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1 Introduction

It seems that the earliest results concerning the large time behavior of
solutions of asymptotically autonomous ordinary differential equations of
the form

x′ = f(t, x) (1.1)

in Rn with f(t, x)→ g(x) as t→∞ appeared in the work of Markus [21].
The equation

y′ = g(y) (1.2)
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is then called the limit equation of (1.1). It was proved, in the two dimen-
sional case (n = 2), that the ω−limit set of a forward bounded solution of
(1.1) either contains equilibria of (1.2) or is the union of periodic orbits of
(1.2).

Thieme, provided in [27], examples for which the solutions of (1.1)
display a large time behavior that differs dramatically from that of the
solutions to the limit system (1.2). In the work [28] the author introduced
the concept of quasi-autonomous systems and contributed in obtain some
more results about ω−limit set of a forward bounded solution of (1.1) re-
lating it to equilibria and periodic orbits of the limit system (1.2). The
equation (1.1) is called quasi-autonomous with limit (1.2) if for any com-
pact subset K of X, we have

∫∞
s0

supx∈K ‖f(s, x) − g(x)‖ds < ∞ for any
s0 ∈ R.

The authors of [22] assumed the following two conditions:

(A) f(t, x)→ g(x), t→∞, uniformly on compact sets of Rn;

(B) g is locally Lipschitz and for each compact subset K ⊆ Rn there
is a function µK : [0,∞)→ [0,∞) satisfying µK(t)→ 0, t→∞, and∣∣∣ ∫ t+σ

t
[f(s, x)− g(x)]ds

∣∣∣ ≤ µK(t)

for every (x, σ) ∈ K × [0, 1] and t ≥ 0. By denoting φ(t, s, x0) the solution
x(t) of (1.1) satisfying x(s) = x0 and θ(t, x0) denoting the solution y(t) of
(1.2) satisfying y(0) = x0, they proved that

φ(tj + sj , sj , xj)→ θ(t, x), j →∞,

for any three sequences tj → t, sj → ∞, xj → x as j → ∞, with
x, xj ∈ X, 0 ≤ t and sj ≥ t0.

The authors of [25] considered asymptotically autonomous ordinary
differential equations of the form x′ = f(x) + g(t, x) and proved that all
the classical solutions tend to zero as t → ∞ provided that f and g are
continuous vector-valued functions and g(t, ·) approaches zero as t → ∞,
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uniformly on compact subsets of Rn. Foti considered in [7] asymptotically
autonomous ordinary differential inclusions of the form x′ ∈ F (x)+G(t, x)

with G(t, x) becoming small in some sense as t → ∞. See also [6] for
asymptotically autonomous scalar inclusions.

A second order asymptotically autonomous ordinary differential equa-
tion with a potential of the form x′′ = a(t)V ′(x) with a(t) positive and
converging to a constant as t → ∞ was considered in [9] and asymptoti-
cally autonomous functional differential systems were considered in [11].

Asymptotically autonomous Partial Differential Equations of semilin-
ear type with the time dependence being only on the external forcing term
were considered in the works [1,2,5,8,19]. The authors of [18] approached
a weakly dissipative equation with the time dependence being only on the
external forcing term.

Asymptotically autonomous quasilinear PDEs with the main operator
depending on time were approached in [13, 14]. After that the authors
in [15, 24] had considered asymptotically autonomous Partial Differential
Inclusions with the main operator depending on time and the authors of
[16] had considered asymptotically autonomous Coupled Systems of Partial
Differential Inclusions with the main operators depending on time.

There are already some works in the literature studying the asymptotic
autonomy of pullback random attractors, see for example [4, 29].

The theory of evolution processes is an important machinery to study
the long time behavior of the global solutions associated with nonautono-
mous equations. For many of these equations we have the guaranty of the
existence of pullback attractors and for some problems the components of
the pullback attractor converges towards the global attractor associated
to a limiting semigroup. In the Section 3, we will present results that
shows the convergence of the pullback attractor to the global attractor if
and only if the pullback attractor is forward compact. Other results with
different sufficient conditions also highlight this convergence. Results with
necessary conditions are also presented. Moreover, we define the limit-
set and the lower limit-set of a pullback attractor and we present results
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that show the relationship between these two and the global attractor.
Finally, in Section 4 we present some examples where the abstract results
are applied, in particular, in the last example we apply the abstract results
to a quasi-linear parabolic equation with variable exponent in which the
main operator depends on time. This work is based on the papers [5, 13,
14,18,19].

2 Preliminaries

Let (X, d) be a complete metric space. Let us introduce some notations:
K(X) := {K ⊂ X : K is a nonempty compact set in X};
B(X) := {B ⊂ X : B is a nonempty bounded set in X};
R+ := [0,∞);
↑ := monotonically increasing;
↓ := monotonically decreasing.

Definition 2.1. A family of applications S := {S(t, s) : X → X, t ≥ s ∈
R} is called an evolution process in X if it satisfies:

(i) S(s, s) = IX (Identity in X);
(ii) S(t, s) = S(t, r)S(r, s), for all t ≥ r ≥ s.

We will assume that the evolution process S is joint continuous, i.e.,
the application [s,+∞) × X 3 (t, x) 7−→ S(t, s)x ∈ X is continuous for
any s ∈ R.

Definition 2.2. An evolution process is called autonomous whenever
S(t, s) = S(t− s, 0) for all t ≥ s.

Definition 2.3. [17] A family of operators T := {T (t) : t ≥ 0} with
T (t) : X −→ X a continuous map for any t ≥ 0, is called a semigroup
whenever

(i) T (0) = IX ;
(ii) T (t+ s) = T (t)T (s), for all t, s ≥ 0.
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Definition 2.4. A semigroup T is called continuous if the following ap-
plication R+ ×X 3 (t, x) 7−→ T (t)x ∈ X is continuous.

Remark 2.5. Let {S(t−s, 0), t ≥ s} be an autonomous evolution process.
The family of operators {T (t) : t ≥ 0} given by T (t) := S(t, 0)(t ≥ 0)

defines a semigroup. Reciprocally, if T := {T (t) : t ≥ 0} is a continuous
semigroup, then the family {S(t, s) : t ≥ s} given by S(t, s) := T (t − s)
(t ≥ s) defines an evolution process.

Definition 2.6. Let A and M be nonempty subsets of X. We say that
A attracts M (through the semigroup T ) if for any ε > 0, there exists
t(ε,M) ≥ 0 such that T (t)M ⊂ Oε(A) for all t ≥ t(ε,M), where Oε(A) :=

{x ∈ X : d(x,A) < ε}. We say that A attracts a point x ∈ X if A attracts
the unitary set {x}.

Definition 2.7. [17] Let A be a nonempty subset of X. If A attracts
each point x ∈ X, then A is called a global attractor of points (for the
semigroup T ); If A attracts each set B ∈ B, then A is called a global
B−attractor .

A time-dependent family of nonempty sets P = {P(t)}t∈R in X is said
to be a brochette over X.

Definition 2.8. [18, 19] A brochette P over X is called
(i) compact (resp. bounded) if P(t) is compact (resp. bounded)

for each a, b ∈ R with a < b;
(ii) locally compact if it is compact and

⋃
s∈[a,b] P(s) is pre-compact;

(iii) forward compact if it is compact and
⋃
s≥tP(s) is pre-compact

for each t ∈ R;
(iv) backward compact if it is compact and

⋃
s≤tP(s) is pre-compact

for each t ∈ R;
(v) uniformly compact or globally compact if it is compact and⋃

s∈RP(s) is pre-compact;
(vi) decreasing (resp. increasing) if P(t1) ⊃ P(t2) (resp. P(t1) ⊂

P(t2)) for t1 < t2.
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Definition 2.9. [14] Let {A(t) : t ∈ R} be a brochette over X. We say
that this family of sets is invariant by the evolution process S if

S(t, s)A(s) = A(t), ∀ t ≥ s.

Definition 2.10. [18] We denote by dist the Hausdorff semi-distance in
X between the nonempty sets A and B, i.e.,

dist(A,B) := sup
a∈A

inf
b∈B

d(a, b),

and by distH the Hausdorff distance in X, i.e.,

distH(A,B) := max{dist(A,B), dist(B,A)}.

Definition 2.11. [18] A family A := {A(t) : t ∈ R} of nonempty compact
sets in X is called a pullback attractor for the evolution process S if

(i) is invariant by the evolution process S;
(ii) it pullback attracts bounded subsets of X, i.e., for each B ∈ B,

t ∈ R,
lim

τ−→+∞
dist

(
S(t, t− τ)B,A(t)

)
= 0.

Remark 2.12. In general we are interested on the minimal closed pullback
attractor A which satisfies (i) and (ii), i.e., if there is another invariant
family of closed sets C := {C(t) : t ∈ R} which pullback attracts bounded
sets of X, then A(t) ⊂ C(t), for all t ∈ R.

Lemma 2.13. [19] A pullback attractor for an evolution process must be
locally compact.

Lemma 2.14. [19] A pullback attractor A is forward (resp. backward)
compact if and only if

⋃
s≥t0A(s) (resp.

⋃
s≤t0A(s)) is pre-compact for

some t0 ∈ R.

Proposition 2.15. [12] A pullback attractor is always continuous at any
finite time, i.e.,

lim
t−→t0

distH
(
A(t),A(t0)

)
= 0.
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The main aim of this work is to present abstract conditions to assure
upper semicontinuity or continuity of the pullback attractors at infinity,
i.e., when t→∞.

Definition 2.16. [17] Let B ∈ B(X). We say that B is invariant by
the semigroup T if T (t)B = B, ∀ t ≥ 0.

Definition 2.17. [17] A nonempty set A∞ ⊆ X is called a global at-
tractor for the semigroup T if

(i) it is compact;
(ii) it is invariant by the semigroup T ;
(iii) it attracts each bounded subset of X, in other words, A∞ is a

global B−attractor.

Remark 2.18. In general we are interested in the compact set A which
is the minimal closed invariant global B−attractor, i.e., if there is another
invariant and closed set C which attracts bounded sets of X, then A ⊂ C.
In [10], “global attractor" already mean the maximal compact invariant
global B−attractor.

Proposition 2.19. The maximal compact invariant global B−attractor
coincides with the compact set which is the minimal closed and invariant
global B−attractor.

Proof. Let us suppose first that there exists maximal compact invariant
global B−attractor and let us call it A. Let C be an arbitrary closed
and invariant set which is a global B−attractor. Then, C attracts the
bounded set A. Hence ω(A) ⊂ C. Since A is an invariant closed set, we
have A = ω(A). So, A ⊂ C. Therefore, A is the compact minimal closed
and invariant global B−attractor.

On the other hand, if we suppose that there exists the compact minimal
closed and invariant global B−attractor and let us call itM. Let D be an
arbitrary compact and invariant global B−attractor. Then, D = ω(D) ⊂
M. Therefore, M is the maximal compact invariant global B−attractor.
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3 Asymptotically autonomous processes: generic
results

The reader can find results which establish conditions for the existence
of the pullback attractor for an evolution process in [2, 3, 12]. For results
which establish conditions for the existence of the global attractor for a
semigroup we refer the reader to [10, 17, 20, 26]. We will consider in this
section an evolution process S and a semigroup T and we will assume that
S has a pullback attractor A and that T possess a global attractor A∞ in
X.

3.1 Abstract results

Definition 3.1. [18] We say that S is asymptotically autonomous to
T if

lim
τ−→+∞

d(S(τ + t, τ)xτ , T (t)x0) = 0, ∀ t ≥ 0, (3.1)

whenever xτ −→ x0 as τ −→ +∞.

We say that S is uniformly asymptotically autonomous to T if
the convergence in (3.1) is uniform on t ≥ 0, i.e.,

lim
τ−→+∞

sup
t≥0

d(S(τ + t, τ)xτ , T (t)x0) = 0.

Definition 3.2. [18] We say that S isweakly asymptotically autonomous
to T if for each t ≥ 0,

lim
τ−→+∞

d(S(τ + t, τ)xτ , T (t)x0) = 0, (3.2)

whenever xτ ∈ A(τ) and xτ −→ x0 as τ −→ +∞.

The next theorem was proved in [18] and it reduces the condition of
uniformity of Theorem 3.2 in [13]. Moreover, it gives a necessary and
sufficient condition.
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Theorem 3.3. [18] Suppose S is weakly asymptotically autonomous to T .
Then the upper semicontinuity holds, i.e,

lim
τ−→+∞

dist(A(τ),A∞) = 0 (3.3)

if and only if A is forward compact.

3.1.1 Sufficient conditions for forward convergence

In this section, some results will be presented with sufficient condi-
tions to guarantee the convergence of the pullback attractor to the global
attractor. Here, we present results that show the convergence of the pull-
back attractor to the global attractor using forward boundedness instead
of forward compactness. For certain EDP’s it is not possible to show that
the pullback attractor is forward compact.

Definition 3.4. [5] A family {E(t)}t∈R of nonempty sets is said to be
(i) forward bounded, if there exists a bounded set B such that⋃

t≥0

E(t) ⊂ B;

(ii) backwards bounded, if there exists a bounded set K such that⋃
t≤0

E(t) ⊂ K.

Remark 3.5. Note that the property of being asymptotically autonomous

lim
t−→+∞

d
(
S(t+ T0, t)x, T (T0)x

)
= 0,∀ T0 > 0,

can be rewritten as the following equivalent form

lim
t−→+∞

d
(
S(t, t− T0)x, T (T0)x

)
= 0,∀ T0 > 0.

Theorem 3.6. [13] Let A be a pullback attractor for the evolution process
S in X and A∞ be a global attractor for the semigroup T in X. Suppose
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that for each ε > 0 there exist τ0 = τ0(ε) and a bounded set B(τ0) in X

such that
sup

ψ∈A(τ0)
d
(
S(t, τ0)ψ, T (t− τ0)ψ

)
< ε, ∀ t ≥ τ0, (3.4)

⋃
t≥τ0

A(t) ⊂ B(τ0). (3.5)

Then
lim

t−→+∞
dist

(
A(t),A∞

)
= 0.

Proof. Let ε > 0 be given and let τ1 = τ0(ε/3). Since the global attractor
A∞ of the semigroup T attracts bounded sets of X, there exists a positive
t1 = t1(ε/3,B(τ1)) > τ1 such that

dist (T (t− τ1)B(τ1),A∞) <
ε

3

for t ≥ t1.
Then, by (3.4) with ε/3 and τ1 instead of ε and τ0,

dist (A(t),A∞) = dist (S(t, τ1)A(τ1),A∞)

= sup
ψ∈A(τ1)

dist (S(t, τ1)ψ,A∞)

≤ sup
ψ∈A(τ1)

dist (S(t, τ1)ψ, T (t− τ1)ψ)

+ sup
ψ∈A(τ1)

dist (T (t− τ1)ψ,A∞)

≤ ε

3
+
ε

3
< ε,

for all t ≥ t1.

Corollary 3.7. [5] Suppose that S is an evolution process which has a
pullback attractor A and T is a semigroup which possesses a global attractor
A∞. If

(i) A is forward bounded, i.e., there exists a bounded set B such that⋃
t≥0

A(t) ⊂ B;



42 J. Simsen

(ii) the following condition holds

lim
t−→∞

sup
x∈B

d
(
S(t+ T0, t)x, T (T0)x

)
= 0,∀ T0 > 0. (3.6)

Then
lim
t−→∞

dist
(
A(t),A∞

)
= 0. (3.7)

Proof. Just note that condition (i) in this corollary implies (3.5) of Theo-
rem 3.6 and (3.6) is stronger than (3.4).

The next proposition provide conditions to obtain convergence with the
Hausdorff distance instead of semi-distance. Let us start with the more
general situation of a pullback attractor converging to another pullback
attractor as t −→ +∞.

Theorem 3.8. [23] Suppose that A and A = {A(t)}t∈R are pullback at-
tractors for the evolution processes S and S∞, respectively. If

(i) A is forward bounded, i.e., there exists a bounded set B such that⋃
t≥0

A(t) ⊂ B;

(ii) the following convergence holds

sup
x∈B,τ∈R+

d
(
S(t, t− τ)x, S∞(t, t− τ)x

)
−→ 0 as t −→ +∞. (3.8)

Then
lim

t−→+∞
dist

(
A(t),A(t)

)
= 0. (3.9)

If, moreover, A is also forward bounded, then the pullback attractors A
and A are asymptotically equivalent in future time, i.e.,

lim
t−→+∞

distH
(
A(t),A(t)

)
= 0. (3.10)

Proof. Let us prove (3.9) by contradiction. Suppose that (3.9) is not true.
Then there exist δ > 0 and a sequence 0 < tn ↑ +∞ such that

dist
(
A(tn),A(tn)

)
≥ δ, ∀ n ∈ N.
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Since the pullback attractor A is compact, for each n ∈ N, we can choose
xn ∈ A(tn) such that

dist
(
xn,A(tn)

)
= dist

(
A(tn),A(tn)

)
≥ δ, ∀ n ∈ N. (3.11)

By the invariance of the pullback attractor A, for each m,n ∈ N, we can
rewrite xn as

xn = S(tn, tn −m)bn,m,

with bn,m ∈ A(tn − m) ⊂ B. Thus, by condition (3.8), there is N =

N(δ) > 0 such that for all m ∈ N,

d
(
xN , S∞(tN , tN −m)bN,m

)
= d
(
S(tN , tN −m)bN,m, S∞(tN , tN −m)bN,m

)
≤ sup

x∈B,τ∈R+

d
(
S(tN , tN − τ)x, S∞(tN , tN − τ)x

)
<
δ

2
.

(3.12)

Moreover, as {bn,m} ⊂ B is attracted by A through the evolution process
S∞, there is M = M(N, δ) > 0 such that

dist
(
S∞(tN , tN −m)bN,m,A(tN )

)
≤ dist

(
S∞(tN , tN −m)B,A(tN )

)
< δ/2,∀ m ≥M.

(3.13)

Hence, from (3.12) and (3.13) it follows that, for all m ≥M ,

dist
(
xN ,A(tN )

)
≤ d
(
xN , S∞(tN , tN −m)bN,m

)
+ dist

(
S∞(tN , tN −m)bN,m,A(tN )

)
<
δ

2
+
δ

2
= δ,

what contradicts (3.11).
Therefore,

lim
t−→+∞

dist
(
A(t),A(t)

)
= 0.

Now, let us prove the second part. In the case of A also being forward
bounded, we change A by A in the proof above and we obtain:

lim
t−→+∞

dist
(
A(t),A(t)

)
= 0.
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So, (3.10) holds, i.e., the pullback attractors A and A are asymptoti-
cally equivalent in future time.

Corollary 3.9. Suppose that S is an evolution process with a pullback
attractor A and that T is a semigroup with a global attractor A∞. If

(i) A is forward bounded, i.e., there is a bounded set B such that⋃
t≥0

A(t) ⊂ B;

(ii) the following condition holds

sup
x∈B,τ∈R+

d
(
S(t, t− τ)x, T (τ)x

)
−→ 0, as t −→ +∞,

then the global attractor A∞ is the ω-limit set of the pullback attractor A,
i.e.,

lim
t−→+∞

distH
(
A(t),A∞

)
= 0.

Proof. Define S∞(t, s)x := T (t − s)x for t ≥ s and x ∈ X. Then, S∞ is
an evolution process with a pullback attractor A ≡ A∞. Therefore, by
Theorem 3.8 the result follows.

3.1.2 Sufficient conditions for backwards convergence

Here, we will see the results of convergence of the pullback attractor
to the global attractor as t → −∞ by using backwards compactness and
boundedness of the pullback attractor. The proofs are similar of the results
in the previous subsection.

The next theorem is similar to Theorem 3.3 but now with the condition
of the pullback attractor A being backward compact.

Proposition 3.10. [5] Let S be an evolution process with a pullback at-
tractor A and T a semigroup with a global attractor A∞. Suppose that

(i) for any {xt} with xt ∈ A(t) and lim
t−→−∞

d(xt, x0) = 0,

lim
t−→−∞

d
(
S(t, t− T0)xt, T (T0)x0

)
= 0, ∀ T0 ∈ R+; (3.14)
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(ii) A is backward compact.
Then

lim
t−→−∞

dist
(
A(t),A∞

)
= 0. (3.15)

Proposition 3.11. [5] Suppose that A and A = {A(t)}t∈R are pullback
attractors for the evolution processes S and S∞, respectively. If

(i) A is backward bounded, i.e., there is a bounded set B such that⋃
t≤0

A(t) ⊂ B;

(ii) the following convergence holds

sup
x∈B,τ∈R+

d
(
S(t, t− τ)x, S∞(t, t− τ)x

)
−→ 0, as t −→ −∞. (3.16)

Then
lim

t−→−∞
dist

(
A(t),A(t)

)
= 0. (3.17)

If, moreover, A is backward bounded, then the pullback attractors A
and A are asymptotically equivalent in past time, i.e.,

lim
t−→−∞

distH
(
A(t),A(t)

)
= 0. (3.18)

Corollary 3.12. [5] Suppose that S is an evolution process with a pullback
attractor A and that T is a semigroup with a global attractor A∞. If

(i) A is backward bounded, i.e, there is a bounded set B such that⋃
t≤0

A(t) ⊂ B;

(ii) the following convergence holds

sup
x∈B,τ∈R+

d
(
S(t, t− τ)x, T (τ)x

)
−→ 0, as t −→ −∞. (3.19)

Then, the global attractor A∞ is the α-limit set of the pullback attractor
A, i.e.,

lim
t−→−∞

distH
(
A(t),A∞

)
= 0.
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3.1.3 Necessary conditions

Here we shall present two propositions with necessary conditions to
assure convergence of the pullback attractor to the global attractor.

Definition 3.13. [5] A family E = {Et}t∈R of nonempty compact sets is
called locally uniformly compact, if for any bounded interval I ⊂ R
the union

⋃
t∈I Et is pre-compact.

Proposition 3.14. [5] Suppose that {Et}t∈R is a locally uniformly com-
pact family of nonempty compact sets in X. Then there is a nonempty
compact set E such that lim

t−→∞
dist(Et, E) = 0 if and only if {Et}t∈R is

forward compact.

Proposition 3.15. [23] Suppose that {Et}t∈R is a locally uniformly com-
pact family of nonempty compact sets in X. Then there exists a nonempty
compact set E such that lim

t−→−∞
dist(Et, E) = 0 if and only if the family

{Et}t∈R is backward compact.

Proof. (⇒) We want to prove that
⋃
t≤0Et is pre-compact. Take an ar-

bitrarily sequence {xn} ⊂
⋃
t≤0Et. Then, we need to show that {xn}

possess a convergent subsequence. Since {xn} ⊂
⋃
t≤0Et, there is a se-

quence {tn} ⊂ (−∞, 0] such that xn ∈ Etn for all n ∈ N. We have two
cases to consider:

- First case: there exists a finite quantity E1, E2, · · ·, Ek such that

{xn} ⊂
k⋃
j=1

Ej .

Note that {xn} possess a convergent subsequence once
⋃k
j=1Ej is com-

pact.
- Second case: there is an infinity of indexes l’s such that xl ∈ Etl , for

all l ∈ N, with xl 6= xj and Etl 6= Etj when l 6= j.
Consider a decreasing subsequence {xlk} of the sequence {xl}.
We have two possibilities:
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- Possibility 1 : tlk ↓ −∞.
Since {xlk} ⊂

⋃∞
k=1Etlk , with xlk ∈ Etlk , for all k ∈ N, we have:

d(xlk , E) ≤ dist(Etlk , E) −→ 0 as k −→ +∞.

Thus, limk−→+∞ d(xlk , E) = 0. Then, for each given j ∈ N there exists
k0(j) such that xlkj ∈ O1/j(E) for lkj ≥ k0(j). Moreover, there exists
wkj ∈ E such that d(xlkj , wkj ) < 1/j. Once E is a compact set, we can
consider wkj −→ x ∈ E as j −→∞.

Claim: xlkj −→ x.
Indeed,

d(xlkj , x) ≤ d(xlkj , wkj ) + d(wkj , x)

<
1

j
+ d(wkj , x).

Hence, limj−→+∞ d(xlkj , x) = 0.
So, the sequence {xl} possess a convergent subsequence {xlkj }. Since

{xl} is a subsequence of the original sequence {xn}, we had prove that the
sequence {xn} has a convergent subsequence.

- Possibility 2 : tlk ↓ a with −∞ < a ≤ 0.

We have {xlk} ⊂
⋃∞
k=1Etlk , with xlk ∈ Etlk for all k ∈ N.

Note that tlk ∈ [a, 0]. Thus,

{xlk} ⊂
⋃

tlk∈[a,0]

Etlk ⊂
⋃

t∈[a,0]

Et.

From hypotheses,
⋃
t∈[a,0]Et ∈ K(X), then {xlk} possess a convergent

subsequence.
(⇐) Suppose that the family {Et}t∈R is backwards compact. Then,⋃

t≤0Et is pre-compact, or equivalently, E :=
⋃
t≤0Et is compact. Note

that E 6= ∅ once by hipotheses, {Et}t∈R is a family of nonempty sets.
For simplicity, we will show that limt−→−∞ dist(Et, E) = 0 by using

sequences. Consider the sequence tn ↓ −∞. Since each Etn is compact,
for any n ∈ N, we can choose xn ∈ Etn such that

d(xn, E) = dist(Etn , E), ∀ n ∈ N. (3.20)
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Note that xn ∈ Etn ⊂ E. As E is compact, the sequence {xn} possess a
convergent subsequence, i.e., xnk

−→ x ∈ E as k −→ +∞. Then,

lim
k−→+∞

d(xnk
, x) = 0. (3.21)

On the other hand, we have

dist(xnk
, E) ≤ d(xnk

, x), ∀ n ∈ N.

Passing the limit in both sides of the above inequality and using (3.21) we
obtain

lim
k−→+∞

dist(xnk
, E) ≤ lim

k−→+∞
d(xnk

, x) = 0.

Then,
lim

k−→+∞
dist(xnk

, E) = 0.

From (3.20) we have limk→+∞ dist(Etnk
, E) = 0, which means in other

word that, limt→−∞ dist(Et, E) = 0, as we wanted to prove.

3.1.4 Construction of the limit-set of the pullback attractor

Here, we shall compare the global attractor A∞ with the so-called
limit-set A(∞) of the pullback attractor.

Definition 3.16. [18] The limit-set A(∞) of the pullback attractor A :=

{A(t) : t ∈ R} is defined in the following way:

A(∞) :=
⋂
t∈R

⋃
r≥t
A(r).

Similarly, one can define the set

A(−∞) :=
⋂
t∈R

⋃
r≤t
A(r).

Proposition 3.17. [23] The following characterization holds:

A(∞) =
⋃
rn↑∞
{x ∈ X : ∃ xn ∈ A(rn) such that xn −→ x}. (3.22)
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Proof. Let us show first that⋂
t∈R

⋃
r≥t
A(r) ⊂

⋃
rn↑∞
{x ∈ X : ∃ xn ∈ A(rn) such that xn −→ x}.

Take an arbitrary w ∈
⋂
t∈R

⋃
r≥t
A(r). Consider a sequence tn ↑ +∞, i.e.,

t1 < t2 < t3 < · · · < tn < · · ·.

Then w ∈
⋃
r≥tn
A(r) for all n ∈ N. So, for each n ∈ N, there is {wnj } ⊂⋃

r≥tn
A(r) such that wnj −→ w as j −→∞. Note that, wnj ∈ A(snj ) for some

snj ≥ tn. Considering, rj := sjj where rj ≥ tj it follows that xj := wjj ∈
A(rj) and xj −→ w as j −→∞, as we wanted to show.

Now, let us show that⋃
rn↑∞
{x ∈ X : ∃ xn ∈ A(rn) such that xn −→ x} ⊂

⋂
t∈R

⋃
r≥t
A(r).

Let x ∈
⋃

rn↑∞
{x ∈ X : ∃ xn ∈ A(rn) such that xn −→ x}. Then, there

is a sequence {xn} with xn ∈ A(rn) for all n ∈ N, such that xn −→ x and
rn ↑ +∞.

Let t ∈ R be arbitrarily fixed. We want to show that x ∈
⋃
r≥t
A(r).

Since rn ↑ +∞, there is n1 ∈ N such that n ≥ n1 =⇒ rn ≥ t.
So, with n ≥ n1, xn ∈ A(rn), rn ≥ t and xn → x as n −→∞.
Renumbering the sequence y1 = xn1 , y2 = xn1+1, y3 = xn1+2,... and

r̃1 = rn1 , r̃2 = rn1+1, r̃3 = rn1+2,... we have yn ∈ A(r̃n), r̃n ≥ t and
yn −→ x. Thus, x ∈

⋃
r≥t
A(r). Once t was arbitrary, we can conclude that

x ∈
⋂
t∈R

⋃
r≥t
A(r), as we wanted to show.

Therefore, we have⋂
t∈R

⋃
r≥t
A(r) =

⋃
rn↑∞
{x ∈ X : ∃ xn ∈ A(rn) such that xn −→ x}.
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Proposition 3.18. [18] Consider S an evolution process possessing a for-
ward compact pullback attractor A and a semigroup T having a global at-
tractor A∞. Suppose that S is asymptotically autonomous to T , then we
have A(∞) ⊂ A∞.

To have the equality A(∞) = A∞, we need stronger conditions.

Proposition 3.19. [18] Under the same assumptions of Proposition 3.18,
we have A(∞) = A∞ if we further assume the following conditions:

(i) A(∞) is a forward attracting set for S(·, 0), i.e., for each B ∈ B,

lim
t−→+∞

dist
(
S(t, 0)B,A(∞)

)
= 0;

(ii) S(·, 0) converges to T uniformly on bounded sets of X, i.e., for
each B ∈ B,

lim
t−→+∞

sup
x∈B

d
(
S(t, 0)x, T (t)x

)
= 0.

Remark 3.20. Proposition 3.19 holds true if (i) and (ii) hold true only
for B = A∞.

Theorem 3.21. [19] Consider S an evolution process possessing a pull-
back attractor A.
(i) lim

t−→∞
dist

(
A(t),A(∞)

)
= 0 if and only A is forward compact.

(ii) lim
t−→−∞

dist
(
A(t),A(−∞)

)
= 0 if and only A is backward compact.

The next lemma present a special case where the global attractor is
only a unitary set. In this case we obtain lower semicontinuity.

Lemma 3.22. [18] Under the same assumptions of Proposition 3.18, if
the global attractor is a single point, i.e., A∞ = {x0}, then A(∞) = A∞.
In this case, we also have the lower semicontinuity:

dist
(
A∞,A(t)

)
−→ 0 as t −→ +∞.
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3.1.5 Construction of the lower limit-set of the pullback attrac-
tor

In this subsection, we will see the definition of the so-called lower limit-
set of the pullback attractor and present a proposition where the lower
upper semicontinuity holds if and only if the global attractor is equal to
the lower limit-set of the pullback attractor.

Definition 3.23. [18] We define the lower limit-setAL(∞), of the pullback
attractor A := {A(t)}t∈R, by:

AL(∞) =
⋂
rn↑∞
{x ∈ X : ∃ xn ∈ A(rn) such that xn −→ x}. (3.23)

Proposition 3.24. [18] Under the same assumptions of Proposition 3.18,
the lower semicontinuity holds, i.e.,

lim
t−→+∞

dist
(
A∞,A(t)

)
= 0 (3.24)

if, and only if, A∞ = AL(∞). In either case, A∞ = A(∞).

Theorem 3.25. [19] Consider S an evolution process possessing a for-
ward compact pullback attractor A with a nonempty lower limit-set AL(∞).
Then, AL(∞) is compact and such that

lim
t−→∞

dist
(
AL(∞),A(t)

)
= 0.

Remark 3.26. The reader can find some more similar results involving
upper and lower limit-sets of pullback attractors in [19].

4 Applications

Let us start with three examples of applications where the time depen-
dence is on the external forcing term. The reader can also find asymptoti-
cally autonomous problems in Section 8.6.2 of [2], where non-autonomous
semi-linear problems with the explicit dependence on time occurring only
in the external forcing term are presented.
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Example 4.1. Consider the following nonautonomous reaction diffusion
equation on R :

∂u

∂t
−∆u+ λu+ f(u) = g(x, t), (4.1)

with the initial condition u(τ) = u0, where λ > 0 and the nonlinearity
f ∈ C1(R,R) satisfying

f(u)u ≥ 0, f(0) = 0, f ′(u) ≥ −c, c ≥ 0, |f ′(u)| ≤ c(1 + |u|p)

with p ≥ 0. The nonautonomous forcing term g ∈ L2
loc(R, L2(R)) satisfies

the following tempered condition∫ 0

−∞
eλs‖g(·, s‖2ds <∞.

By using Corollary 3.7 it was proved in [5] that if there is g0(·) ∈ L2(R)

such that
lim
τ→∞

∫ ∞
τ
‖g(·, s)− g0‖2ds = 0,

then limt→∞ dist(A(t),A∞) = 0, where the semi-distance is on L2(R),
A := {A(t)}t∈R is the pullback attractor associated to problem (4.1) and
A∞ is the global attractor of the autonomous limit equation

∂u

∂t
−∆u+ λu+ f(u) = g0(x).

.

Example 4.2. Consider the following nonautonomous weakly dissipative
p−Laplace equation:

∂u

∂t
+Au+ λu+ f(x, u) = g(x, t), t ≥ τ ∈ R, x ∈ Rn, (4.2)

with the initial condition u(τ) = u0, where λ > 0 and the main operator
A : W 1,p(Rn)→W−1,p′(Rn) is a p−Laplace operator defined by

Au(v) :=

n∑
i=1

∫
Rn

|uxi |p−2uxivxidx,
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for u, v ∈W 1,p(Rn) and p > 2.

The source term satisfies the following condition:
Assumption F. f is a continuously differentiable function satisfying:

for all (x, s) ∈ Rn × R,

f(x, s)s ≥ α1|s|q + ψ1(x), |f(x, s)| ≤ α2|s|q−1 + ψ2(x),
∂f

∂s
(x, s) ≥ −α3,

where q > 2, α1, α2, α3 > 0 are constants, ψ2 ∈ L2(Rn) and ψ1 ∈ L1(Rn)∩
LI+1(Rn), with I = I(p, q) :=

{p− 2

q − 2

}
, where {r} denotes the minimal

integer no lesser than r.
The external forcing term satisfies the following two conditions:
Assumption G1. g is uniformly tempered in L2(Rn) ∩ LI+1(Rn) :

limt→∞G2(t) < ∞ and limt→∞GI+1(t) < ∞, where all the functions
t 7→ Gi(t) are increasing and defined by

Gi(t) := sup
s≤t

∫ 0

−∞
eλr‖g(·, r + s)‖iLidr, for i = 2, · · · , I + 1.

Assumption G2. There is a function g∞ ∈ L2(Rn) ∩ LI+1(Rn) such
that

lim
τ→∞

∫ ∞
0

e−2α3s‖g(·, τ + s)− g∞(·)‖2ds = 0,

where α3 is the positive constante given in Assumption F.
By using the Theorem 3.3 and Proposition 3.18 it was proved in [18]

that under the assumptions F,G1 andG2 the nonautonomous p−Laplacian
equation has a pullback attractor that converges upper semicontinuously
in L2(Rn) to the global attractor of the autonomous limit equation with
the external forcing term g∞.

Example 4.3. Consider the following nonautonomous Ginzburg-Landau
equation:

∂u

∂t
= (λ+ iα(t))∆u− (κ+ iβ(t))|u|2u+ γu+ f(t, x), t ≥ s ∈ R, x ∈ Ω,

(4.3)
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with homogeneous Dirichlet boundary condition and the initial condition
u(τ) = u0, where λ, κ, γ > 0 are constants, where Ω is smooth bounded
domain in Rn, n = 1, 2 and the unknown u is a complex-valued function.

The variable coefficients satisfy the following condition:
Hypothesis A. α(·) ∈ C(R,R) and β(·) ∈ Cb(R,R).

The external force f satisfy the following condition:
Hypothesis B. f ∈ Lloc(R, L2(Ω)) is forward tempered in the fol-

lowing sense:

sup
r≥t

∫ r

−∞
eγ(q−r)‖f(q, ·)‖2dq <∞, ∀ t ∈ R.

By using Theorem 3.21 (i) it was proved in [19] that under the hypothe-
ses A and B the nonautonomous Ginzburg-Landau equation has a forward
compact pullback attractor A in L2(Ω)×L2(Ω) that converges upper semi-
continuously to the limit-setA(∞) as t→ +∞, i.e., lim

t−→∞
dist

(
A(t),A(∞)

)
= 0. Also, by using Theorem 3.25, it was proved the lower semicontinuous
convergence to AL(∞) as t→ +∞, i.e, lim

t−→∞
dist

(
AL(∞),A(t)

)
= 0.

If instead of hypothesis B, the external force f would satisfies
Hypothesis B’. f ∈ Lloc(R, L2(Ω)) is backward tempered in the

following sense:

sup
r≤t

∫ r

−∞
eγ(q−r)‖f(q, ·)‖2dq <∞, ∀ t ∈ R,

then by using item (ii) of Theorem 3.21 it was proved in [19] that under the
hypotheses A and B’ that the nonautonomous Ginzburg-Landau equation
has a backward compact pullback attractor A such that

lim
t−→−∞

dist
(
A(t),A(−∞)

)
= 0.

In this example all the semi-distances were on the space L2(Ω)× L2(Ω).

In the last example the time-dependence will be on the main operator:
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Example 4.4. [13] Consider the following quasi-linear parabolic equation
with variable exponents:

∂u

∂t
(t)− div

(
D(t, x)|∇u(t)|p(x)−2∇u(t)

)
+ |u(t)|p(x)−2u(t) = B(u(t)),

(4.4)
with u(τ) = ψτ , on a bounded smooth domain Ω in Rn for some n ≥ 1

with a homogeneous Neumann boundary condition, where the exponent
p(·) ∈ C(Ω̄,R) satisfies p+ := maxx∈Ω̄ p(x) ≥ p− := minx∈Ω̄ p(x) > 2 and
the initial condition u(τ) ∈ H := L2(Ω).

Motivated by problem (4.4), we study the asymptotic behavior of an
abstract non-autonomous evolution equation in a Hilbert space H of the
form

∂u

∂t
(t) +A(t)u(t) = B(u(t)), u(τ) = ψτ . (4.5)

compared with that of an autonomous evolution equation

∂v

∂t
(t) +A∞v(t) = B(v(t)), v(0) = ψ0, (4.6)

where the operators A, A∞ and B satisfy the following assumptions.
Assumption A For each τ ∈ R there exists a nonincreasing function
gτ : [0,+∞) → [0,+∞) such that gτ (0)→ 0 as τ → +∞ and

〈A(t+τ)u(t+τ)−A∞v(t), u(t+τ)−v(t)〉 ≥ −gτ (t), for all t ∈ R+, τ ∈ R,

for any solution u of (4.5) and v of (4.6).
Assumption B The mapping B : H → H is globally Lipschitz, i.e., there
exists L ≥ 0 such that

‖B(x1)−B(x2)‖H ≤ L‖x1 − x2‖H for all x1, x2 ∈ H.

We will suppose that the process {U(t, τ) : t ≥ τ} generated by prob-
lem (4.5) has a pullback attractor A = {A(t) : t ∈ R} and that the semi-
group {T (t) : t ≥ 0} generated by problem (4.6) has a global autonomous
attractor A∞ in the Hilbert space H.
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Lemma 4.5. [13] Suppose that Assumption A is satisfied. Then U(t +

τ, τ)ψτ → T (t)ψ0 in H as τ → +∞ for any t ≥ 0 whenever ψτ → ψ0 in
H as τ → +∞.

Proof. Fix t ≥ 0 arbitrarily and take T ≥ t. Subtracting equation (4.6)
from the equation (4.5) gives

d

dt
(u(t+ τ)− v(t)) +A(t+ τ)u(t+ τ)−A∞v(t) = B(u(t+ τ))−B(v(t))

for a.e. t ∈ [τ, T ]. Multiplying by u(t + τ) − v(t) and taking the inner
product, then using Assumption A, we obtain

1

2

d

dt
‖u(t+ τ)− v(t)‖2H ≤ L‖u(t+ τ)− v(t)‖2H + gτ (t).

Integrating this last inequality from 0 to t and using that gτ is nonincreas-
ing, gives

‖u(t+ τ)− v(t)‖2H ≤ ‖ψτ − ψ0‖2H + 2tgτ (0)

+2L

∫ t

0
‖u(s+ τ)− v(s)‖2Hds.

Hence, by the Gronwall inequality, there is a positive constant K = K(T )

such that

‖u(t+ τ)− v(t)‖2H ≤
(
‖ψτ − ψ0‖2H + gτ (0)

)
K.

Since ψτ →ψ0 in H and gτ (0) → 0 as τ → +∞, the result follows.
The above result is applied here to the quasi-linear parabolic equation

with spatially variable exponents (4.4) in the Hilbert space H := L2(Ω).
The existence of a pullback attractor for the problem (4.4) was proved in
[14].

We assume that B satisfies Assumption B and that the coefficient D
satisfies the following Assumption:
Assumption D D : [τ, T ]×Ω → R is a function in L∞([τ, T ]×Ω) such
that

(D1) there are positive constants, β and M such that 0 < β ≤ D(t, x) for
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almost all (t, x) ∈ [τ, T ]× Ω.

(D2) D(t, x) ≥ D(s, x) for each x ∈ Ω and t ≤ s in [0, T ].

(D3) D(t+ τ, ·) → D∗(·) in L∞(Ω) as τ → +∞, for any t ≥ 0.

Assumptions (D1)-(D2) imply that the pointwise limit D∗(x) as t→∞
exists and satisfies 0 < β ≤ D∗(x) for almost all x ∈ Ω. Then the problem
(4.4) with D∗(x) is autonomous and has a global autonomous attractor as
a particular case of the results in [14].

It will be shown that the dynamics of the original non-autonomous
problem is asymptotically autonomous and its pullback attractor converges
upper semicontinuously to the autonomous global attractor A∞ of the
problem

∂v

∂t
(t)−div

(
D∗|∇v(t)|p(x)−2∇v(t)

)
+|v(t)|p(x)−2v(t) = B(v(t)), v(0) = ψ0.

(4.7)
In particular, consider the operators

A(t)u := −div
(
D(t)|∇u|p(x)−2∇u

)
+ |u|p(x)−2u,

A∞v := −div
(
D∗|∇v|p(x)−2∇v

)
+ |v|p(x)−2v,

and apply Theorem 3.3 to the quasi-linear parabolic problem with variable
exponents (4.4).

Proposition 4.6. [14] ∪τ∈RA(τ) is a compact subset of H.

Theorem 4.7. [13] If {ψτ : τ ∈ R} is a bounded set in X and ψτ → ψ0

in H as τ → +∞, then Assumption A is satisfied.

The next result gives the desired asymptotic upper semicontinuous
convergence.

Theorem 4.8. limt→+∞ dist(A(t),A∞) = 0, where the semi-distance is
on L2(Ω).
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Proof. Suppose that ψτ ∈ A(τ) and ψτ → ψ0 in H. Using the invariance
of the pullback attractor and the uniform estimates of the global solution
provided in [14] it follows that {ψτ : τ ∈ R} is a bounded set in X.
Theorem 4.7 then guarantees that Assumption A is satisfied. Thus, from
Lemma 4.5, U(t + τ, τ)ψτ → T (t)ψ0 in H as τ → +∞, for any t ≥ 0.
Theorem 3.3 then yields limt→+∞ dist(A(t),A∞) = 0.

5 Final remarks

In some evolution problems we do not have guaranty of uniqueness of a
global solution, this is for example the case when dealing with differential
inclusions. In this situation multivalued dynamical systems have to be
used rather than only single-valued ones. The majority of the abstract
results in Section 3 were recently extended to the multivalued scenario
and we refer the reader to [6, 15, 16, 24]. It is worth to emphasize that in
the work [6] new aspects were also incorporated like equi-attraction and
possible periodicity of the pullback attractors.
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