
Vol. 59, 121–136 ©2024
http://doi.org/10.21711/231766362024/rmc598

Solving the Schrödinger Equation by the
Transfer-Matrix Method

Juliana N. de Almeida , Tatiana M. Rodrigues and
Alexys Bruno-Alfonso

Department of Mathematics, School of Science, São Paulo State University,

Avenida Engenheiro Luis Edmundo Carrijo Coube, 14-01, 17033-360, Bauru,

SP, Brazil

Abstract. The transfer-matrix method was proposed in the 1940s to
solve linear ordinary differential equations. It is broadly studied due
to its efficiency and simplicity for solving one-dimensional physical
problems. In this work, the method is applied to solve the time-
independent Schrödinger equation, in order to improve both the for-
malism and the computational treatment. Closed-form solutions are
derived for quantum wells and periodic potentials of arbitrary pro-
files. Numerical results are given for symmetric finite-barrier quan-
tum wells and sinusoidal potentials.

Keywords: ordinary differential equation, transfer-matrix method,
Schrödinger equation.

2020 Mathematics Subject Classification: 34A30, 34-06,

81Q05, 81-06.

The first author has been supported by FAPESP (Grant # 2020/063447), e-mail:
juliana.nemezio@unesp.br

121

http://doi.org/10.21711/231766362024/rmc598
https://orcid.org/0000-0003-3055-1439
https://orcid.org/0000-0001-8203-915X
https://orcid.org/0000-0002-6194-529X


122 J. N. de Almeida, T. M. Rodrigues and A. Bruno-Alfonso

1 Introduction

The transfer-matrix method provides a compact formalism for the
study of layered optical systems [7] as well as the one-dimensional (1D)
quantum dynamics of a particle in an arbitrary potential [2, 13, 14]. The
treatment of the latter case is simpler for potentials whose domain can be
divided into a set of intervals such that the general solution of the differen-
tial equation is available for each of them. The solution of the differential
equation is easier to find for potentials that can be divided into intervals
with an available general solution. In such cases, the method produces
exact algebraic equations for the energy levels and close-form expressions
for the wave functions [19]. Moreover, when an interval consists of N sub-
intervals with identical potential profiles, its transfer matrix equals the
N -th power of the transfer matrix of a single sub-interval [11].

The 1D time-independent Schrödinger equation for a particle of mass
m has the form

− }2

2m

d2ψ

dx2
(x) + V (x)ψ(x) = Eψ(x), (1.1)

where x is the position of the particle, E is the particle energy in a quan-
tum stationary state with spatial wave function ψ(x), V (x) is the potential
profile, and ~ is the reduced Planck constant [3]. This second-order lin-
ear ordinary differential equation has a fundamental set of two solutions,
denoted ψ1,E(x) and ψ2,E(x), for each energy value E.

If the V (x) is a continuous or piece-wise continuous function over an
interval I, then ψ(x) is a bounded and continuously differentiable function
over I that satisfies [

ψ(x)

ψ′(x)

]
=WE(x)

[
A

B

]
, (1.2)

for x ∈ I. Here A and B depend on the initial conditions, and

WE(x) =

[
ψ1,E(x) ψ2,E(x)

ψ′1,E(x) ψ′2,E(x)

]
(1.3)
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is the Wronskian matrix. For any initial point x0 in I, one has[
ψ(x)

ψ′(x)

]
= TE(x, x0)

[
ψ(x0)

ψ′(x0)

]
, (1.4)

where
TE(x, x0) =WE(x)W

−1
E (x0) (1.5)

is the matrix that transfers the values of ψ and ψ′ from x0 to x at energy
E. It is worth noting that for an arbitrary x1 in I, the transfer matrix
TE(x, x0) has the multiplicative property

TE(x, x0) = TE(x, x1)TE(x1, x0). (1.6)

Since the Wronskian determinant det(WE(x)) is a constant over the real
line [1], we also have

det(TE(x, x0)) = 1. (1.7)

In this paper, aiming to contribute to modern analytical and numer-
ical applications of the transfer-matrix method, we apply it to solve the
Schrödinger equation for arbitrary quantum wells and periodic potentials
in one dimension. Quantum wells have great importance in physics and
engineering, to model semiconductor electronic devices [13]. Periodic po-
tentials are broadly applied to model electronic states in crystalline struc-
tures [9, 12, 17, 6]. Contrasting common approaches [8], we deal with
the variable pair (ψ(x), ψ′(x)), instead of the constant pair (A,B) [see
Equations (1.2) and (1.4)]. This enhances clarity, simplicity and univer-
sality: ψ(x) and ψ′(x) have direct physical/geometrical interpretation,
the matching conditions between contiguous intervals reduce to continuity
conditions, and the transfer matrix is ultimately independent of the cho-
sen fundamental solutions ψ1,E(x) and ψ2,E(x). Furthermore, instead of
approximating complex potential profiles by a sequence of piece-wise con-
stant potentials [8], the present formulation assumes that either close-form
expressions are available for ψ1,E(x) and ψ2,E(x) or high-accuracy compu-
tational procedures can be implemented for their numerical evaluation.
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Section 2 presents transfer-matrix examples that are applied to deal
with either quantum-well bound states in Section 3 or periodic potentials
in Section 4. Numerical results and concluding remarks are given in Sec-
tions 5 and 6.

2 Transfer-matrix examples

In this section, the transfer matrices for the Schrödinger equation with
a constant and a sinusoidal potential are given. The results will be applied
to solve two physical problems in Section 5.

2.1 Transfer matrix in a constant potential

Let x and x0 be in an interval where the potential equals a constant
value V , that is, V (x) = V . The Schrödinger equation can be written as:

ψ′′(x) + (KE)
2ψ(x) = 0, (2.1)

where KE =
√

2m(E − V )/~2. When E 6= V , the Wronskian matrix can
be chosen as

WE(x) =

[
cos(KEx)

1
KE

sin(KEx)

−KE sin(KEx) cos(KEx)

]
, (2.2)

the transfer-matrix is given by

TE(x, x0) =

[
cos(KE(x− x0)) 1

KE
sin(KE(x− x0))

−KE sin(KE(x− x0)) cos(KE(x− x0))

]
. (2.3)

If E = V , then KE = 0, the Wronskian matrix can be written as

WE(x) =

[
1 x

0 1

]
, (2.4)

and the corresponding transfer matrix is given by

TE(x, x0) =

[
1 x− x0
0 1

]
. (2.5)

The transfer matrix is a continuous function of KE , as the limit of Equa-
tion (2.3) when KE → 0 gives Equation (2.5).
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2.2 Transfer-matrix with a sinusoidal potential

For this case, x and x0 are considered to be in an interval where the
potential has a sinusoidal profile that is conveniently written as V (x) =

−A cos (2πx/λ). The Schrödinger equation

− }2

2m

d2ψ

dx2
(x)−A cos (2πx/λ)ψ(x) = Eψ(x), (2.6)

can be written as

f ′′(ξ) + [2ε+ 2α cos(2ξ)]f(ξ) = 0, (2.7)

where ξ = πx/λ, f(ξ) = (λ/π)1/2 ψ(x), α = A/U , and ε = E/U , with
U = ~2π2/(mλ2).

To solve Equation (2.7), it is reduced to the Mathieu equation [1, 4, 6, 5]

d2f

dξ2
(ξ) + [a− 2q cos(2ξ)]f(ξ) = 0, (2.8)

where a = 2ε and q = −α. The fundamental set of solutions can be chosen
as

f1,E(ξ) = Ca,q(ξ) = C2ε,−α(ξ)

and

f2,E(ξ) = Sa,q(ξ) = S2ε,−α(ξ). (2.9)

The wave functions read

ψ1(x) =

√
π

λ
C2ε,−α

(πx
λ

)
and

ψ2(x) =

√
π

λ
S2ε,−α

(πx
λ

)
, (2.10)

and the Wronskian matrix becomes

WE(x) =
π2

λ2

[
C2ε,−α(

πx
λ ) S2ε,−α(

πx
λ )

C ′2ε,−α(
πx
λ ) S′2ε,−α(

πx
λ )

]
. (2.11)
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Therefore, the transfer matrix form x0 to x is given by

TE(x, x0) =

[
C2ε,−α(ξ) S2ε,−α(ξ)

C ′2ε,−α(ξ) S′2ε,−α(ξ)

] [
C2ε,−α(ξ0) S2ε,−α(ξ0)

C ′2ε,−α(ξ0) S′2ε,−α(ξ0)

]−1
,

(2.12)
where ξ = πx/λ and ξ0 = πx0/λ.

3 Bound states of an arbitrary quantum well

We consider a quantum well of width a with arbitrary profile Vw(x)
over the interval −a/2 < x < a/2, cladded between semi-infinite leftward
and rightward barriers of heights Vl and Vr, respectively. This is given by
the potential

V (x) =


Vl, if x ≤ −a/2

Vw(x), if − a/2 < x < a/2

Vr, if x ≥ a/2.

(3.1)

The discrete energy levels satisfy min(Vw(x)) ≤ E ≤ min(Vl, Vr).
For x < −a/2, the bound wave functions have the form

ψ(x) = ψ(−a/2)eκ
(l)
E (x+a/2) (3.2)

where κ(l)E =
√
2m(Vl − E)/~2. This implies[

ψ(−a/2)
ψ′(−a/2)

]
= ψ(−a/2)

[
1

κ
(l)
E

]
. (3.3)

Similarly, for x > a/2 we obtain

ψ(x) = ψ(a/2)e−κ
(r)
E (x−a/2) (3.4)

and [
ψ(a/2)

ψ′(a/2)

]
= ψ(a/2)

[
1

−κ(r)E

]
, (3.5)

with κ(r)E =
√
2m(Vr − E)/~2.
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Considering the region −a/2 ≤ x ≤ a/2, we find[
ψ(a/2)

ψ′(a/2)

]
=ME

[
ψ(−a/2)
ψ′(−a/2)

]
, (3.6)

where ME = TE(a/2,−a/2). Then, putting (3.3) and (3.5) into (3.6), we
get

ψ(a/2)

[
1

−κ(r)E

]
=ME ψ(−a/2)

[
1

κ
(l)
E

]
, (3.7)

i.e.,

ME

[
1

κ
(l)
E

]
= λE

[
1

−κ(r)E

]
, (3.8)

with λE = ψ(a/2)/ψ(−a/2). This means that the two-dimensional vector
in the left-hand side should be perpendicular to the vector (κ(r)E , 1), i.e.,[

κ
(r)
E 1

]
ME

[
1

κ
(l)
E

]
= 0. (3.9)

This equation leads to the discrete energy levels of the particle in the quan-
tum well of arbitrary profile Vw(x) for −a/2 < x < a/2. The quantum-well
transfer matrix ME depends on such a profile.

For each energy level, the ratio ψ(a/2)/ψ(−a/2) is given by Equa-
tion (3.8) as

λE =
[
1 0

]
ME

[
1

κ
(l)
E

]
. (3.10)

4 Energy bands in an arbitrary periodic potential

For a periodic potential of period λ, i.e., satisfying V (x + λ) = V (x),
a complete set of solutions fulfills the Bloch condition [13]

ψk,E(x+ λ) = eikλψk,E(x),

where k is the crystalline wave vector. The derivative of the wave function
obeys the same condition, namely

ψ′k,E(x+ λ) = eikλψ′k,E(x). (4.1)
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For an arbitrary point x0, we have[
ψk,E(x0 + λ)

ψ′k,E(x0 + λ)

]
=ME

[
ψk,E(x0)

ψ′k,E(x0)

]
= eik λ

[
ψk,E(x0)

ψ′k,E(x0)

]
. (4.2)

where ME = TE(x0 + λ, x0) is the transfer matrix of a unit cell. This
means that eik λ is an eigenvalue of ME , i.e.,

det
(
ME − Ieik λ

)
= 0, (4.3)

where I is the identity matrix. Considering Equation (1.7), the latter
equation is equivalent to

SE = cos(kλ), (4.4)

where SE is the semi-trace of ME .
On the one hand, the energy levels where |SE | ≤ 1 are allowed, leading

to the so-called energy bands [9]. The dependence of E on k for each
energy band is implicitly given by Equation (4.4). On the other hand, the
energy levels where |SE | > 1 are forbidden. They form gaps in the energy
spectrum [9].

5 Numerical Results

Here, the equations in Sections 2, 3 and 4, are applied to solve the time-
independent Schrödinger equation for a symmetric finite-barrier quantum
well and a periodical sinusoidal potential. The numerical calculations and
the graphical work have been implemented in Wolfram Mathematica [5].

5.1 Energy levels in a symmetric finite quantum well

The potential of the usual symmetric finite-barrier quantum well is
given by Equation (3.1), with Vw(x) = 0 and Vl = Vr = Vb, where Vb is
the barrier height. Then, Equation (3.9) becomes

[
κE 1

]
ME

[
1

κE

]
= 0, (5.1)
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where κE =
√

2m(Vb − E)/~2. Moreover, according to Equation (2.3),
the quantum-well transfer matrix is given by

ME = TE(a/2,−a/2) =

[
cos(KE a)

1
KE

sin(KE a)

−KE sin(KE a) cos(KE a)

]
, (5.2)

with KE =
√

2mE/~2.
Plugging (5.2) into (5.1) we get the transcendental equation

cos(KE a) +
1

2
sin(KE a)

(
κE
KE
− KE

κE

)
= 0, (5.3)

which leads to the energy levels. This can be solved for both cos(KE a)

and sin(KE a) as [
cos(KE a)

sin(KE a)

]
= ± 1√

1 + g2E

[
gE

1

]
, (5.4)

with
gE =

1

2

(
KE

κE
− κE
KE

)
. (5.5)

According to Equation (3.10), this leads to

λE = cos(KE a) +
κE
KE

sin(KE a) = ±1 (5.6)

Hence, the wave function satisfies ψ(−x) = λE ψ(x). The case λE = 1

(λE = −1) corresponds to even (odd) wave functions.
To compare with the literature, we calculate

cot(KEa/2) =
cos(KEa/2)

sin(KEa/2)
=

1 + cos(KEa)

sin(KEa)
= gE + λE

√
1 + g2E . (5.7)

As expected [10, 13], even states satisfy

cot(KEa/2) = gE +
√
1 + g2E =

KE

κE
, (5.8)

whereas odd states fulfill

cot(KEa/2) = gE −
√
1 + g2E = − κE

KE
. (5.9)
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Conveniently, the numerical results are given in appropriate units: ε =
E/U and α = Vb/U , with U = ~2/(2ma2). Thus, the dimensionless energy
levels are given by the roots of

p(ε) = cos(
√
ε) +

1

2
sin(
√
ε)

(√
α− ε
ε
−
√

ε

α− ε

)
. (5.10)

Moreover, the energies of the even (λE = 1) and odd (λE = −1) states are
given by the roots of

qλE (ε) = cos(
√
ε) +

√
α− ε
ε

sin(
√
ε)− λE . (5.11)

A graphical analysis of Equation (5.10) can be performed from Fig-
ure 5.1. The points where the curve intersects the ε axis correspond to the
bound states of the particle in the quantum well.

0 50 100 150 200
-4

-2

0

2

4

p
(
)

Figure 5.1: Graph of p(ε) given by Equation (5.10) for α = 200.

Figure 5.2 displays the energy levels of a finite quantum well with
different values of the dimensionless parameter α. For α = 150, only two
energy levels appear, for α = 200, three energy levels appear, and for
α = 250, four energy levels appear. Therefore, the higher the value of α,
the more energy levels are found.
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Figure 5.2: Energy levels of a particle in a finite quantum well for three
values of the dimensionless parameter: (a) α = 150, (b) α = 200, and (c)
α = 250.

5.2 Energy bands of the sinusoidal potential

Now we consider the sinusoidal potential V (x) = −A cos (2πx/λ) whose
transfer matrix was calculated in Subsection 2.2. The energy bands of the
particle are given by Equation (4.4), where SE can be taken as the semi-
trace of the transfer matrixME from 0 to λ. According to Equation (2.12),
and considering that S2ε,−α(0) = C ′2ε,−α(0) = 0, we have

ME = TE(λ, 0)

=

[
C2ε,−α(π) S2ε,−α(π)

C ′2ε,−α(π) S′2ε,−α(π)

] [
C2ε,−α(0) S2ε,−α(0)

C ′2ε,−α(0) S′2ε,−α(0)

]−1

=


C2ε,−α(π)

C2ε,−α(0)

S2ε,−α(π)

S′2ε,−α(0)
C ′2ε,−α(π)

C2ε,−α(0)

S′2ε,−α(π)

S′2ε,−α(0)

 . (5.12)

Hence, we obtain

SE =
1

2
Tr(ME) =

1

2

(
C2ε,−α(π)

C2ε,−α(0)
+
S′2ε,−α(π)

S′2ε,−α(0)

)
, (5.13)

in good agreement with the literature [1, 18].
The blue curves in Figure 5.3 display the behavior of SE given by

Equation (4.4), for three values of the parameter α. The yellow ranges are
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Figure 5.3: Energy bands (yellow ranges) and gaps (white ranges) for a
particle in a sinusoidal potential for different values of the dimensionless
parameter: (a) α = 1.5, (b) α = 2.0 and (c) α = 2.5. The curve is for the
semi-trace SE .

the energy bands, whereas the white ranges between them are the energy
gaps. We observe that the energy bands narrow and the energy gaps widen
as the parameter α increases.

Figure 5.4 displays the dispersion relation (energy versus wave vector)
for the lowest five energy bands in Figure 5.4. These are continuous and
periodic functions of period 2π/λ. Their derivatives on the wave vector
are also continuous almost everywhere. In general, kinks may appear at
vanishing energy gaps. It is noteworthy that the sinusoidal potential allows
for arbitrarily small energy gaps, but none of them is null [16].

6 Conclusions

The transfer-matrix method has been applied to solve the Schrödinger
equation in one-dimension to find the allowed energy levels of a particle in
a quantum well, and in a periodic potential, with arbitrary profiles. This
should simplify calculations for complex profiles, even in the case where
the transfer matrix needs to be found by approximate numerical methods.
Analytical and numerical results were given for symmetric finite-barrier
quantum wells and sinusoidal periodic potentials. They were found in
agreement with the literature [10, 13].

For the finite quantum well, a graphical analysis of the energy spectrum
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Figure 5.4: As of Figure 5.3, but including the dependence of the energy ε
on the crystalline wave vector k. The lowest five energy bands are displayed
in different colors. Part of the fifth one is above the displayed energy range.

was performed for different values of a dimensionless parameter α that is
proportional to the product of the particle mass, the well depth and the
square of the well width. The higher the value of α, the more energy levels
were observed.

For the sinusoidal potential, the method led to a band structure that
is typical for particles in crystalline solids, with analytical expressions in
agreement with the literature [1, 18]. Numerical calculations were given
for different values of a dimensionless parameter α that is proportional to
the product of the particle mass, the potential amplitude and the squared
potential period. As α increases, the bands become narrower while the
energy gaps become wider.

Our formulation can be applied to solve the Schrödinger equation for
a variety of potential profiles in a clear, simple, universal and accurate
way. Beyond these benefits for students, physicists, engineers and the
like, the formulation should be useful to develop/benchmark trending al-
ternate methods, such as those using neural networks/machine learning
techniques [15].
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