using K2T ≤ 1 we have

|
∑

∇mT ∗ ∇m+1−iR ∗ ∇iΦ| ≤ CK3|∇mT |t−
m
2 .

Sixth term: Separate the case i = m from the others and use K2T ≤ 1 to
obtain

|
∑

∇mT ∗ ∇iT ∗ ∇m−iR| ≤ CK2|∇mT |2 + CK3|∇mT |t−
m
2 .

Eighth term: Separate the b = m term from the others, use ∇i+1Φ =

∇iT + lot and K2T ≤ 1 to obtain

|
∑

∇mT ∗ ∇aR ∗ ∇b+1Φ ∗ ∇cΦ| ≤ CK2|∇mT |2 + CK2|∇mT |t−
m+1
2 .

Ninth term: Separate the a = m term from the others and use K2T ≤ 1

to obtain

|
∑

∇mT ∗ ∇aT ∗ ∇bR ∗ ∇cΦ| ≤ CK2|∇mT |2 + CK3|∇mT |t−
m
2 .
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Fourth term: Using ∇(T ∗ Φ) = ∇T ∗ Φ+ T ∗ T ∗ Φ,

|∇mT ∗ ∇m(∇T ∗ T ∗ Φ)|

≤ |∇mT ∗ ∇m+1T ∗ T ∗ Φ)|+ |∇mT ∗ ∇mT ∗ ∇(T ∗ Φ)|

+ |∇mT ∗
m−1∑
i=2

∇m+1−iT ∗ ∇i(T ∗ Φ)|+ |∇mT ∗ ∇T ∗ ∇m(T ∗ Φ)|

≤ CK|∇mT ||∇m+1T |+ C|∇mT |2(Kt−
1
2 +K2)

+ C|∇mT |
m−1∑
i=2

Kt−
m+1−i

2

i∑
j=0

Kt−
i−j
2

j∑
k=1

Kkt
k−j
2

+ C|∇mT |Kt−
1
2 (|∇mT |+

m∑
j=1

Kt−
m−i
2

i∑
k=1

Kkt
k−i
2

≤ CK|∇mT ||∇m+1T |+ C|∇mT |2(Kt−
1
2 +K2) + CK2|∇mT |t−

m+1
2 .

In conclusion

∂

∂t
|∇mT |2 ≤ ∆|∇mT |2 − 2|∇m+1T |2 + CK2|∇mT |2 + CK3t−

m
2 |∇mT |

+ CK2t−
m+1
2 |∇mT |+ CK|∇mT ||∇m+1T |+ CKt−

1
2 |∇mT |2,

which is exactly Equation (3.32) in [11].
As the rest of the proof completely relies on this equation, it can be

read in [11].

5 Analysis of the flow II

Let (M, g) be a complete Riemannian manifold. For x0 ∈ M , let u be
the fundamental solution of the backward heat equation, starting with the
delta function at x0 [16]:( ∂

∂t
+∆

)
u = 0, lim

t→t0
u = δx0

and set u = e−f(
4π(t0−t)

)4 .
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For a solution {Φ(t)}t∈[0,t0) of the harmonic Spin(7)-flow on (M, g), we
define the function

Θ(x0,t0)(Φ(t)) = (t0 − t)

∫
M

|TΦ(t)|2u volg . (5.1)

We start off with a derivation of the function Θ ◦ Φ and give a little
bit more details of the proof than in [12, Lemma 5.1].

Lemma 5.1.

d

dt
Θ = −2(t0 − t)

∫
M

|div T − f⌟T |2u volg

− 2(t0 − t)

∫
M

(
∇m∇lu− ∇mu∇lu

u
+

ugml

2(t0 − t)

)
Tm;isTl;is volg

− (t0 − t)

∫
M

uRmlis(2Tl;irTm;rs − 2Tm;irTl;rs +
1
4Rmlis − 1

8RmlabΦabis) volg

− 2(t0 − t)

∫
M

Tm;isu∇lRmlis volg .

Proof. By direct computation, we have

d

dt
Θ =

∫
M
(t0 − t)u

∂

∂t
|T |2 − |T |2u+ (t0 − t)|T |2 ∂

∂t
u

=

∫
M
(t0 − t)u

∂

∂t
|T |2 − |T |2u− (t0 − t)|T |2∆u

=

∫
M

2(t0 − t)uTm;is
∂

∂t
Tm;is − |T |2u− (t0 − t)|T |2∆u

=

∫
M

2(t0 − t)uTm;is

(
∇rTr;ipTm;ps −∇rTr;spTm;pi + π7(∇m(∇rTr;is)))

)
− |T |2u− (t0 − t)|T |2∆u,

but

1. Tm;is∇rTr;ipTm;ps = 0 because Tm;isTm;ps is symmetric in (i, p) and
∇rTr;ip is skew-symmetric in (i, p);

2. Tm;is∇rTr;spTm;pi = 0 because Tm;isTm;pi is symmetric in (s, p) and
∇rTr;sp is skew-symmetric in (s, p);
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3. Tm;is ∈ Λ2
7,

therefore

d

dt
Θ =

∫
M

2(t0 − t)uTm;is(∇m(∇rTr;is))− |T |2u− (t0 − t)|T |2∆u.

Integrating by parts and using the Bianchi identity, we have

d

dt
Θ =

∫
M

−2(t0 − t)u∇mTm;is∇rTr;is − 2(t0 − t)∇muTm;is∇rTr;is − |T |2u

+ 2(t0 − t)Tm;is∇lTm;is∇lu

=

∫
M

−2(t0 − t)
(
|div T |2u+∇muTm;is∇rTr;is

)
− |T |2u

+ 2(t0 − t)Tm;is∇lTm;is∇lu

=

∫
M

−2(t0 − t)
(
|div T |2u+∇muTm;is∇rTr;is

)
− |T |2u

+ 2(t0 − t)Tm;is∇lu
(
∇mTl;is + 2Tl;irTm;rs − 2Tm;irTl;rs +

1
4Rmlis

− 1
8RmlabΦabis

)
=

∫
M

−2(t0 − t)
(
|div T |2u+∇muTm;is∇rTr;is

)
− |T |2u

+ 2(t0 − t)
(
Tm;is∇lu∇mTl;is + 2Tm;is∇luTl;irTm;rs − 2Tm;is∇luTm;irTl;rs

+ Tm;is∇lu
1
4Rmlis − 1

8Tm;is∇luRmlabΦabis

)
,

but, as previously,

1. Tm;isTl;irTm;rs = 0;

2. Tm;isTm;irTl;rs = 0;

3. Tm;is(
1
4Rmlis − 1

8RmlabΦabis) = Tm;isRmlis,
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so
d

dt
Θ =

∫
M

−2(t0 − t)
(
|div T |2u+∇muTm;is∇rTr;is

)
− |T |2u

+ 2(t0 − t)
(
Tm;is∇lu∇mTl;is + Tm;is∇luRmlis

)
=

∫
M

−2(t0 − t)
(
|div T |2u+∇muTm;is∇rTr;is

)
− |T |2u

− 2(t0 − t)

∫
M

∇mTm;is∇luTl;is + Tm;is∇m∇luTl;is

− 2(t0 − t)

∫
M

∇lTm;isuRmlis + Tm;isu∇lRmlis

=

∫
M

−2(t0 − t)
(
|div T |2u+ 2∇muTm;is∇rTr;is

)
− |T |2u

− 2(t0 − t)

∫
M

Tm;is∇m∇luTl;is

− (t0 − t)

∫
M

uRmlis(∇lTm;is −∇mTl;is)

− 2(t0 − t)

∫
M

Tm;isu∇lRmlis

=

∫
M

−2(t0 − t)
(
|div T |2u+ 2∇muTm;is∇rTr;is

)
− |T |2u

− 2(t0 − t)

∫
M

Tm;is∇m∇luTl;is

− (t0 − t)

∫
M

uRmlis(2Tl;irTm;rs − 2Tm;irTl;rs +
1
4Rmlis − 1

8RmlabΦabis)

− 2(t0 − t)

∫
M

Tm;isu∇lRmlis

=

∫
M

−2(t0 − t)
(
|div T |2u− 2⟨div T,∇f⌟T ⟩u

)
− 2(t0 − t)

∫
M

(
∇m∇lu+

ugml

2(t0 − t)

)
Tm;isTl;is

− (t0 − t)

∫
M

uRmlis(2Tl;irTm;rs − 2Tm;irTl;rs +
1
4Rmlis − 1

8RmlabΦabis)

− 2(t0 − t)

∫
M

Tm;isu∇lRmlis

=

∫
M

−2(t0 − t)
(
|div T |2u− 2⟨div T,∇f⌟T ⟩u+ |f⌟T |2u

)
− 2(t0 − t)

∫
M

(
∇m∇lu− ∇mu∇lu

u
+

ugml

2(t0 − t)

)
Tm;isTl;is
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− (t0 − t)

∫
M

uRmlis(2Tl;irTm;rs − 2Tm;irTl;rs +
1
4Rmlis − 1

8RmlabΦabis)

− 2(t0 − t)

∫
M

Tm;isu∇lRmlis,

and we obtain the formula we wish for.

Theorem 5.2 (almost monotonicity formula). [12, Theorem 5.2]
Let {Φ(t)} be a solution of the harmonic Spin(7)-flow (HF) on (M8, g).

1. If M is compact, then, for any 0 < τ1 < τ2 < t0, there exist K1,
K2 > 0 depending only on the geometry of (M, g) such that

Θ(Φ(τ2)) ≤ K1Θ(Φ(τ1)) +K2(τ1 − τ2)(E(0) + 1).

2. When (M, g) = (R8, gEucl), then, for any x0 ∈ R8 and 0 ≤ τ1 < τ2

we have
Θ(Φ(τ2)) ≤ Θ(Φ(τ1)).

Proof. We sketch the proof following [11, Theorem 5.3].

1. The following equation is a direct adaptation of [11, Lemma 5.2],
using the Spin(7)-Bianchi identity (2.13):

d

dt
Θ(x0,t0)(Φ(t)) = −2(t0 − t)

∫
M

|div T −∇f⌟T |2u

− 2(t0 − t)

∫
M

(
∇m∇lu− ∇mu∇lu

u
+

ugml

2(t0 − t)

)
Tm;isTl;is

− (t0 − t)

∫
M

uRmlis(2Tl;irTm;rs − 2Tm;irTl;rs +
1
4Rmlis

− 1
8RmlabΦabis)− 2(t0 − t)

∫
M

Tm;isu∇lRmlis. (5.2)

2. The third and fourth terms of Lemma (5.1) are bounded by

C(1 + Θ(Φ(t))),

due to the bounded geometry of (M, g), Young’s inequality and∫
M u = 1.
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For the second term of Lemma (5.1), use [17] and the decreasing of
E(Φ(t)) along the harmonic Spin(7)-flow to bound it by

C
(
E(Φ(0)) + log

B

(t0 − t)4
Θ(Φ(t))

)
,

so that
d

dt
Θ(Φ(t)) ≤− 2(t0 − t)

∫
M

|div T −∇f⌟T |2u

+ C1

(
1 + log

( B

(t0 − t)4
))

Θ(Φ(t)) + C2(1 + E(Φ(0))).

To control the logarithmic term, let ξ(t) be any function satisfying

ξ′(t) = 1 + log
B

(t0 − t)4
.

The claim is then obtained by integration over [t0 − 1, t0[ of

d

dt

[
e−C1ξ(t)Θ(Φ(t))

]
≤ K

(
E(Φ(0)) + 1

)
.

3. On (M8, g) = (R8, gEucl), the backward heat kernel is

u(x, t) =
1

(4π(t0 − t))4
exp

{
−|x− x0|2

4(t0 − t)

}
so indeed d

dtΘ(Φ(t)) ≤ 0.

There exists a more direct and cost-effective to obtain a decreasing
quantity from |T |2, though its importance remains uncertain.

Lemma 5.3 (a simpler monotonicity formula). Put ϵ(t) = |T |2 and con-
sider the function

Z(t) = (tmax − t)

∫
M

ϵk volg, 0 ≤ t < tmax,

where k is any (positive) solution of the backward heat equation ∂tk = −∆k

on Mtmax. Then
Z(t) ≤ Z(0)eCt

for 0 ≤ t ≤ δ (from DTE).
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Proof. Since

∂tZ = −
∫
M

ϵk + (tmax − t)

∫
M

k∂tϵ+ ϵ∂tk.

By self-adjointness of the Laplacian and the ‘reaction-diffusion’ Bochner
formula of Equation (4.1), the second integral satisfies the following upper
bound: ∫

M
k∂tϵ+ ϵ∂tk =

∫
M

k∂tϵ− ϵ∆k =

∫
M

k∂tϵ− k∆ϵ

=

∫
M

k(∂tϵ−∆ϵ)

≤
∫
M

k(C1ϵ+ C2ϵ
2),

and therefore

∂tZ ≤ C1Z(t) + (tmax − t)

∫
M

kϵ(C2ϵ), 0 ≤ t < tmax.

Then by DTE, we have

C2ϵ(x, t) ≤ C2T (t) ≤ 2C2T (0) = C0

so

∂tZ ≤ C1Z(t) + (tmax − t)

∫
M

kϵ(C2ϵ)

≤ C1Z(t) + C0(tmax − t)

∫
M

kϵ

≤ CZ(t)

so
Z(t) ≤ Z(0)eCt.

Definition 5.4. Let (M8,Φ, g) be a compact manifold with a Spin(7)-
structure. Let u(x,t)(y, s) = ug(x,t)(y, s) be the backward heat kernel, start-
ing from δ(x, t) as s → t. For σ > 0 we define

λ(Φ, σ) = max
(x,t)∈M×(0,σ]

{
t

∫
M

|TΦ|2(y)u(x,t)(y, 0) volg
}
. (5.3)
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One should think of σ as the “scale” at which we are analyzing the flow.
Since M is compact, the maximum in (5.3) is achieved.

We can now state the ε-regularity theorem for the harmonic Spin(7)-
flow.

Theorem 5.5 (ε-regularity). [12, Theorem 5.5] Let (M8, g) be compact
and E0 > 0. There exist ε, ρ̄ > 0 such that, for every ρ ∈ (0, ρ̄], there
exist r ∈ (0, ρ) and C < ∞ such that the following holds:

Suppose {Φ(t)}t∈[0,t0) is a solution of the harmonic Spin(7)-flow (HF),
with induced metric g, satisfying E(Φ(0)) ≤ E0. Whenever

Θ(x0,t0)(Φ(t0 − ρ2)) < ε, for some x0 ∈ M,

then, setting Λr(x, t) = min
(
1− r−1dg(x0, x),

√
1− r−2(t0 − t)

)
, we have

Λr(x, t)|TΦ(x, t)| ≤
C

r
, ∀ (x, t) ∈ B(x0, r)× [t0 − r2, t0].

An immediate corollary of the ε-regularity theorem is the following
result, which states that if the entropy of the initial Spin(7)-structure is
small then the torsion is controlled at all times. Again, the proof is similar
to [11, Cor. 5.8].

Corollary 5.6 (small initial entropy controls torsion). [12, Corollary 5.6]
Let {Φ(t)} be a solution of the harmonic Spin(7)-flow (HF) on compact
(M, g), starting at Φ0. For every σ > 0, there exist ε, t0 > 0 and C < ∞
such that, if Φ0 induces g and its entropy (5.3) satisfies

λ(Φ0, σ) < ε,

then

max
M

|TΦ(t)| ≤
C√
t
.

Theorem 5.7 (small initial torsion gives long-time existence). [12, The-
orem 5.9] Let (M,Φ0, g) be a compact Spin(7)-structure manifold. For
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every δ > 0, there exists ε(δ, g) > 0 such that, if |TΦ0 | < ε, then a har-
monic Spin(7)-flow (HF) starting at Φ0 exists for all time and converges
subsequentially smoothly to a Spin(7)-structure Φ∞ such that

div TΦ∞ = 0, |TΦ∞ | < δ.

Sketch of proof. 1) If |TΦ0 | < ε0 then by the (DTE) there exists δ > 0 such
that

t∗ := max{t ≥ 0 : |TΦ(t)| ≤ 2ε0} > δ. (5.4)

2) If t∗ < ∞ then the Shi-type estimates on ]t∗ − δ, t∗[ would imply

|∇TΦ(t∗)| < c0. (5.5)

3) But our flow is the negative gradient so E(Φ(t∗)) ≤ E(Φ0) so we can
invoke the interpolation lemma (which is a static result): If |∇T | ≤ C and
no collapsing, i.e.

volg(B(x, r)) ≥ v0r
8, for 0 < r ≤ 1,

for some constant v0(M, g) > 0, then, for every ε > 0, there exists
δ(ε, C, v0) ≥ 0 such that, if E(Φ) < δ then |T | < ε.
4) Conclude taking ε < min(ε0, γ2ε0 so that |∇TΦ(t∗)| < ε0 implies |T (t∗)| <
2ε0 which contradicts the maximality of t∗ and forces t∗ = +∞.
5) If Λ is the first eigenvalue of the Laplacian on 2-forms we can easily
show that (cf. [12, Lemma 5.7])

d2

dt2
E(Φ(t)) ≥

∫
M
(Λ− 3|T |2)|div T |2,

so if |T |2 ≤ Λ
6

d

dt

∫
M

|div TΦ(t)|2 = − d2

dt2
E(Φ(t)) ≤ −Λ

2

∫
M

| div TΦ(t)|2.

If we take ε < min(ε0, γ2ε0 , γ
√

Λ
6

) then we obtain the decay estimate∫
M

|div TΦ(t)|2 ≤ e−
Λt
2

∫
M

| div TΦ(0)|2, ∀ t ≥ 0. (5.6)
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6) Take s1 < s2 and integrate to obtain∫
M

|Φ(s2)− Φ(s1)| ≤
∫
M

∫ s2

s1

|∂tΦ(s)| ds =
∫ s2

s1

∫
M

|div TΦ(s)|ds

≤ c

∫ s2

s1

(∫
M

|div TΦ(s)|2
) 1

2

ds

≤ c

∫ s2

s1

e−
Λs
4 ds.

(5.7)

7) Φ(t) converges in L1 to Φ∞.
8) The uniform bound on T combined with Shi-type estimates gives esti-
mates on all |∇mT | and smooth convergence to Φ∞.
9) The exponential decay of the integrals implies that div TΦ∞ = 0, and
by the interpolation lemma, we also achieve that |TΦ∞ | < δ.

Theorem 5.8 (small entropy gives long-time existence). [12, Theorem
5.10] On a compact Spin(7)-structure manifold (M,Φ0, g), there exist con-
stants Ck(M, g) < +∞, such that the following holds. For each ε > 0 and
σ > 0, there exists λε(g, σ) > 0 such that, if the entropy (5.3) satisfies

λ(Φ0, σ) < λε, (5.8)

then the torsion becomes eventually pointwise small along the harmonic
Spin(7)-flow (HF) starting at Φ0. Therefore the flow exists for all time
and subsequentially converges to a Spin(7)-structure Φ∞ such that

div TΦ∞ = 0, |TΦ∞ | < ε and |∇kTΦ∞ | < Ck, ∀ k ≥ 1.

Sketch of proof. 1) λε small enough implies |T | ≤ C√
t

for all t ≤ τ .
2) Shi-type estimates imply |∇T (τ)| < C ′.
3) Interpolation lemma: ∀ϵ > 0, for small enough λε, |T (τ)| < ϵ.
4) Small |T (τ)| implies long-time existence.
5) We conclude as with the previous result.

Let ε and ρ̄ be the quantities from the ε-regularity Theorem 5.5. We
define the singular set of the flow by

S = {x ∈ M : Θ(x,τ)(Φ(τ − ρ2)) ≥ ε, for all ρ ∈ (0, ρ̄]}. (5.9)
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The following lemma explains why S is called the singular set of the flow.

Lemma 5.9. The harmonic Spin(7)-flow {Φ(t)}t∈[0,τ) restricted to M \S
converges as t → τ , smoothly and uniformly away from S, to a smooth
harmonic Spin(7)-structure Φ(τ) on M \ S. Moreover, for every x ∈ S,
there is a sequence (xi, ti) → (x, τ) such that

lim
i
|TΦ(xi, ti)| = ∞.

Thus, S is indeed the singular set of the flow.

Theorem 5.10 (Hausdorff measure of the singularity set). [12, Theorem
D]

E(Φ0) =
1

2

∫
M

|TΦ0 |2 volg ≤ E0. (5.10)

Suppose that the maximal smooth harmonic Spin(7)-flow {Φ(t)}t∈[0,τ) start-
ing at Φ0 blows up at time τ < +∞. Then, as t → τ , (HF) converges
smoothly to a Spin(7)-structure Spin(7)τ away from a closed set S, with
finite 6-dimensional Hausdorff measure satisfying

H6(S) ≤ CE0,

for some constant C < ∞ depending on g. In particular, the Hausdorff
dimension of S is at most 6.

Sketch of proof. The proof relies on the following computation:

εH6(S) =

∫
S
εdH6(x) ≤

∫
S
Θ(Φ(τ − ρ2)) dH6(x)

≤
∫
S

∫
M

ρ2|T |2u dH6(x)

≤
∫
M

ρ2|T |2u

≤ C

∫
M

|T |2

≤ CE0.
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