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1 Introduction

Nowadays, an exciting research topic is guided by the search for prop-
erty maintenance of geometric quantities under the Ricci flow. Particularly
to the sub-field of positive curvatures, the inaugural work of Böhm and
Wilking [7] establishes the non-maintenance of positive Ricci curvature on
a certain 12-dimensional homogeneous space under the Ricci flow. Several
works appear analyzing this and related phenomena, [5, 2, 18, 24].

On the other hand, the Ricci flow is feasible to handle (due to better-
established techniques) in the homogeneous setting, [15, 25, 14, 13, 26]. Of
particular interest is the recent paper [15], substantiated in the following:
It consists in appropriately normalizing the Ricci flow to a simplex followed
by a time reparametrization to obtain polynomial equations, leading to a
projected Ricci flow. This arises from a natural generalization of the stan-
dard unit-volume reparametrization of the Ricci flow. See, for instance,
Theorem 4.1. As expected by the authors of [15], such an approach works
well to study the dynamics of some positively curved metrics on certain
homogeneous spaces. We state our results before going a bit deeper into
the machinery employed.

As the first result, Theorem A bellow is related to Remark 3.2 in [7],
where authors claim that there exists an invariant metric with positive
Ricci curvature on the flag manifold SU(3)/T2 that evolves under the ho-
mogeneous Ricci flow to a metric with mixed Ricci curvature. Taking this
into account jointly with the fact that preservation of positive curvature
conditions under backward Ricci flow is generally not expected, it should
not be taken as a surprise to have the following

Theorem A (=Theorem 4.7). There exists an invariant metric on SU(3)/T2

with positive Ricci curvature that evolves into an invariant metric of mixed
Ricci curvature under the backward homogeneous Ricci flow.

Quite recently, in [12], the authors show the non-maintenance of posi-
tive intermediate curvatures under the homogeneous Ricci flow for a family
of homogeneous spaces which encompass M12 = Sp(3)/Sp(1) × Sp(1) ×
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Sp(1), this one appearing in Theorem C in [7]. Such a work served as a
particular motivation for this note. Throughout this paper, we deal with
two different notions of positive intermediate Ricci curvature. As the first,
we remark that the sub-index d in Theorem B stands for the concept of
dth-intermediate positive Ricci curvature, Definition 1.1 below.

Definition 1.1. We say that a Riemannian manifold (M, g) has positive
dth-Ricci curvature if for every p ∈ M and every choice of non-zero d+ 1-
vectors {v, v1, . . . , vd} where {v1, . . . , vd} can be completed to generated
an orthonormal frame in TpM , it holds Ricd(v) :=

∑d
i=1Kg(v, vi) > 0. For

a n-dimensional manifold, these curvature conditions interpolate between
positive sectional curvature (d = 1) and positive Ricci curvature (d =

n− 1).

Theorem B (=Theorem 4.9+Proposition 3.5). For each d = 1, 2, 3, 4,
there exists an invariant metric on SU(3)/T2 with Ricd > 0. Moreover,
for d = 1, 2, 3, these evolve into invariant metrics satisfying Ricd(X) ≤ 0

for some non-zero X under the homogeneous Ricci flow.

In [8, 1], the authors prove that metrics with positive sectional cur-
vature in SU(3)/T2 evolve to metrics with planes of negative sectional
curvature, thus establishing part of our Theorem A. Concerning Ricci cur-
vature, [8] deals with the signature change of the Ricci tensor (Theorem
4.1). Related to it, we derive analogous results to a broader family, being
our second intermediate positive Ricci curvature notion here considered:

Definition 1.2. Fix a n-dimensional Riemannian manifold (M, g). The
Ricci tensor of (M, g) is said to be d-positive if the sum of the d smallest
eigenvalues of the Ricci tensor is positive at all points. This condition
interpolates between positive Ricci curvature and positive scalar curvature.

Theorem C (=Theorem 5.1). There exists an invariant metric on SU(m+

2p)/S(U(m) × U(p) × U(p)),m ≥ p ≥ 1 for which its Ricci tensor is d-
positive for d ∈

{
1, . . . , 4mp+ 2p2

}
. Moreover, the backward homoge-

neous Ricci flow loses this property in finite time.
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In a very general picture, the Ricci flow for an arbitrary Riemannian
manifold (M, g0) is the nonlinear system of PDEs ∂tg = −2Ric(g(t)), g(0) =

g0. However, for homogeneous manifolds M , if the flow is restricted to the
set of invariant metrics on M , this system is reduced to an autonomous
nonlinear system of ODEs. Hence, it is natural and feasible to study the
Ricci flow from a qualitative point of view, using tools from the dynamical
systems theory.

On the one hand, the Wallach flag manifold W 6 := SU(3)/T2 consists
in an example of a homogeneous manifold that is a flag manifold of type
II, see [17]. For our purposes in this paper, it is sufficient to face this as:
the geometry of invariant metrics on W 6 is completely characterized by
the possible choices of three summands coming from the isotropy repre-
sentation on M = G/K. Namely, every curvature condition here treated
for every invariant metric on W 6 admits an explicit description in terms
of three positive real numbers, say g = (x, y, z) – Sections 2 and 3.

On the other hand, as it is presented in Section 4.1.2, the Ricci flow
system for invariant metrics on W 6 is a system of three nonlinear ODEs (in
three variables), which usually would impose more difficulty on handling
their dynamics. However, as introduced in [15], we can, for W 6 and other
flag manifolds (with three isotropy summands), reduce equivalently the
dynamic analyses’ to the plane, where dynamical system techniques are
easier to employ – this is what is called projected homogeneous Ricci flow.

The proof of our results is obtained by restricting the dynamics of
invariant metrics g = (x, y, z) to the tetrahedron x+y+z = 1 via the ma-
chinery in [15], focusing particularly on the case of Riemannian submersion
metrics g(t) = (t, t, 1− 2t). Precisely, we show the family g(t) constitutes
invariant solutions to the projected homogeneous Ricci flow (Lemma 4.4),
and since it is in hand the complete behavior of the here-treated curva-
ture formulae in terms of t, the proof to our results are straightforwardly
obtained. Theorem C follows via the same method.



On the dynamics of positively curved metrics on SU(3)/T2 7

2 The curvature formulae of SU(3)/T2

In this section, we derive a very explicit family of Riemannian homoge-
neous metrics on the Wallach flag manifold SU(3)/T2, which have positive
intermediate and positive Ricci curvature (see Definitions 3.2 and 3.3).
Seeking this aim, we obtain explicit expressions for the sectional curvature
of each basis-generated plane of an arbitrary homogeneous metric. It is
worth mentioning the derived formulas are rather classical and appear in
different presentations elsewhere. For a general account of computations
to the sectional curvature of some flag manifolds (Wallach manifolds), we
recommend [4]. The to-be-presented formulae play a significant role in
this work due to the possibility of parameterizing every curvature notion
in terms of metric components here considered; see, for instance, Section
3.

As can be checked, the SU(3)/T2 consists of a flag manifold of type II
– see [17]. An explicit Weyl basis to ToSU(3)/T

2 where o = eT2, being
e ∈ SU(3) the unit element, is obtained observing that a basis for the Lie
algebra of SU(3) is given by

1

2
diag(2i,−i, i),

1

2
A12,

1

2
S12,

1

2
A13,

1

2
S13,

1

2
diag(0, i,−i),

1

2
A23,

1

2
S23,

where Skj is a symmetric matrix 3× 3 with i in inputs kj and jk and 0 in
the others. On the other hand, Ajk is an antisymmetric matrix 3× 3 that
has 1 on input kj and −1 on input jk, 0 elsewhere. Moreover, i =

√
−1.

We can extract a basis for the tangent space ToSU(3)/T
2 by disregarding

the matrices diag(2i,−i, i) and diag(0, i,−i). It is also worth mentioning
that the 3 components of the isotropy representation are generated by

spanR

{
1

2
Ajk,

1

2
Sjk

}
.

We recall that whenever a homogeneous space M = G/K is reductive,
with reductive decomposition g = k ⊕ m (that is, [k,m] ⊂ m), then m

is AdG(K)-invariant. Moreover, the map g → To(G/K) that assigns to



8 L. F. Cavenaghi, L. Grama and R. M. Miranda

X ∈ g the induced tangent vector

X · o =
d

dt

∣∣∣
t=0

(exp(tX)o)

is surjective with kernel the isotropy subalgebra k. Using that g ∈ G acts
in tangent vectors by its differential, we have that

g(X · o) = (Ad(g)X) · go. (2.1)

Hence, the restriction m → To(G/K) of the above map is a linear iso-
morphism that intertwines the isotropy representation of K in To(G/K)

with the adjoint representation of G restricted to K in m. This allows
us to identify To(G/K) = m and the K-isotropy representation with the
AdG(K)-representation.

Being G a compact connected simple Lie group such that the isotropy
representation of G/K decomposes m as

m = m1 ⊕ . . .⊕mn (2.2)

where m1, . . . ,mn are irreducible pairwise non-equivalent isotropy repre-
sentations, all invariant metrics are given by

go = x1B1 + . . .+ xnBn (2.3)

where xi > 0 and Bi is the restriction of the (negative of the) Cartan-
Killing form of g to mi. We also have

Ric(go) = y1B1 + . . .+ ynBn (2.4)

where yi is a function of x1, . . . , xn. In our considered example, an Ad(T2)-
invariant inner product g is determined by three parameters (x, y, z) char-
acterized by

g

(
1

2
A12,

1

2
A12

)
= g

(
1

2
S12,

1

2
S12

)
= x,

g

(
1

2
A13,

1

2
A13

)
= g

(
1

2
S13,

1

2
S13

)
= y,

g

(
1

2
A23,

1

2
A23

)
= g

(
1

2
S23,

1

2
S23

)
= z.
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We then redefine new basis to m := T0(SU(3)/T2) by

X1 =
1

2
√
x
A12, X2 =

1

2
√
x
S12, X3 =

1

2
√
y
A13, X4 =

1

2
√
y
S13,

X5 =
1

2
√
z
A23, X6 =

1

2
√
z
S23.

Since the following formula holds for the sectional curvature of g (see
[3, Theorem 7.30, p. 183] or Equation 2.1 in [4])

K(X,Y ) = −3

4
∥[X,Y ]m∥2 −

1

2
g([X, [X,Y ]g]m, Y )− 1

2
g([Y, [Y,X]g])m, X)

+∥U(X,Y )∥2 − g(U(X,X), U(Y, Y )),

2g(U(X,Y ), Z) = g([Z,X]m, Y ) + g(X, [Z, Y ]m)

we can set up the following table, where Ck
ij denotes a structure constant,

that is, Ck
ij = g([Xi, Xj ], Xk), and Kij the sectional curvature. Moreover,

that for (i, j) ̸= (1, 2), (3, 4), (5, 6) it holds that

K(Xi, Xj) = Kij

= −1
2C

k
ijC

j
ik −

1
2C

i
kjC

k
ij − 3

4(C
k
ij)

2

+
∑6

l=1
1
4

(
Cj
li + Ci

lj

)2
−
∑6

l=1C
i
liC

j
lj .

We hence build Table 2.1.

In the next section, we shall recall the concept of positive intermediate
Ricci curvature, further using the content in Table 2.1 to provide a metric
with Ricd > 0 for d = 1, 2, 3, 4, 5 in SU(3)/T2.

3 Intermediate positive Ricci curvature

3.1 Preliminaries

Here, we follow the good description in [19]. For the forthcoming def-
initions, there is no widely used notation/terminology. In particular, d-
positivity of the Ricci tensor (Definition 3.3) is denoted by Ricd > 0 in [9].
See [10, Section 2.2] or [9, p. 5] for further information.
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i j k Ck
ij Kij

1 2 diag(i,−i, 0) 1/x 1/x

1 3 5 −
√
z

2
√
xy − 3

16
z
xy + 1

8x + 1
8y + 1

16
(x−y)2

xyz

1 4 6 −
√
z

2
√
xy − 3

16
z
xy + 1

8x + 1
8y + 1

16
(x−y)2

xyz

1 5 3
√
y

2
√
xz

− 3
16

y
xz + 1

8x + 1
8z + 1

16
(z−x)2

xyz

1 6 4
√
y

2
√
xz

− 3
16

y
xz + 1

8x + 1
8z + 1

16
(z−x)2

xyz

2 3 6
√
z

2
√
xy − 3

16
z
xy + 1

8x + 1
8y + 1

16
(y−x)2

xyz

2 4 5 −
√
z

2
√
xy − 3

16
z
xy + 1

8x + 1
8y + 1

16
(y−x)2

xyz

2 5 4
√
y

2
√
xz

− 3
16

y
xz + 1

8x + 1
8z + 1

8
(z−x)2

xyz

2 6 3 −
√
y

2
√
xz

− 3
16

y
xz + 1

8x + 1
8z + 1

16
(z−x)2

xyz

3 4 diag(i, 0,−i) 1/y 1/y

3 5 1 −
√
x

2
√
yz − 3

16
x
yz + 1

8y + 1
8z + 1

16
(y−z)2

xyz

3 6 2
√
x

2
√
yz − 3

16
x
yz + 1

8y + 1
8z + 1

16
(y−z)2

xyz

4 5 2 −
√
x

2
√
yz − 3

16
x
yz + 1

8y + 1
8z + 1

16
(y−z)2

xyz

4 6 1 −
√
x

2
√
yz − 3

16
x
yz + 1

8y + 1
8z + 1

16
(y−z)2

xyz

5 6 diag(0, i,−i) 1/z 1/z

Table 2.1: Structure Constants and Sectional curvature of the basis’ ele-
ments

Definition 3.1. Given a point p in a Riemannian manifold (M, g), and a
collection v, v1, . . . , vd of orthonormal vectors in TpM , the dth-intermediate
Ricci curvature at p corresponding to this choice of vectors is defined to
be Ricd(v) =

∑d
i=1K(v, vi), where K denotes the sectional curvature of g.

Definition 3.2 (dth-intermediate positive Ricci curvature). We say that
a Riemannian manifold (M, g) has positive dth-Ricci curvature if for every
p ∈ M and every choice of non-zero d + 1-vectors {v, v1, . . . , vd} where
{v1, . . . , vd} can be completed to generated an orthonormal frame in TpM ,
it holds Ricd(v) > 0.

It is remarkable that for an n-dimensional manifold, these curvatures
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interpolate between positive sectional curvature and positive Ricci cur-
vature for d ranging between 1 and n − 1. Quoting [19], the quantity
presented in Definition 3.2 has been called “dth-intermediate Ricci curva-
ture”, “dth-Ricci curvature”, “k-dimensional partial Ricci curvature”, and
“k-mean curvature”.

Another here-considered notion of intermeidate curvature condition is

Definition 3.3. Let M be a n-dimensional Riemannian manifold and let
d ≤ n. We say that the Ricci tensor of M is d-positive if the sum of the d

smallest eigenvalues of the Ricci tensor is positive at all points.

Remark 3.4. It is worth pointing out that if d ranges from 1, . . . , n,
the condition given by Definition 3.3 interpolates between positive Ricci
curvature and positive scalar curvature.

Much work has been appearing concerning Definition 3.2, and recent
attention to this subject can be noticed. For a complete list of references
on the subject, we recommend [19]. However, here we chose to explicitly
cite some works we have been paying more attention to when dealing with
this subject: [16, 12, 22, 21, 20].

Indeed, part of the idea to this note was conceived looking to the
examples approached in [12]. These were built in [10] and provide metrics
of intermediate positive Ricci curvature (in the sense of Definition 3.2)
on some generalized Wallach spaces. In [12], the authors show that these
conditions are not preserved under the homogeneous Ricci flow. Their
analyses closely follow the techniques developed in [7].

We remark that once the Ricci curvature formula is given by

Ric(X) =
n∑

i=1

K(X,Xi),

straightforward computations from Table 2.1 leads to (compare with equa-
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tion 2.1 in [12])

Ric(X1) = Ric(X2) =
1

2x
+

1

12

(
x

yz
− z

xy
− y

xz

)
, (3.1)

Ric(X3) = Ric(X4) =
1

2y
+

1

12

(
− x

yz
− z

xy
+

y

xz

)
, (3.2)

Ric(X5) = Ric(X6) =
1

2z
+

1

12

(
− x

yz
+

z

xy
− y

xz

)
. (3.3)

Next, we derive expressions for the intermediate curvature notions pre-
sented in Definitions 3.2, 3.3.

3.2 On the intermediate positive Ricci curvatures of left-
invariant metrics on SU(3)/T2

Our approach to deriving explicit formulae for the curvature notions in-
troduced in the former section is combinatorial. The possibility of param-
eterizing all curvature notions in terms of the metric describing parameter
(x, y, z) plays a significant role in proving our results.

We take advantage of Table 2.1 considering the symmetries appearing
on the expressions for sectional curvature to get a simplified description of
dth-intermediate positive Ricci curvature (recall the Definition 3.2). Fix
Xi on the basis of m and take d-vectors out of {X1, . . . , X6} for 1 ≤ d ≤ 5.
We have

Ricd(Xi) = ai
1

x
+ bi

(
− 3

16

z

xy
+

1

8x
+

1

8y
+

1

16

(x− y)2

xyz

)
+ci

(
− 3

16

y

xz
+

1

8x
+

1

8z
+

1

16

(z − x)2

xyz

)
, i = 1, 2,

Ricd(Xi) = ai
1

y
+ bi

(
− 3

16

z

xy
+

1

8x
+

1

8y
+

1

16

(y − x)2

xyz

)
+ci

(
− 3

16

x

yz
+

1

8y
+

1

8z
+

1

16

(y − z)2

xyz

)
, i = 3, 4,

Ricd(Xi) = ai
1

z
+ bi

(
− 3

16

y

xz
+

1

8x
+

1

8z
+

1

16

(z − x)2

xyz

)
+ci

(
− 3

16

x

yz
+

1

8y
+

1

8z
+

1

16

(y − z)2

xyz

)
, i = 5, 6
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for ai ∈ {0, 1} and bi, ci ∈ {0, 1, 2} satisfying ai + bi + ci = d ≤ 5.
As it can be checked,

Ricd

(
6∑

i=1

xiXi

)
=

6∑
i=1

(xi)2Ricd(Xi),

so that to ensure the existence of some 1 ≤ d ≤ 5 with positive Ricd curva-
ture, it suffices to find such a d constrained as: for any ai ∈ {0, 1}, bi, ci ∈
{0, 1, 2} with ai + bi + ci = d it holds Ricd(Xi) > 0 for some (x, y, z) = g.
Therein we take z = 1−x−y. Taking in account Equation (2.3), we abuse
the notation and denote an invariant metric on SU(3)/T2 by g = (x, y, z).
Next, we focus on Riemannian submersion metrics since it suffices for our
purposes, considering x = y = t, z = 1− 2t.

Proposition 3.5. Any invariant metric g = (t, t, 1 − 2t) in SU(3)/T2

satisfies
Ricd > 0, d = 1, 2, 3, 4 for t ∈] 310 ,

1
2 [

and for d = 1, 2, 3 and t = 3
10 there exists a non-zero X ∈ ToSU(3)/T

2

such that Ricd(X) = 0.

Proof. Considering the simplification imposed by x = y = t (and so z =

1−2t) and normalizing appropriately since we are only considering t < 1/2

(because we need z > 0) one gets up multiplying by a positive function

Ricd(Xi) = ((1−2t)(−3bi + ci + 2(8ai + 5bi − ci)t)), i = 1, 2

Ricd(Xi) = ((1−2t)(−3bi + ci + 2(8ai + 5bi − ci)t)), i = 3, 4

Ricd(Xi) = bi + ci − 4(bi + ci)t+ 4(4ai + bi + ci)t
2, i = 5, 6

for any ai ∈ {0, 1}, bi, ci ∈ {0, 1, 2} with ai + bi + ci = d. Defining

(1− 2t)−1Ricd(Xi) := fd(t) = −3bi + ci + 2(8ai + 5bi − ci)t, i = 1, 2, 3, 4

Ricd(Xi) := gd(t) = (d− ai)(1− 4t) + 4(2ai + d)t2, i = 5, 6,

by directly varying the possibilities for ai, bi, ci assuming 8ai+5bi− ci > 0

one gets that fd, gd are positive simultaneously for every t ∈] 310 ,
1
2 [.



14 L. F. Cavenaghi, L. Grama and R. M. Miranda

Now we consider 8ai + 5bi ≤ ci. Since ci ≤ 2 for every i, we get a
contradiction if ai or bi are non-zero. Therefore, we must assume ai =

bi = 0 and so ci = d ≤ 2. We get

fd(t) = −2dt+ d

gd(t) = −4d+ 8dt

and so fd(t) > 0 if, and only if, t < 1
2 and gd(t) > 0 if, and only if,

t > 1
4 . Hence, fd, gd are positive for t ∈]14 ,

1
2 [. Combining the information

for 8ai + 5bi > ci, 8ai + 5bi ≤ ci we get that for d = 1, 2, 3, 4 we have
intermediate positive Ricci curvature for the metric g = (t, t, 1 − 2t) for
any t ∈] 310 ,

1
2 [.

Finally, for t = 3
10 and d < 3, picking ai = ci = 0 we have bi = d and

get
fd(

3
10) = 0.

For d = 3 we pick ai = 0, bi = 2, ci = 1 so

fd(
3
10) = 0.

4 The Ricci flow on SU(3)/T2 does not preserve
positive Ricci, sectional, and some intermediate
Ricci curvatures

4.1 The Ricci flow on SU(3)/T2

In their work ([7], Remark 3.2), Böhm and Wilking claim that there
exists an invariant metric with positive Ricci curvature on the flag manifold
SU(3)/T2 that evolves under the homogeneous Ricci flow to a metric with
mixed Ricci curvature. In this section, we provide explicit examples of
invariant metrics that satisfy Böhm and Wilking claim for the backward
homogeneous Ricci flow instead by analyzing the global behavior of the
homogeneous Ricci flow of SU(3)/T2. We carry out this analysis using
the projected Ricci flow, which was recently introduced in [15]. Before
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doing so, we make a quick recall (aiming self-containing) on the analyses
developed in [15].

4.1.1 The very basics on the homogeneous Ricci flow on flag
manifolds

We recall that a family of Riemannian metrics g(t) in M is called a
Ricci flow if it satisfies

∂g

∂t
= −2Ric(g). (4.1)

For any compact n-dimensional homogeneous space Mn = G/K with
connected isotropy subgroup K, a G-invariant metric g on M is determined
by its value go at the origin o = eK, which is a AdG(K)-invariant inner
product. Just like g, the Ricci tensor Ric(g) and the scalar curvature
S(g) are also G-invariant and completely determined by their values at
o, Ric(g)o = Ric(go), S(g)o = S(go). Taking this into account, the Ricci
flow equation (4.1) becomes the autonomous ordinary differential equation
known as the (non-normalized) homogeneous Ricci flow :

dgt
dt

= −2Ric(gt). (4.2)

Recalling equation (2.3) and (2.4) one derives that the Ricci flow (4.2)
becomes the autonomous system of ordinary differential equations

dxk
dt

= −2yk, k = 1, . . . , n. (4.3)

It is always very convenient to re-write the Ricci flow equation in terms
of the Ricci operator r(g)t, which is possible since r(g)t is invariant un-
der the isotropy representation and hence r(g)t|mk

is a multiple rk of the
identity. From (2.3) and (2.4), we get

yk = xkrk

and equation (4.3) becomes

dxk
dt

= −2xkrk. (4.4)
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Following [6]; we could also consider the flow below, which preserves
the metrics with unit volume and is the gradient flow of g 7→ S(g) when
restricted to such space:

dgt
dt

= −2

(
Ric(gt)−

S(gt)

n
gt

)
(4.5)

As a variation of the above, we can re-normalize equation (4.2) by choosing
a hypersurface in the (finite-dimensional) space of homogeneous metrics,
which is transversal to the semi-lines λ 7→ λg. In (4.5), the hypersurface
consists of unit volume metrics and is unbounded.

Denoting by R(x1, . . . , xn) the vector field on the right-hand side of
(4.4), with phase space Rn

+ = {(x1, . . . , xn) ∈ R : xi > 0}, one can check
that x ∈ Rn

+ corresponds to an Einstein metric if, and only if, R(x) = λx,
for some λ > 0. Furthermore, the homogeneous gradient Ricci flow (4.5)
on invariant metrics then becomes

dxk
dt

= −2xkrk −
2

n
S(x)xk (4.6)

where

S(x) =

n∑
i=1

niri (4.7)

is the scalar curvature, nk = dimmk.

Theorem 4.1 (Theorem 4.1 in [15]). For x ∈ Rn
+, let R(x) be a vec-

tor field, homogeneous of degree 0 in x, and W (x) a positive scalar func-
tion, homogeneous of degree α ̸= 0 in x. Suppose that R(x) and ρ(x) =

W ′(x)R(x)/α are of class C1. Then, the solutions of

dx

dt
= R(x) (4.8)

can be rescaled in space and positively reparametrized in time to solutions
of the normalized flow

dx

dt
= R(x)− ρ(x)x, W (x) = 1 (4.9)

and vice-versa. Furthermore, R(x) = λx with λ ∈ R and W (x) = 1 if, and
only if, x is an equilibrium of equation (4.9).
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Such a result is introduced aiming to obtain the limit behavior of the
homogeneous Ricci flow exploiting the rationality of R(x). Hence, follow-
ing their work, we normalize the homogeneous Ricci flow to a simplex and
rescale it to get a polynomial vector field. More precisely, denoting by
x = x1 + . . .+ xn, consider W (x) := x whose level set W (x) = 1 in Rn

+ is
the open canonical (n− 1)-dimensional simplex, which is a bounded level
hypersurface, in contrast with the unbounded unit-volume hypersurface.

Corollary 4.2 (Corollary 4.3 in [15]). The solutions of the Ricci flow

dx

dt
= R(x) (4.10)

can be rescaled in space and reparametrized in time to solutions of the
normalized flow

dx

dt
= R(x)−R(x)x, x = 1 (4.11)

and vice-versa, where x is Einstein with x = 1 if and only if it is an
equilibrium of equation (4.11).

Moreover, there exists a function that is strictly decreasing on non-
equilibrium solutions of the normalized flow (4.11). In particular, the pro-
jected Ricci flow does not have non-trivial periodic orbits.

Before proceeding, it is important to stress

Remark 4.3 (The fixed points for the flow). A very important property
is that, in our case, the Einstein metrics are precisely the fixed points of
the flow of the Ricci system (singularities of the Ricci system) and, from
the point of view of dynamics in the plane, no flow line attracted to an
Einstein metric achieves it in finite time due to the qualitative nature of
these singularities.

4.1.2 The projected homogeneous Ricci flow in SU(3)/T2

Recall the isotropy representation of SU(3)/T2 decomposes into three
irreducible and non-equivalent components:

m = m1 ⊕m2 ⊕m3.
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The Ricci tensor of an invariant metric g = (x, y, z) is also invariant,
and its components are given by (recall equations (3.1)-(3.3)):

rx =
1

2x
+

1

12

(
x

yz
− z

xy
− y

xz

)
,

ry =
1

2y
+

1

12

(
− x

yz
− z

xy
+

y

xz

)
,

rz =
1

2z
+

1

12

(
− x

yz
+

z

xy
− y

xz

)
and the corresponding (unnormalized) Ricci flow equation is given by

x′ = −2xrx, y′ = −2yry, z′ = −2zrz. (4.12)

The projected Ricci flow is obtained by a suitable reparametrization of
the time, getting an induced system of ODEs with phase-portrait on the
set

{(x, y, z) ∈ R3 : x+ y + z = 1} ∩ R3
+,

where R3
+ = {(x, y, z) ∈ R3 : x > 0, y > 0, z > 0}, following of the

projection on the xy−plane. The resulting system of ODEs is dynamically
equivalent to the system (4.12) (Corollary 4.2).

Applying the analysis developed in [15, Section 5], we arrive at the
equations of the projected Ricci flow equation (see equation (31) in Section
5 of [15]): {

x ′ = u(x, y),

y ′ = v(x, y),
(4.13)

where

u(x, y) = 2x
(
x2(2− 12y)− 3x

(
4y2 − 6y + 1

)
+ 6y2 − 6y + 1

)
,

and

v(x, y) = −2y(2y − 1)
(
6x2 + 6x(y − 1)− y + 1

)
.
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Figure 4.1: Phase portrait of the Projected Ricci Flow for SU(3)/T2.

The global dynamics of (4.13) is described in Figure 4.1. The remark-
able equilibrium points in the projected Ricci flow are (see Theorem 5.1
in [15]):

• A = (1/4, 1/4): Kähler Einstein metric (saddle),

• B = (1/3, 1/3): the normal Einstein metric (repeller),

• C = (1/4, 1/2): Kähler Einstein metric (saddle),

• D = (1/2, 1/4): Kähler Einstein metric (saddle).

To proceed with our analysis, we start with the following remark:

Lemma 4.4. The segment OA, where O = (0, 0), is invariant by the flow
of (4.13). Hence, the segment OA solves the projected Ricci flow.
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Proof. The segment OA is supported in the line γ(t) = (t, t) with normal
vector w = (−1, 1). We have

(u(γ(t)), v(γ(t))) · w = (−1)(2t
(
−24t3 + 26t2 − 9t+ 1

)
)

+ (1)(2t
(
−24t3 + 26t2 − 9t+ 1

)
)

= 0,

and therefore the segment OA is solution of the system (4.13).

Our second remark is about the Ricci curvature under the segment
OA.

Lemma 4.5. The segment OA contains invariant metrics with positive
Ricci curvatures and invariant metrics with mixed Ricci curvatures.

Proof. Since the flow is projected in the xy-plane, we start to lift the
segment γ(t) = (t, t), 0 < t < 1/2, to the plane x+ y + z = 1. The corre-
sponding segment is parametrized by γ̃(t) = (t, t, 1−2t). The components
of the Ricci tensor along the segment γ̃ are given by:

rx(γ̃(t)) =
1

2t
− 1− 2t

12t2
,

ry(γ̃(t)) =
1

2t
− 1− 2t

12t2
,

rz(γ̃(t)) =
1

12

(
1− 2t

t2
− 2

1− 2t

)
+

1

2(1− 2t)
.

A straightforward computation shows that rz(γ̃(t)) > 0 for 0 < t < 1/2.
We also have rx(γ̃(t)) > 0, ry(γ̃(t)) > 0 for 1/8 < t < 1/2, and rx(γ̃(t)) <

0, ry(γ̃(t)) < 0 for 0 < t < 1/8

Remark 4.6. One can rescale the family of metrics (t, t, 1− 2t) in order
to obtain the family of metrics (1, 1, 1−2t

t ), 0 < t < 1/2. Such a family
appears as deformation of the normal metric (1, 1, 1) in the direction of
fibers of the homogeneous fibration S2 → SU(3)/T2 → CP2.

Theorem 4.7. There exists an invariant metric on SU(3)/T2 with posi-
tive Ricci curvature that evolves into an invariant metric of mixed Ricci
curvature under the (backward) homogeneous Ricci flow.
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Proof. The natural choice for the initial metric g0 with positive Ricci cur-
vature is the Kähler-Einstein metric (1/4, 1/4) (∼ metric determined by
(1, 1, 2)). However, since this metric is a fixed point of the system (4.13)
(Remark 4.3), we start with a metric that is arbitrarily close to the Kähler-
Einstein metric, namely g0 = (t0, t0, 1 − 2t0), where 1/8 < t0 < 1/4. Ac-
cording to Lemma 4.5, we have Ric g0 > 0. The solution of the projected
Ricci flow with initial condition g0 is contained in the segment OA, and
it is attracted to the Kähler-Einstein metric. On the other hand, if we
consider the backward solution, by continuity, there exists T > −∞ such
that gT = (tT , tT , 1 − 2tT ) with tT < 1/8 has mixed Ricci curvature, by
Lemma 4.5.

Remark 4.8 (Some metrics with positive Ricci curvature do not evolve
to mixed Ricci curvature metric). In complete analogy to Theorem C in
[7], one could ask whether any metric with positive Ricci curvature on
SU(3)/T2 develops Ricci curvature with a mixed sign under the Ricci flow.
One observes that taking the path of metrics g = (12 , t,

1
2−t) we have that it

corresponds to a solution for the projected Ricci flow for which through all
t ∈]0, 12 [ the path has positive Ricci curvature. This can be easily checked
by observing that (1, 0) · (u(12 , t), v(

1
2 , t)) = 0, so the path yields a solution

for the projected Ricci flow, and using the explicit equations for rx, ry, rz

along γ̃(t) := (12 , t,
1
2 − t) to verify the claim.

Observe now that considering the normal metric (1, 1, 1), we have posi-
tive sectional curvature on both fiber and base of S2 → SU(3)/T2 → CP2.
The family of metrics (1, 1, (1− 2t)/t), t ∈]0, 1/2[ is a canonical variation
of (1, 1, 1). According to Theorem A in [22], one can find τ > 0 such that
for any t ≤ τ , we have Ricd > 0 for any d ≥ 5, but this is just ordinary
positive Ricci curvature. In this manner, Theorem A in [22], despite the
fascinating examples built of manifolds with intermediate positive Ricci
curvature, cannot recover Proposition 3.5. We point out, however, that
Theorem A in [21] is sharp in the sense that, under their very general
hypotheses, one cannot hope to reach a stronger conclusion. In particular,
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if one considers a trivial bundle, a canonical variation does not improve
the intermediate Ricci curvature, meaning one only has Ricd > 0 for the
values of d given in their Theorem A. Our result illustrates that under
certain conditions, one can find metrics on bundles that satisfy stronger
positive intermediate curvature conditions than the one given in Theorem
A of [21].1

Theorem 4.9. There exists an invariant metric in SU(3)/T2 with Ricd >

0 for d = 1, 2, 3, that evolves into an invariant metric for such Ricd(X) ≤ 0

for some non-zero X under the homogeneous Ricci flow.

Proof. Let us consider the line segment (t, t) with t ∈]0, 14 [. Such a segment
is invariant for the flow and consists of a complete solution not achieving
the Kähler-Einstein metric (1/4, 1/4) in finite time. Analogously, the same
segment for t ∈]14 ,

1
3 [ is invariant by the flow and connect (but not in finite

time) the Kähler-Einstein metric A = (1/4, 1/4) and the normal Einstein
metric B = (1/3, 1/3).

For d = 1, 2, 3 let us take t0 ∈] 516 ,
1
3 [ and g = (t0, t0, 1− 2t0). Observe

that such a metric has positive Ricd > 0 for d = 1, 2, accordingly to
Proposition 3.5. Since the segment (t0, t0) is a solution for the flow for
]1/4, t0] such that its limit for infinite time is the Kähler-Einstein metric
given by (1/4, 1/4); that do not have positive sectional curvature, neither
Ric2,Ric3 > 0 (Proposition 3.5), one concludes the claim since continuity
ensures that starting the Ricci flow for such chosen t0 will lead in future
time (that can be chosen to be finite) to a metric close enough in the C2-
topology to such a Kähler-Einstein metric, thus not having Ric2,Ric3 > 0

nor Ric1 > 0. It is worth mentioning that the backward Ricci flow does
maintain such properties since this metric is attracted to B.

1We kindly thank L. Mouillé for pointing it out.
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5 Family SU(m + 2p)/S(U(m) × U(p) × U(p)), with
m ≥ p > 0

One central motivation for this note is the results in [7]. Their Theo-
rem C shows that the compact manifold M = Sp(3)/Sp(1)×Sp(1)×Sp(1)

evolves a specific positively curved metric in a metric with mixed Ricci
curvature. Such a space is a homogeneous manifold with two parame-
ters describing homogeneous unit volume metrics. The invariant metric
of Sp(3) induces on M a homogeneous unit volume Einstein metric gE of
non-negative sectional curvature.

Associated to such homogeneous space, one can consider the fibration
S4 ↪→ M → HP 2 and combining a canonical variation on the Riemannian
submersion metric obtained out gE plus scaling; we obtain a curve gt, t > 1

of unit volume submersion metrics with positive sectional curvature for
which g0 = gE .

Up to parametrization, such a curve is a solution to the normalized
Ricci flow. A precise analysis of the asymptotic behavior of solutions
of the Ricci flow allows the authors to prove for any homogeneous non-
submersion initial metric, being close enough to g2, the normalized Ricci
flow evolves mixed Ricci curvature.

Considering the former paragraphs, one observes that the analyses em-
ployed in this note are similar. We look for particular Einstein metrics and
observe the long-time behavior of some parametrized solutions to the (pro-
jected) homogeneous Ricci flow. Hence, as a final aim, we furnish similar
results to Theorem C in [7] carrying on the analyses made for SU(3)/T2 to
a family which generalizes it: The ones in SU(m+ 2p)/S(U(m)× U(p)×
U(p)), with m ≥ p > 0.

As the Ricci operator r(g) is diagonalizable, one can infer from [23]
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that its eigenvalues are of multiplicity two and given by

rx =
1

2x
+

p

4(m+ 2p)

(
x

yz
− z

xy
− y

xz

)
,

ry =
1

2y
+

p

4(m+ 2p)

(
− x

yz
− z

xy
+

y

xz

)
,

rz =
1

2z
+

m

4(m+ 2p)

(
− x

yz
+

z

xy
− y

xz

)
.

We intend to apply the concept provided by Definition 3.3. Namely, we
prove

Theorem 5.1. For each t ∈]1/8, 1/3[ the Riemannian metric g = (t, t, 2−
t) has d-positive Ricci tensor (Definition 3.3) for d ∈

{
1, . . . , 4mp+ 2p2

}
.

Moreover, the backward homogeneous Ricci flow loses this property in finite
time.

With this aim, we proceed once more by describing the projected ho-
mogeneous Ricci flow as (see equation (31) in [15, Section 5])

u(x, y) = −x(2x− 1)

(
m(4y − 1)(x+ y − 1)

+ p
(
x(8y − 1) + 8y2 − 7y + 1

))
,

v(x, y) = −y(2y − 1)

(
m(4x− 1)(x+ y − 1)

+ p
(
8x2 + x(8y − 7)− y + 1

))
.

Lemma 5.2. Let K =
(

m+p
2(m+2p) ,

m+p
2(m+2p)

)
. The segment OK is invariant

under the projected Ricci flow.

Proof. We need compute (u(γ(t)), v(γ(t))) ·w where γ(t) = (t, t) and w =

(−1, 1). Straightforward computation shows:

u(t, t) = v(t, t) = −t(1− 6t+ 8t2)(m(−1 + 2t) + p(−1 + 4t)).
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Hence,

(−1, 1) · (u(γ(t)), v(γ(t))) = −u(γ(t)) + v(γ(t))

= −u(γ(t)) + u(γ(t))

= 0.

Now consider the lifted curve γ̃(t) = (t, t, 1− 2t). We have:

r1( ˜γ(t)) =
1

2t
− p(1− 2t)

4t2(m+ 2p)
, (5.1)

r2( ˜γ(t)) =
1

2t
− p(1− 2t)

4t2(m+ 2p)
, (5.2)

r3( ˜γ(t)) =
1

2(1− 2t)
+

m

4(m+ 2p)

(
1− 2t

t2
− 2

1− 2t

)
(5.3)

Straightforward computation guarantees

rx( ˜γ(t)) > 0 ⇔ t >
p

2m+ 6p
,

ry( ˜γ(t)) > 0 ⇔ t >
p

2m+ 6p
,

rz( ˜γ(t)) > 0 ⇔ 0 < t <
1

2
.

We claim that for each t ∈]1/8, 1/3[ we have d-positivity of the Ricci tensor
(Definition 3.3) for d = 1, . . . , 4mp+ 2p2 where

4mp+ 2p2 = dimSU(m+ 2p)/S(U(m)×U(p)×U(p)). (5.4)

Lemma 5.3. For each d ∈ {1, . . . ,dimSU(m+2p)/S(U(m)×U(p)×U(p))}
the Ricci tensor r(g) of a metric g = (t, t, 1 − 2t) is d-positive if t ∈
]1/8, 1/3[. In particular, t does not depend on (m, p), which holds for the
entire considered family.
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Proof. Since m
p ≥ 1 one has that

p

2m+ 6p
=

1

2
(
m
p

)
+ 6

≤ 1

8
.

Therefore, according to equations (5.1),(5.2), one gets that tf t > 1
8 then

r1, r2 > 0. On the other hand, t ∈]0, 1/2[ ensures that r3 > 0 (equation
(5.3)). Observe, however, that geometrically, we cannot attach the metric
for t ≥ 1/3 since one arises in a KE metric for such a parameter, and
that is a fixed point of the system. In this manner, the claim follows for
t ∈]1/8, 1/3[.

We finish proving Theorem 5.1.

Proof of Theorem 5.1. We proceed exactly as in the proof of Theorem 4.7
observing that, similarly to that case, we could be tempted to consider
as initial metric the Kähler-Einstein metric (on the projected Ricci-flow)
given by

K =

(
m+ p

2(m+ 2p)
,

m+ p

2(m+ 2p)

)
.

Note however that since
m

p
≥ 1 we have

m+ p

2(m+ 2p)
=

m+ p

2(m+ p) + 2p

=
1

2 + 2p
m+p

=
1

2 + 2
(m/p)+1

≥ 1

3
.

Hence, for t ∈]1/8, 1/3[, we have that, according to Lemma 5.3, the
desired d-positivity condition to the Ricci tensor. Moreover, starting the
homogeneous backward Ricci flow, the result is ensured by continuity.
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Remark 5.4. Lastly, we recall that r(g) losing d-positivity for d = 4mp+

2p2 implies losing positive scalar curvature. Hence, direct but cumber-
some computations coming from [11] make it possible to recover that
the space of moduli of invariant metrics of positive Ricci curvature on
SU(m+2p)/S(U(m)×U(p)×U(p)) has infinitely many path components.
This shall appear elsewhere.
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