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Abstract. In this work, we investigate the local and global well-
posedness of the Navier-Stokes problem in an open, bounded, and
smooth subset Ω of RN , where N = 2, 3. We employ Banach scales
to express the Navier-Stokes problem in a very weak form with initial
data in Lp(Ω)N , where p ≥ N . We prove the local well-posedness of
solutions and provide conditions guaranteeing their existence for all
t ≥ 0. Our approach involves techniques from semilinear parabolic
equations, taking into account nonlinearities with critical growth.
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1 Introduction

The Navier-Stokes equations serve as a mathematical model for de-
scribing the motion of a fluid within a domain Ω belonging to RN , where
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N = 2 or N = 3. For a given point x within this domain and a time
t ≥ 0, the objective is to determine the fluid velocity field, denoted as
u(x, t) = (u1(x, t), · · · , uN (x, t)) ∈ RN , and the corresponding pressure
field, denoted as π(x, t) ∈ R.

Assume that Ω is an open, bounded with smooth boundary in RN . Let
∆u = (∆u1, · · · ,∆uN ) and

(u · ∇)u =

(
N∑
k=1

uk∂ku
1, · · · ,

N∑
k=1

uk∂ku
N

)
,

where ∂i = ∂/(∂xi), and ∆ =
∑N

j=1 ∂jj is the Laplace operator. The
Navier-Stokes equations are given by

ut = ∆u−∇π + f(t)− (u · ∇)u, x ∈ Ω,

div(u) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

u(0, x) = u0(x),

(1.1)

where u : [0,∞)×Ω→ RN represents the velocity field, π : [0,∞)×Ω→ R
the pressure and f : [0,∞)→ RN is an external force.

There are four problems regarding the Navier-Stokes equations as a
Millennium Prize Problem, and the Clay Mathematics Institute (CMI)
desires clarification for a minimum of one among the posed inquiries. We
will discuss one of them from the perspective of the continuation of solu-
tions. Therefore, there will remain questions that may be interesting but
will not be addressed here. To find the questions precisely, see the website
of Clay Mathematics Institute (CMI) and look for “Millennium Prizes” and
“Navier-Stokes Equations.” Essentially the problem is regarding the exis-
tence of globally defined and smooth solutions in dimension 3 for (1.1),
meaning they exist for all future times. This is an open and extremely
challenging problem in the fields of mathematics and physics, known as
the “existence and global smoothness of 3D Navier-Stokes solutions” (in
dimension 2 is already solved). The explicit formulation of the issue is as
follows:
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Problem A: Existence and Smoothness in R3: Suppose that the
external force f(t) ≡ 0. Given u0 ∈ C∞(Ω)N with div u0 = 0, there are π
and u solutions in C∞(Ω× [0,+∞)) with u satifying∫

Ω
|u(x, t)|2dx < C for all t ≥ 0. (1.2)

The goal of this paper is to discuss Problem A from an ODE perspec-
tive. The main idea is to see the Navier-Stokes equations as a parabolic
problem with ε-regular nonlinearity and apply the abstract results of [3]
modifying the scale. More precisely, we will rewrite (1.1) as an abstract
Cauchy problem

ẋ = Ax+ f(x), t > t0

x(t0) = x0,
(1.3)

where the linear operator −A : D(A) ⊂ E0 → E0 is a sectorial operator
in the Banach space E0. We will denote by Eα, α ≥ 0 the elements of a
Banach scale {Eα : α ≥ 0} associated to the operator A (see [2]) and by
eAt the analytic semigroup generated by A.

For the nonlinearities we recall the definition of ε-regularity. For ε ≥ 0,
we will say that f is an ε-regular map relative to the pair (E1, E0) if
there exists ρ > 1, γ(ε) with ρε ≤ γ(ε) < 1, and a constant c such that
f : E1+ε → Eγ(ε) and

‖f(x)− f(y)‖γ(ε) ≤ c‖x− y‖1+ε(‖x‖ρ−1
1+ε + ‖y‖ρ−1

1+ε + 1), (1.4)

for all x, y ∈ E1+ε. In [3] the authors obtain a special class of solutions
that appear when assuming that the nonlinearity is ε-regular: we say that
x : [0, τ ] → E1 is a weak ε-regular solution, or simply an ε-solution,
relative to the pair (E1, E0) if x ∈ C([0, τ ], E1) ∩ C((0, τ ], E1+ε), and x(t)

satisfies, for all t ∈ [0, τ ],

x(t) = eAtx0 +

∫ t

0
eA(t−s)f(x(s)) ds. (1.5)

We borrow from [3] the following abstract result:
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Theorem 1.1. Suppose f is independent of time and is an ε-regular map,
for some ε > 0, relative to the pair (E1, E0). Then, given y0 ∈ E1, there
exist r = r(y0) > 0 and τ0 = τ0(y0) > 0 such that for any x0 ∈ BE1(y0, r),
there exists a continuous function x : [0, τ0] → E1, with x(0) = x0, which
is the unique ε-solution of

ẋ = Ax+ f(x), t > 0

x(0) = x0.
(1.6)

This solution satisfies

x ∈ C((0, τ0], E1+γ(ε)) and tθ‖x(t, x0)‖E1+θ
→ 0, as t→ 0, 0 < θ < γ(ε).

Additionally,

1. If x0, z0 ∈ BE1(y0, r), then

tθ‖x(t, x0)− x(t, z0)‖E1+θ
≤ C(θ0)‖x0 − z0‖1, ∀t ∈ [0, τ0],

for 0 ≤ θ ≤ θ0 < γ(ε).

2. x(·, x0) is a strong solution of (1.6) and

x ∈ C1((0, τ0], Eγ(ε)) ∩ C((0, τ0], E1+γ(ε)).

3. If γ(ε) > ρε, then the existence time is uniform on bounded sets of
E1.

The constants above depend on the following: τ0 = τ0(y0, A, ε, ρ, γ(ε), c,M),
r = r(y0, ε, ρ, γ(ε), c,M), C = C(θ0, ε, ρ, γ(ε),M).

In order to write (1.1) as an abstract Cauchy problem we recall some
results from [5]. The free-divergence space is characterized by Lpσ(Ω)N =

C∞0,σ(Ω)
‖·‖

Lp(Ω)N , where C∞0,σ(Ω) = {u ∈ C∞0 (Ω)N : div(u) = 0} and

Lp(Ω)N = Lpσ(Ω)N ⊕ {∇ϕ : ϕ ∈W 1,p(Ω)},
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which is usually called by Helmholtz decompotition, see [5, pages 697-
698]. Then the Leray’s projection in Lp(Ω)N is the natural projection
defined by the Helmholtz decomposition on the divergence-free space, i.e.,

Pp : Lp(Ω)N → Lpσ(Ω)N .

Thus applying Pp in (1.1) we obtain an abstract Cauchy Problem in
Lpσ(Ω)N given by

ut = Apu+N(u) + fσ, t > 0

u(0) = u0,
(1.7)

where Ap = Pp∆ is the Stokes Operator, Pp is the Leray’s projection,
∆ is the Laplace operator with Dirichlet boundary condition, N(u) =

−Pp(u · ∇)u, fσ = Ppf . From the construction of Leray’s projection,
problems (1.7) and (1.1) are equivalent, see [5] for details.

The main goal of this paper is to explain how to write (1.7) in its
very weak formulation, which is essentially changing the Banach scale,
transitioning from the previously employed one denoted as (E1, E0) to
the scale (E0, E−1). Subsequently, we aim to establish that the nonlin-
earity within this newly introduced scale manifests as an ε-regular map-
ping to apply Theorem 1.1, this is done in Section 2. Consequently, we
present a condition whose fulfillment implies the existence and unique-
ness of global, as well as smooth, solutions for (1.1), which is explained
in Section 3. Therefore, the resolution of this condition would, in turn,
resolve the longstanding Millennium Prize Problem associated with the
Navier-Stokes equations.

2 Very weak formulation for the Navier-Stokes
equation

In this section, we will reformulate problem (1.7) in a weak context. In
the language of Banach scales, it’s essentially “translating” the problem to
a negative scale. To do this, we need to analyze the equation in a functional
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analytic context in an attempt to express each term of the equation as a
linear functional.

Let us establish the functional analytical context for (1.7). Our goal is
to write (1.7) in the scale (Ep0 , E

p
−1), and apply Theorem 1.1 in this scale.

In the following, we will deal with these terms in order to consider
the very weak formulation for (1.7), and then prove local well-posedness
for it. We also recall that the Stokes Operator Ap generates an analytic
semigroup in Lpσ(Ω)N . More precisely, the Stokes operator −Ap is sectorial
in Lpσ(Ω)N , for all 2 ≤ p <∞, see [6, Chapter 3].

For this, we need to analyze the equation in a functional analytic con-
text in an attempt to express each term of the equation as a linear func-
tional. We will first analyze the nonlinear term Pp(u · ∇)u, which will be
the key to obtaining a result of local regularity.

To do that, it will be useful to introduce the following notation:

div(uu) :=
∂

∂x1
(u1u) + · · ·+ ∂

∂xn
(unu)

= (div(u1u), · · · , div(unu)).

Then, for u with div u = 0, we have

(u · ∇)u =
∂

∂x1
(u1u) + · · ·+ ∂

∂xn
(unu)−

(
∂

∂x1
u1 + · · ·+ ∂

∂xn
un

)
u

= div(uu).

Recall the tensor product in RN and some of its properties. For u, v ∈
RN the tensor product between u and v is given by u v := u ⊗ v :=

(uivj)
N
i,j=1, and for u, v, w ∈ RN we have

• (u+ v)⊗ w = u⊗ w + v ⊗ w;

• |u⊗ v|MN (R) ≤ |u| |v|;

• u⊗ v = (v ⊗ u)t, where At is the transpose matrix of A ∈MN (R).

To prove that the nonlinearity is ε-regular we will need to next result.
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Lemma 2.1. Let u, φ : Ω→ RN be smooth compactly supported in Ω with
divφ = divu = 0. Then∫

Ω
(u · ∇)u · φ = −

∫
Ω
u⊗ u · ∇φ,

where in the last term we use the following notation: A ·B =
∑n

i,j=1 aijbij,
for A,B ∈MN (R).

Proof. Fix Γ = ∂Ω, then∫
Ω

(u · ∇)u · φdx =

∫
Ω
div(uu) · φdx

=

∫
Ω

(div(u1u), · · · , div(uNu)) · (φ1, · · · , φN ) dx

=−
∫

Ω

[
(u1u) · ∇φ1 + · · ·+ (uNu) · ∇φN

]
dx

+

∫
Γ

[
φ1(u1u)Γ + · · ·+ φN (uNu)Γ

]
dσ

=−
∫

Ω
[u1u · · · uNu] · [∇φ1 · · · ∇φN ]dx+

∫
Γ

0 dσ

=−
∫

Ω


u1u1 · · · u1uN
...

. . .
...

uNu1 · · · uNuN

 ·

∂φ1

∂x1
· · · ∂φN

∂x1
...

. . .
...

∂φ1

∂xN
· · · ∂φN

∂xN

 dx
=−

∫
Ω
u⊗ u · ∇φdx,

where, for each i = 1, · · · , N , (uiu)Γ is the normal component of uiu in
Γ.

Let m ∈ N. For all 1 < p <∞ we define Ep0 := Lpσ(Ω)N endowed with
norm ‖ ·‖Lp(Ω)N . As we have seen before, Ap is closed and densely defined,
which makes it possible to consider the scale of interpolation-extrapolation
of order m generated by (Ep0 , Ap), i.e.,

{(Epα, Ap,α) ; α ≥ −m}.

We denote (Ap)
# as the dual operator of Ap. In [5, page 698] we have

the following characterization (Ap)
# = Ap∗ and D(A#

p ) = Ep
∗

1 . Since



Navier-Stokes Equations: continuation of solutions 11

(Ap)
# is closed in Ep

∗

0 and ρ(Ap) = ρ((Ap)
#), it is possible to consider the

interpolation-extrapolation scale generated by ((Ep0)#, (Ap)
#), which can

be written as
{(Ep∗α , Ap∗,α) ; α ≥ −m}.

Since 1 < p <∞, Lpσ(Ω)N is reflexive and we have

Ep−α = (Ep
∗
α )#,

see [2]. We will use this relation to introduce the functional analytical
form to the problem (1.7).

Theorem 2.2. If 1 > α > 0 and q = Np
N−2αp , then E

p
α ↪→ Lq(Ω)N .

Now we are ready to rewrite (1.7) in Ep−1. Taking the scalar product
of (1.7) with a test function φ ∈ C∞0,σ(Ω) and integrating over Ω, we have

d

dt

∫
Ω
u · φ =

∫
Ω
Apu · φ+

∫
Ω
N(u)φ+

∫
Ω
fσ · φ, t > 0. (2.1)

Now, since φ ∈ Lp
∗
σ (Ω)N we have Pp∗φ = φ. Moreover,∫

Ω
Pp∆u · φ =

∫
Ω

∆u · φ =

∫
Ω
u ·∆φ.

From Lemma 2.1∫
Ω
N(u) · φ = −

∫
Ω

(u · ∇)u · φ =

∫
Ω
u⊗ u · ∇φ.

Hence, ∫
Ω
N(u) · φ =

∫
Ω
u⊗ u · ∇φ.

In this way, we obtain the very weak formulation for the Navier-Stokes
equation

d

dt

∫
Ω
u · φ =

∫
Ω
u ·∆φ+

∫
Ω
u⊗ u · ∇φ+

∫
Ω
fσ · φ, t > 0. (2.2)

Therefore, for each u ∈ Lpσ(Ω)N define Ap,−1u, N−1(u), and fσ,−1 as
elements of Ep−1 = (Ep

∗

1 )# so that

Ep
∗

1 3 φ 7→ Ap,−1u(φ) =

∫
Ω
u∆φ,
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Ep
∗

1 3 φ 7→ N−1(u)(φ) =

∫
Ω
u⊗ u ∇φ,

and
Ep
∗

1 3 φ 7→ fσ,−1(φ) =

∫
Ω
fσ · φ,

i.e., we are considering each term of (1.7) as a linear functional defined in
Ep
∗

1 taking values in R.
Hence, the equation (1.7) in the scale Ep−1 is given by

ut = Ap,−1u+N−1(u) + fσ,−1, t > 0

u(0) = u0.
(2.3)

Therefore, the operator Ap,−1, with D(Ap,−1) = Lpσ(Ω)N

Ap,−1 : Lpσ(Ω)N ⊂ Ep−1 → Ep−1

is sectorial, see [2].
Once we arrive at this point, by Theorem 1.1, the local well-posedness

of (2.3) in Lpσ(Ω)N follows if we prove that N−1(·) is a ε-regular map
relatively to the pair (Ep0 , E

p
−1). Since fσ,−1 is only time dependent we

could assume that fσ,−1 is locally Hölder continuous to apply the non-
autonomous version of Theorem 1.1, see [3] for this case. Thus, from now
on, we assume that fσ,−1 = 0.

Theorem 2.3. N−1(·) is ε-regular relatively to the pair (Ep0 , E
p
−1) for all

p ≥ N , with γ(ε) = p−N
2p + 2ε, being:

• double critical for p = 2, i.e., ε-regular for all ε ∈ (0, 1
4);

• critical for p = N with N ≥ 3, i.e., ε-regular for all ε ∈ [0, 1
4);

• subcritical for p > N , i.e., ε-regular for all ε ∈ [0, N4p).

Proof. Given u ∈ Epε , we will prove that there exists r > 1 such that
u ∈ L2r(Ω)N . Indeed, by Theorem 2.2 we have r = Np

2N−4εp is the desired
value of r. From the condition that r > 0 we must have ε < N

2p . Since
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r > 1, we also have ε > N(2−p)
4p . Let r∗ be such that 1/r + 1/r∗ = 1, thus

r∗ = Np
Np−2N+4εp .

Now, to prove that N−1 is ε-regular, we first show that N−1 : Epε →
Epη−1, where η is the candidate to γ(ε). Indeed, since Epη−1 = (Ep

∗

1−η)
∗ we

must have that η satisfies η = p−N
2p + 2ε so that |∇φ| ∈ Lr∗(Ω). In fact,

φ ∈ Ep
∗

1−η ⊂ H2−2η,p∗(Ω)N hence, |∇φ| ∈ H1−2η,p∗(Ω) and from Theorem
2.2 we must have η satisfying

r∗ =
Np

N − (1− 2η)p∗
,

and since r∗ = Np
Np−2N+4εp , we see that η = p−N

2p + 2ε.
Then, for u, v ∈ Epε∣∣∣∣∫

Ω
u⊗ v∇φ

∣∣∣∣ ≤ ∫
Ω
|u||v||∇φ|

≤
(∫

Ω
(|u||v|)r

) 1
r
(∫

Ω
|∇φ|r∗

) 1
r∗

≤ ‖u‖L2r‖v‖L2r‖|φ|‖1,r∗

≤ c‖u‖Epε ‖v‖Epε ‖|φ|‖Ep∗1−η .

Thus, if u = v, we have ‖N−1(u)‖Epη−1
≤ c‖u‖2

Epε
. From the above estimate∣∣∣∣∫

Ω
u⊗ u∇φ−

∫
Ω
v ⊗ v∇φ

∣∣∣∣
≤
∣∣∣∣∫

Ω
u⊗ (u− v)∇φ

∣∣∣∣+

∣∣∣∣∫
Ω

(u− v)⊗ v∇φ
∣∣∣∣ ,

which implies

‖N−1(u)−N−1(v)‖Epη−1
≤ c(‖u‖Epε + ‖v‖Eεp)‖u− v‖Epε .

It is interesting to note that N−1 is truly double critical for p = N .
Next, we investigate the ε-regular differentiability of N−1; that is, we
consider the differentiability of the function N−1 as a map from Xε

p to
H−2+2ε,p

0,σ (Ω,RN ).
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Proposition 2.4. For u ∈ Xε
p and h ∈ Xε

p

Ep
′

1−η 3 φ 7→
∫

Ω
(u⊗ h+ h⊗ u) · ∇φ ∈ R, (2.4)

defines an element of Epη−1 which we will denote by DN−1(u)h and

‖N−1(u+ h)−N−1(u)−DN−1(u)h‖Epη−1
≤ ‖h‖2Epε . (2.5)

Proof. It is clear from what we have done previously that (2.4) defines an
element of Epη−1 and that

Epε 3 h 7→ DN−1(u)h ∈ Epη−1

is a bounded linear operator for each u ∈ Epε . This bounded linear operator
is denoted by DN−1(u). It is also clear that

Epε 3 u 7→ DN−1(u) ∈ L(Epε , E
p
η−1)

is continuous.
It remains to prove (2.5). Note that

[N−1(u+ h)−N−1(u)−DN−1(u)h](φ) =

∫
Ω
h⊗ h · ∇φ.

Hence, it is also clear that (2.5) holds from the computations in Propo-
sition 2.4 and it follows that N−1 is continuously differentiable. Note that,
from Proposition 2.4, u∗ = 0 will be an asymptotically stable equilibrium
for (2.3).

As a consequence of Theorem 1.1 we have:

Corollary 2.5. Given p ≥ N and u0 ∈ Lpσ(Ω)N , there exists a unique
ε-solution for (2.3) passing by u0 which is defined in a maximal interval of
existence [0, τu0), with

u ∈ C([0, τu0), Ep0) ∩ C((0, τu0), Epγ(ε)) ∩ C
1((0, τu0), Epγ(ε)−1).

Moreover,
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1. If p > N and lim sup
t→τu0

‖u(t, u0)‖p <∞, then τu0 =∞, where ‖ · ‖p =

‖ · ‖Lp(Ω)N .

2. Let u0 ∈ EN0 with N = 3 and N+ = N/(1 − 4ε) for ε ∈ (0, 1/4).
Under these conditions, if lim sup

t→τu0

‖u(t)‖N+ <∞, then τu0 =∞.

Proof. Thanks to Lemma 2.3, it is possible to apply Theorem 1.1 for the
pair (Ep0 , E

p
−1). Note that for p > N we have γ(ε) > ε which is the

subcritical case and the first item is proved.
For the case p = N , which is the critical case, we deal as follows. For all

t0 > 0, we have u(t0) ∈ EN2ε , since EN2ε ↪→ Lq(Ω)N for q = NN/(N −4εN),
if q = N+ we have u(t0) ∈ Eq0 .

Now, we know that the problem

v̇ = Aqv +N−1v, t > 0,

v(0) = u(t0),
(2.6)

has a unique solution v ∈ C((0, τv0), EN
+

2ε ). Since u is the maximal so-
lution, we see that u is a continuation for v. Moreover, since N+ > N

we are in the conditions of the first item, and therefore if we assume the
condition on the norm ‖ · ‖N+ , we obtain the same conclusion of item (1)
and the proof is complete.

Remark 2.6. There is a similar result in [4], where it is proven that if
u0 ∈ E3

0 and the solution satisfies an estimate in the norm of L3, then
τu0 =∞.

3 Existence and global smoothness of 3D Navier-
Stokes Equations

Now, we are in a position to discuss Problem A, via Corollary 2.5.
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Considering the problem (2.3) with initial data u0 in L3 and p = N = 3,
a solution with infinite maximal existence time can be obtained by estab-
lishing an estimate of this solution in an L3+ norm, as we demonstrated
in the previous section.

If the maximal interval of existence is [0,+∞), it is possible to obtain
a classical solution, via a “bootstrapping” procedure. Indeed, let u0 ∈
L3(Ω)3, and suppose that the maximal existence time of the solution is
τu0 =∞.

By Corollary 2.5, we have u ∈ C((0,∞), E3
2ε), for ε ∈ (0, 1/4). Choose

ε ∈ (1/8, 1/4). Note that the embedding

E3
2ε ↪→ Lp(Ω)3

holds for p = 3/(1− 4ε).
Now, for any t0 > 0, we have u(t0) ∈ Lp(Ω)3, and since p > 3, consid-

ering the problem

vt = Ap,−1v +N−1(v), t > 0

v(0) = u(t0),

we obtain the solution v ∈ C((0,∞), Epγ(ε)), where γ(ε) = (p− 3)/2p+ 2ε.
As γ(ε) = 4ε and u is a maximal solution of (2.3), and v is a contin-

uation, we obtain u(t) ∈ Ep4ε for all t ≥ t0, and since t0 is arbitrary, we
obtain this property for all t > 0. Now, as 8ε−3/p = ν > 0 by well-known
embedding theorems, see [1, 6], we obtain Epγ(ε) ↪→ C

ν(Ω)N . By the same
procedure, we can obtain the solution u having an arbitrary number of
derivatives in the strong sense, i.e., u ∈ C((0,∞), C∞(Ω)N ).

Remember that by the construction of the Leray’s projection, [5], it is
possible to obtain the pressure being smooth as well.

Hence, we infer the subsequent result.

Proposition 3.1. Considering the problem (2.3) with initial data in L3(Ω),
to solve Problem A, it is sufficient to show that the solution is globally de-
fined, i.e., the existence time is infinite.
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