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Abstract. In this paper, we investigate a four-dimensional Lorenz-
Haken system described by the following equations:

ẋ = a(y − x), ẏ = −cy − dz + (e− w)x, ż = dy − cz, ẇ = −bw + xy,

where a, b, c, d, and e are real parameters.
We aim to characterize the parameter values at which a zero-Hopf
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1 Introduction

In this paper, we study the zero-Hopf equilibrium points and zero-
Hopf bifurcations of periodic orbit that take place at the equilibria in the
Lorenz-Haken system. This system was introduced in the article of Haken
[1] as a model describing the dynamics of a homogeneously broadened gain
medium in a unidirectional ring cavity. In the notation given in [4], the
Lorenz-Haken equations are given by

ẋ = −σ(x− y) + iqx|x|2,
ẏ = −(1− iδ)y + (r − z)x,
ż = −bz + Re(xy),

(1.1)

where x, y and z are complex variables, and σ, b, q, r, δ are the real parame-
ters. In 2019, Hayder Natiq et al.[2] derived a new 4D chaotic laser system
with three equilibrium points from (1.1), since both x and z can be chosen
to be real and y a complex variable, they particularly conducted numerical
studies on the existence of attractors associated with stable points and the
presence of chaos in the system.

In recent years, interest in the study of 4-dimensional systems that ex-
hibit chaos, also called hyperchaotic systems (i.e., systems that can have
two or more directions where the Lyapunov exponents are positive), has
increased, especially due to its importance in describing nonlinear phe-
nomena in science and engineering (see [6] and the bibliography contained
therein).

In this paper, we study a four-dimensional system of differential equa-
tions which is a generalization of the system introduced in [2]

ẋ = a(y − x),

ẏ = −cy − dz + (e− w)x, (1.2)

ż = dy − cz,

ẇ = −bw + xy,

where x, y, z, w are state variables and a, b, c, d and e are real parameters.
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Here, a zero-Hopf equilibrium is an equilibrium point of a four-dimensio-
nal autonomous differential system, which has a double zero eigenvalue and
a pair of purely imaginary eigenvalues.

The outline of this paper is as follows: In Section 2, we present the
statement of the main results related to characterizing the zero-Hopf equi-
librium points of the system and the presence of zero-Hopf bifurcations.
In Section 3, we introduce bifurcation theory to study the existence of
periodic solutions. In Section 4, we apply the averaging theory to prove
the principal results.

2 Statement of the main results

In the first instance, we are going to compute the equilibrium points
of the Lorenz-Haken system (1.2).

Proposition 2.1. Let ∆ = b
c(c

2 + d2 − ec) and c 6= 0. The following
statements are true:

1. If b = 0, system (1.2) has a straight line of equilibria p = (0, 0, 0, w).

2. If ∆ ≤ 0 and b 6= 0, system (1.2) has a unique equilibrium point
p0 = (0, 0, 0, 0).

3. If ∆ > 0 and b 6= 0, system (1.2) has three equilibria p0 = (0, 0, 0, 0),

p± =
(
±
√

∆,±
√

∆,±d
c

√
∆,−1

b∆
)
.

Proposition 2.1 follows easily by direct computations.
We observe that the two equilibria, p±, tend to the equilibrium point

p as b approaches 0. In summary, the equilibrium point of the system
(1.2) can be p+, p−, p, or the origin. Note that for a = b = 0 system
(1.2) has other equilibrium point (x, 0, 0, e), which we will not analyze in
this work. Additionally, the system (1.2) exhibits invariance under the
coordinate transformation (x, y, z, w) → (−x,−y,−z, w). Consequently,
the system (1.2) has rotational symmetry around the w-axis.
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Due to this, in the following, we will focus on examining the possibility
of p+ being a zero-Hopf equilibrium for certain parameter values. The
same analysis will apply to the other equilibrium, p−.

In the next result we characterize when the equilibrium p, p± and the
origin are zero-Hopf equilibrium of the system (1.2).

Proposition 2.2. For the Lorenz-Haken system (1.2), the following state-
ments hold:

(i) p0 is a zero-Hopf equilibrium if only if a = −2c, b = 0, d = −
√
c2+ω2

3

and e = 4c2+ω2

3c , with ω ∈ R+,

(ii) p is a zero-Hopf equilibrium if only if a = −2c, b = 0 and 3d2−c2 > 0,

(iii) p+ and p− are zero-Hopf equilibrium if only if a = −2c, b = 0, d =

−
√
c2+ω2√

3
, with ω ∈ R+.

In the rest of this section, we will study the zero-Hopf bifurcation and
periodic solutions of the hyperchaotic system (1.2) at all the equilibrium
points.

Theorem 2.3. For the Lorenz-Haken system (1.2). The following state-
ments hold.

(i) Let

(a, b, d, e) = (−2c+ εa1, εb1,−
√
c2 + ω2

3
+ εd1,

4c2 + ω2

3c
+ εe1)

(2.1)

where ω > 0 and ε > 0 are sufficiently small parameters. If a1 6= 0,
b1 6= 0, c 6= 0, η = 3ce1+2

√
3d1
√
c2 + ω2 6= 0 and η1 = 3a1ω

2−2cη 6=
0, then for ε > 0 sufficiently small, the hyperchaotic system (1.2) has
a zero-Hopf bifurcation at the equilibrium point located at p0, and at
most three periodic orbits can bifurcate from this equilibrium when
ε = 0. Moreover, the periodic solutions are stable if a1 > 0, b1 > 0,
16η + 3b1ω

2 < 0 and 4η1 + 3b1ω
2 < 0.
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(ii) Let

(a, b) = (−2c+ εa1, εb1), (2.2)

where ω > 0 and ε > 0 are sufficiently small parameter. If a1 6= 0,
b1 6= 0, c 6= 0, d 6= 0, (c2− d2)(c2 + d2− ce) 6= 0, 2(c2− d2)− ce 6= 0,
3d2−c2 > 0, c4−8c2d2 +7d4 +2cd2e < 0 and (c4−4c2d2 +3d4)(c2 +

d2−ce) < 0, then for ε > 0 sufficiently small, the hyperchaotic system
(1.2) has a zero-Hopf bifurcation at the equilibrium point located at
p, and at most four periodic orbits can bifurcate from this equilibrium
when ε = 0. Moreover, the periodic solution is stable if a1 > 0, b1 >

0, (c4 − 8c2d2 + 7d4 + 2cd2e) < 0, 2c2 − 2d2 − ce < 0 and c4 − d4 −
c3e+ cd2e > 0.

(iii) Let

(a, b, d) = (−2c+ εa1, εb1,−
1√
3

√
c2 + ω2 + εd1), (2.3)

where ω > 0 and ε > 0 are sufficiently small parameter. If c 6= 0,
a1 6= 0, and κ = b1(4c

2 − 3ce+ 3ω2) < 0, then for ε > 0 sufficiently
small, the hyperchaotic system (1.2) has a zero-Hopf bifurcation at
the equilibrium point located at p±, and at most two periodic orbits
can bifurcate from this equilibrium when ε = 0. Moreover, the peri-
odic solutions are unstable.

3 The Averaging Theory of First Order

The averaging theory provides sufficient conditions for the existence of
periodic solutions of non-autonomous differential systems written in the
following standard form:

ẋ = εF (t,x) + ε2G(t,x, ε), (3.1)

where x ∈ D is an open subset of Rn, t ≥ 0. We assume that F (t,x) and
G(t,x, ε) are T -periodic in t. We define averaged function

f(x) =
1

T

∫ T

0
F (t,x)dt. (3.2)
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With these function the classical averaging method for finding periodic
solutions can be summarized by the following theorem, which relates zeros
of the first non-vanishing averaged function to the existence of periodic
solutions of the non-autonomous differential system (3.1).

Theorem 3.1. Make the following assumptions:

(a) F , its Jacobian ∂F
∂x and its Hessian ∂2F

∂x2 ; G, its Jacobian ∂G
∂x are

defined, continuous and bounded by a constant independent of ε in
[0,∞)×D and ε ∈ (0, ε0].

(b) T is a constant independent of ε.

Then the following conclusions can be obtained:

(i) If p is the zero of the averaged function f(x), and

det
(∂f
∂x

)∣∣∣
x=p
6= 0, (3.3)

then there exists a T -periodic solution x(t, ε) of system (3.1) such
that x(0, ε)→ p as ε→ 0.

(ii) If the eigenvalue of the Jacobian matrix
(
∂f
∂x

)
has a negative real

part, the periodic solution x(t, ε) is asymptotically stable.

For more information about the averaging theory, see [3] and [5].

4 Proof of results

In this section, we will provide the proofs of Proposition (2.2) and
Theorem (2.3).

Proof of proposition 2.2. The characteristic equation at the equilibrium
point p0 is obtained

P (λ) = λ4 + (a+ b+ 2c)λ3 + (2bc+ c2 + d2 + a(b+ 2c− e))λ2 (4.1)

+(b(c2 + d2) + a(2bc+ c2 + d2 − (b− c)e))λ+ ab(c2 + d2 − ce).
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When a = −2c, b = 0, d = −
√
c2+ω2

3 and e = 4c2+ω2

3c , Eq.(4.1) has roots
λ1 = λ2 = 0 and λ3,4 = ±ω i, with ω ∈ R+. That is, the equilibrium point
p0 is a zero-Hopf equilibrium of the hyperchaotic system (1.2).

(ii) The characteristic equation at the equilibrium point p is obtained

P (λ) = λ4 + (a+ 2c)λ3 + (c2 + d2 + a(c− d2

c
))λ2. (4.2)

When a = −2c, b = 0, Eq.(4.2) has roots λ1 = λ2 = 0, λ3,4 = ±
√

3d2 − c2i.
(iii) The characteristic equation at the equilibrium point p+ is obtained

P (λ) = λ4 + (a+ b+ 2c)λ3 + (c2 + d2 + a(b+ c− d2

c ) + b(c− d2

c + e))λ2

+b(ce+ a(−c− 3d2

c + 2e))λ− 2ab(c2 + d2 − ce). (4.3)

When a = −2c, b = 0, d = −
√
c2+ω2√

3
, Eq.(4.3) has roots λ1 = λ2 = 0,

λ3,4 = ±
√

3d2 − c2i.
Proposition 2.2 is proved.

Proof of statement (i) of Theorem 2.3. First, we assume the condition (2.1).
Then, we can write the Lorenz-Haken system (1.2) in the standard form
(3.1) in order to use the averaging theory for detecting its periodic solu-
tions. We start by writing the linear part of the Lorenz-Haken system
(1.2) when ε = 0 in its Jordan normal form.

0 −ω 0 0

ω 0 0 0

0 0 0 0

0 0 0 0

 ,

so consider the linear change of variables

x =
2c(
√

3cωY +
√

3ω2X − 3c
√
c2 + ω2Z)

3ω2
√
c2 + ω2

,

y =

√
3cω2X +

√
3ω3Y + 2c2(

√
3ωY − 3

√
c2 + ω2Z)

3ω2
√
c2 + ω2

,

z =
1

3
(X +

c

ω2
(−2ωY + 2

√
3
√
c2 + ω2Z)),

w = W.
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In addition, by letting (X,Y , Z) = ε(X,Y, Z), and subsequently introduc-
ing cylindrical coordinates X = r cos θ and Y = r sin θ (where r > 0) with
θ as the new independent variable, the system (1.2) takes the following
form in these new independent variables:

dr

dθ
=

ε

3cω4
√
c2 + ω2

(crω3(
√

3cd1 − a1
√
c2 + ω2) cos2 θ + ω

√
c2 + ω2 cos θ

(−6c3d1Z + rω(6c2(e1 −W ) + a1ω
2) sin θ) + c sin θ(6cz(−(2c2

+ ω2)d1
√
c2 + ω2 −

√
3c(e1 −W )(c2 + ω2)) + rω(2cω(

√
3cd1

+ a1
√
c2 + ω2) cos θ + ((4c3 + 3cω2)

√
3d1 + (6c2(e1 −W )− 2a1ω

2)√
c2 + ω2) sin θ)) +O(ε2)

= εF1(θ, r, Z,W ) +O(ε2),

dZ

dθ
=

ε

18c2ω3
√
c2 + ω2

(−12c3Z(2
√

3(c2 + ω2)d1 + 3c(e1 −W )
√
c2 + ω2)

+
√

3crω2(4c2(a1 + 3e1 − 3W ) + a1ω
2) cos θ + rω(6(4c3 + cω2)d1√

c2 + ω2 −
√

3(12c4(−e1 +W ) + 4a1c
2ω2 + a1ω

4)) sin θ) +O(ε2)

= εF2(θ, r, Z,W ) +O(ε2),

dW

dθ
=

ε

3ω5(c2 + ω2)
((c2 + ω2)(12c4Z2 + 2c2r2ω2 − 3b1Wω4)

+ crω(−2c3rω cos 2θ − 2
√

3cZ
√
c2 + ω2(3cω cos θ + (4c2 + ω2) sin θ)

+ 3c2rω2 sin 2θ + rω4 sin 2θ)) +O(ε2)

= εF3(θ, r, Z,W ) +O(ε2). (4.4)

Using the notations of the averaging theory described in Theorem 3.1, we
have t = θ, T = 2π, x = (r, z, w), F (θ, r, Z,W ) = (F1(θ,x), F2(θ,x), F3(θ,x))

and F (θ, r, Z,W ) = (F1(θ,x), F2(θ,x), F3(θ,x)) and

f(r, Z,W ) =
1

2π

∫ 2π

0
F (θ, r, Z,W )dθ

= (f1(r, Z,W ), f2(r, Z,W ), f3(r, Z,W )).
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Where the components of f(r, Z,W ) are given as follows:

f1(r, Z,W ) =
r(6c2(e1 −W )− 3a1ω

2 + 4
√

3cd1
√
c2 + ω2)

6ω3
,

f2(r, Z,W ) = −2cZ

3ω3
(3c(e1 −W ) + 2

√
3d1
√
c2 + ω2),

f3(r, Z,W ) =
12c4Z2 + 2c2r2ω2 − 3b1Wω4

3ω5
,

and solving the nonlinear system given by f(r, Z,W ) = 0 we can conclude
that the system has the next four solutions

s0 = (0, 0, 0),

s1,2 = (0,∓ 1

2
√

3c5/2

√
b1ω4(3ce1 + 2

√
3d1
√
c2 + ω2), e1 +

2d1
√
c2 + ω2

√
3c

),

s3 = (
1

2c2

√
b1ω2(6c2e1 − 3a1ω2 + 4

√
3cd1

√
c2 + ω2), 0, e1 +

1

6c2
(−3a1ω

2

+ 4
√

3cd1
√
c2 + ω2)).

The first solution s0 corresponds to the equilibrium at the origin. For the
other three solutions, we get

(i) For the solution s1 and s2 when c 6= 0, s1,2 are real solutions. The
Jacobian of solution s1,2 is

det
(∂f
∂x

(s1)
)

= det
(∂f
∂x

(s2)
)

=
2a1b1c

(
3ce1 + 2

√
3d1
√
c2 + ω2

)
3ω5

.

(ii) For the solution s3 when c 6= 0, s3 is a real solution. The Jacobian
of the solution s3 is

det
(∂f
∂x

(s3)
)

=
a1b1

(
− 6c2e1 + 3a1ω

2 − 4
√

3cd1
√
c2 + ω2

)
3ω5

,

and from hypothesis we have det(∂f∂x(sj)) 6= 0, j = 1, 2, 3. Thus, the result
follows by applying theorem 3.1 and going back through the change of
variables (4.4).

To determine the type of stability of the two periodic solutions, we
look at the eigenvalues of the Jacobian matrices ∂f

∂x(s1,2). The eigenvalues
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are given as follows: λ1 = − a1
2ω ,

λ2,3 = −
3b1 ±

√
3ω

√
b1(48c2e1+3b1ω2+32

√
3cd1
√
c2+ω2)

ω4

6ω3
.

On the other hand, the eigenvalues of the Jacobian matrix ∂f
∂x(s3) are given

as follows: λ̃1 = −a1
ω and

λ̃2,3 = −
3b1ω

3 ±
√

3
√
b1ω4(3(4a1 + b1)ω2 − 8c(3ce1 + 2

√
3d1
√
c2 + ω2))

6ω3
.

The stability of periodic solutions follows by imposing a negative real
part to all eigenvalues of the Jacobian matrix ∂f(sj)/∂x, j = 1, 2, 3 and
from the hypothesis. The periodic solutions are stable if a1 > 0, b1 > 0,
16η + 3b1ω

2 < 0 and 4η1 + 3b1ω
2 < 0.

Proof of statement (ii) of Theorem 2.3. First, we translate p to the origin
of coordinates doing (x, y, z, w) = (x, y, z, w) + p, then we introduce the
scaling (x, y, z, w) = ε(X,Y, Z,W ). We start by writing the linear part of
the Lorenz-Haken system (1.2) when ε = 0 in its Jordan normal form, i.e,

0 −
√

3d2 − c2 0 0√
3d2 − c2 0 0 0

0 0 0 0

0 0 0 0

 ,

so consider the linear change of variables

x =
−6d2X + 2c2(3W +X)− 2c

√
−c2 + 3d2Y

3(c2 + 3d2)
,

y = − 1

3(c3 − 3cd2)
(3cd2X − c3(6W +X) +

√
−c2 + 3d2(c2 + 3d2)Y ),

z =
d(−3d2X + c2(−6W +X) + 2c

√
−c2 + 3d2Y )

−3c3 + 9cd2
,

w = Z.

Following the idea of the previous demonstration we can use cylindrical
coordinates. In order to put this system in the form (3.1), we take θ as
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the new independent variable and then we have

dr

dθ
= εF1(θ, r, Z,W ) +O(ε2),

dZ

dθ
= εF2(θ, r, Z,W ) +O(ε2),

dW

dθ
= εF3(θ, r, Z,W ) +O(ε2). (4.5)

Using the notations of the averaging theory described in Theorem 3.1, we
have t = θ, T = 2π, x = (r, Z,W ),

F (θ, r, Z,W ) = (F1(θ,x), F2(θ,x), F3(θ,x))

and

f(r, Z,W ) =
1

2π

∫ 2π

0
F (θ, r, Z,W )dθ

= (f1(r, Z,W ), f2(r, Z,W ), f3(r, Z,W )),

where the components of f(r, Z,W ) are given as follows:

f1(r, Z,W ) =
r(a1(c

2 − 3d2)− 2c2Z)

2(−c2 + 3d2)3/2
,

f2(r, Z,W ) =
1

6
√
−c2 + 3d2(c3 − 3cd2)2

(3a1b1(c
4 − 4c2d2 + 3d2)(c2

+d2 + 3d4)2c2 + (−2d2(c2 − 3d2)r2 + 12c4w2 − 3b1(c
2

−3d2)(2c2 − 2d2 − ce)Z)),

f3(r, Z,W ) =
2c2WZ

(−c2 + 3d2)3/2
,

and solving the nonlinear system given by f(r, Z,W ) = 0, we can conclude
that the system has the next four solutions

s1 = (0,
a1(c

2 − d2)(c2 + d2 − ce)
2c2(2c2 − 2d2 − ce)

, 0),

s2 =
(√3
√
a1

2cd

√
−b1(c4 − 8c2d2 + 7d4 + 2cd2e),

1

2
a1(1−

3d2

c2
), 0
)
,

s3,4 =
(
0, 0,±

√
a1

2
√

2c3

√
−b1(c4 − 4c2d2 + 3d4)(c2 + d2 − ce)

)
.
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The solution sj , j = 1, . . . , 4 exist if and only if c 6= 0, d 6= 0, and
2(c2 − d2)− ce 6= 0. On the other hand, the solution s1 6= (0, 0, 0) if only
if (c2 − d2)(c2 + d2 − ce) 6= 0, and the solutions s2 and s3,4 are real if only
if c4 − 8c2d2 + 7d4 + 2cd2e < 0 and (c4 − 4c2d2 + 3d4)(c2 + d2 − ce) < 0.
For the four solutions, we get

det
(∂f
∂x

(s1)
)

=
a21b1(c

2 − d2)(c2 + d2 − ce)(c4 − 8c2d2 + 7d4 + 2cd2e)

2(−c2 + 3d2)9/2(2c2 − 2d2 − ce)
,

det
(∂f
∂x

(s2)
)

=
a21b1(c

4 − 8c2d2 + 7d2 + 2cd2e)

(−c2 + 3d2)7/2
,

det
(∂f
∂x

(s3)
)

= det
(∂f
∂x

(s4)
)

=
a21b1(c

2 − d2)(c2 + d2 − 2ce)

(−c2 + 3d2)7/2
,

and from hypothesis we have det(∂f∂x(sj)), j = 1, . . . , 4. Thus, the result
follows by applying theorem 3.1 and going back through the change of
variables (4.5).

The stability of periodic solutions follows by imposing a negative real
part to all eigenvalues of the Jacobian matrix ∂f(sj)/∂x, j = 1, . . . , 4.

Proof of statement (iii) of Theorem 2.3. First we assume the condition (2.3),
we can write the Lorenz-Haken system (1.2) in the standard form (3.1) in
order to use the averaging theory for detecting its periodic solutions.

First, we translate p+ to the origin of coordinates doing (x, y, z, w) =

(x, y, z, w)+p+, then we introduce the scaling (x, y, z, w) = ε(X,Y, Z,W ).
We start by writing the linear part of the Lorenz-Haken system (1.2) when
ε = 0 in its Jordan normal form,i.e,

0 −ω 0 0

ω 0 0 0

0 0 0 0

0 0 0 0

 ,

so consider the linear change of variables
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x =
2c(−

√
3cZ + cωY + ω2X)√

3ω2
,

y =
cω2X + ω3Y + c2(−2

√
3Z + 2ωY )√

3ω2
,

z =

√
c2 + ω2(2

√
3cZ − 2cωY + ω2X)

3ω2
,

w = W.

Following the idea of the previous demonstration, we can use cylindrical
coordinates. In order to put this system in the form (3.1), we take θ as the
new independent variable and then we have a system similar to (4.5). Using
the notations of the averaging theory described in Theorem 3.1, we have
t = θ, T = 2π, x = (r, Z,W ), F (θ, r, Z,W ) = (F1(θ,x), F2(θ,x), F3(θ,x))

and

f(r, Z,W ) =
1

2π

∫ 2π

0
F (θ, r, Z,W )dθ

= (f1(r, Z,W ), f2(r, Z,W ), f3(r, Z,W )),

where the components of f(r, Z,W ) are given as follows:

f1(r, Z,W ) = −r(2c
2W + a1ω

2)

2ω3
,

f2(r, Z,W ) =
2c2WZ

ω3
,

f3(r, Z,W ) =
24c4Z2 + c(4c3r2 − 12b1cW + 9b1eW )ω2 + (4c2r2 − 9b1W )ω4

6ω5
,

and solving the nonlinear system given by f(r, Z,W ) = 0 we can conclude
that the system has the next two solutions

s0 = (0, 0, 0),

s1 = (
1

2c2

√
3

2

√
a1ω

√
b1(−4c2 + 3ce− 3ω2)

c2 + ω2
, 0,−a1ω

2

2c2
).

Moreover, Moreover, the Jacobian determinant of f at s1 is given by
det(∂f∂x(s1)) =

a21b1(4c
2−3ce+3ω2)
2ω5 and from hypothesis we have det(∂f∂x(s1)) 6=

0. Thus, the result follows by applying theorem 3.1.
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To determine the stability of the periodic solution, one needs to calcu-
late the eigenvalues of the Jacobian matrix ∂F (s1)/∂x. The eigenvalues
are as follows: λ1 = −a1

ω , and λ2,3 = − 1
4ω3 (κ±

√
κ(κ+ 8a1ω2) are real if

a1 > 0 and κ > 0. Regardless of the sign of κ(κ+ 8a1ω
2), at least one of

the eigenvalues has a positive real part in this case. Therefore, the periodic
solution is unstable. This completes the Proof of Theorem 2.3.
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