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Abstract. In 2017, Tuza introduced a graph labeling game called
Edge-Sum Distinguishing Game (ESD Game). Two players, Alice
and Bob, alternately assign an unused label f(v) ∈ {1, . . . , s} to an
unlabeled vertex v of a graph G, and the induced edge label ϕ(uv)
of an edge uv ∈ E(G) is given by ϕ(uv) = f(u) + f(v). Alice’s goal
is to end up with an injective vertex labeling of all vertices of G that
induces distinct edge labels, and Bob’s goal is to prevent this. In this
work, we show bounds on the number of consecutive positive integer
labels necessary for Alice to win the ESD game on a simple graph G.
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1 Introduction

In this paper, all graphs G = (V (G), E(G)) are finite, undirected,
simple such that n = |V (G)| and m = |E(G)|.

A vertex (edge) labeling of a graph G is an assignment of labels (ele-
ments of a set) to the vertices (edges) of G, that induces an edge labeling
(vertex labeling) to the edges of G, satisfying some constraints.

Many graph labelings based on sums of integer labels have been pro-
posed [8]. For example, in 1970, Kotzig and Rosa [14] introduced the notion
of magic valuation, which is a vertex labeling f : V (G) → {1, . . . , n} of a
graph G such that S = {f(u) + f(v) : uv ∈ E(G)} consists of m consec-
utive integers. This labeling was later rediscovered by Enomoto et al. [5]
and renamed as super edge-magic labeling.

Stewart [17] calls an edge labeling f : E(G) → Z of a simple graph G

supermagic if (1) distinct edges have distinct values assigned, and their
labels comprise consecutive integers; (2) the sum of values assigned to all
edges incident to a given vertex x is the same for all vertices v of G. In
1976, Sedláček [16] showed that Mobius ladders Mn have a supermagic
labeling when n ≥ 3 and n is odd.

In 1980, Graham and Sloane [10] defined the harmonious labeling as an
injective function f : V (G) → Zm in which each edge uv ∈ E(G) is labeled
with ϕ(uv) = (f(u) + f(v)) mod m, so that the resulting edge labels are
distinct. They also conjectured that every tree has a harmonious labeling.
Very limited results on this conjecture are known [6, 20].

Using a computer, Aldred and McKay [1] showed that all trees with
at most 26 vertices have a harmonious labeling. Helm graphs, web graphs
and odd cycles have been shown to have harmonious labelings by Gnana-
jothi [9].

Chang, Hsu and Rogers [4] investigated variations of harmonious la-
beling. They defined an injective labeling f of a graph G with q vertices to
be strongly c-harmonious if the vertex labels are from {0, 1, . . . , q − 1} and
the edge labels induced by f(u)+f(v) for each edge uv are c, . . . , c+q−1.



Bounds on the Edge-Sum Distinguishing Game 69

In 1990, Harary [11] introduced the notion of sum graph. A graph G

is called sum graph if there is an bijective labeling f from V (G) to a set
of positive integers S such that xy ∈ E(G) if and only if f(x) + f(y) ∈ S.
Every sum graph must contain isolated vertices because the vertex with
the highest label in a sum graph can not be adjacent to any other vertex.

In 1990, Hartsfield and Ringel [13] introduced antimagic labelings mo-
tivated by magic labelings. Given a graph G with m edges, a antimagic
labeling of G is an injective edge labeling f : E(G) → {1, . . . ,m} such that
the sums of the labels of the edges incident to each vertex are distinct.
They conjectured that every graph except K2 has an antimagic labeling.

For the reader interested in more examples of labelings constructed
from sums of integer labels or in results on (anti)magic labelings, har-
monious labelings and super edge-magic labelings, we suggest Gallian’s
dynamic survey [8].

In 2017, Tuza [19] introduced the Edge-Sum Distinguishing labeling
(ESD labeling), defined as follows: given a graph G and a set of con-
secutive integer labels L = {1, 2, . . . , s}, an ESD labeling of G is an in-
jective labeling f : V (G) → L such that, when we assign the edge label
ϕ(uv) = f(u)+ f(v) for each edge uv ∈ E(G), the (induced) edge labeling
ϕ is injective. We note that the set of all possible edge labels induced by
the vertex labeling f is represented by LE = {3, 4, . . . , 2s− 1}. Figure 1.1
exhibits a graph with an ESD labeling.
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Figure 1.1: A graph with an edge-sum distinguishing labeling.

The ESD labeling was later investigated by Bok and Jedličková [2],
who determined the minimum positive integer s for which many classical
families of graphs admit an ESD labeling f : V (G) → {1, . . . , s}.
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Graph labelings are usually investigated from the perspective of deter-
mining whether a given graph has a required labeling or not [8]. An al-
ternative perspective is to analyze graph labeling problems from the point
of view of combinatorial games [3, 12, 18]. In fact, Tuza introduced the
ESD labeling in connection to the study of a combinatorial game related
to graph labelings with sums. In his seminal paper, Tuza [19] surveyed the
area of graph labeling games and presented two graph labeling games with
sums [3, 12] based on magic labelings. Tuza [19] also proposed new vari-
ants of graph labeling games such as the Graceful game, studied by Frickes
et al. [7], the Edge-Difference Distinguishing game, later investigated by
Oliveira et al. [15], and the Edge-Sum Distinguishing game.

The Edge-Sum Distinguishing game (ESD game) is a type of maker-
breaker game, where the players have opposite goals. In this game, Alice
and Bob alternately assign a previously unused label f(v) ∈ L = {1, . . . , s}
to an unlabeled vertex v of a given graph G. If both ends of an edge
vw ∈ E(G) are already labeled, then the (induced) label ϕ(vw) of the
edge vw is defined as ϕ(vw) = f(v) + f(w). A move is legal if after it
all edge labels are distinct. Only legal moves are allowed in this game.
Alice (the maker) wins if the graph G is fully ESD labeled, and Bob (the
breaker) wins if he can prevent this (that is, Bob wins if, at some point,
no more legal moves are allowed and the graph is not fully ESD labeled).
We refer to Figure 1.2 for an example of ESD game played on a Fan graph
F3 with L = {1, . . . , 9}.

In 2017, Tuza [19] posed the following questions about the ESD game.

Question 1.1. Given a graph G and a set of consecutive non-negative
integer labels L = {1, . . . , s}, for which values of s can Alice win the ESD
game?

Question 1.2. If Alice can win the ESD game on a graph G with the set
of labels L = {1, . . . , s}, can she also win with L = {1, . . . , s+ 1}?

We define the edge-sum distinguishing game number σg(G) of a graph
G as the least positive integer s such that Alice has a winning strategy
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for the ESD game on G using the set of labels {1, . . . , s}, independently
of which player starts the game.

In this work, we investigate winning strategies for Alice and Bob on the
ESD game on a simple connected graph G and we partially answer Tuza’s
questions presenting bounds for the number of consecutive non-negative
integer labels necessary for Alice to win the ESD game on a graph G.

B2

4

A1

(a) 1st move.

5

B2

4

A1

9

(b) 2nd move.

3

A3

5

B2

4

A1

9
7

8

(c) 3rd move.

3

A3

5

B2

4

A1

1

B4

9
7

5

48

(d) 4th move.

Figure 1.2: ESD game played on a Fan graph F3 with L = {1, . . . , 9}.
Alice’s moves A1 and A3, and Bob’s moves B2 and B4.

2 Results on the ESD Game

We begin this section by presenting bounds for the edge-sum distin-
guishing game number. Bok and Jedličková [2] proved that if G is a graph
with maximum degree ∆, then σg(G) ≤ (∆2 + 1)n+∆

(
n−1
2

)
. In the next

theorem, we improve their result, by presenting a better upper bound for
the parameter σg(G).
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Theorem 2.1. If G is a graph on n vertices and m edges, then

σg(G) ≤ n+max{d(u)(m− d(u)) : u ∈ V (G)}.

Sketch of the proof: Let G be a graph on n vertices and m edges, and
let L = {1, . . . , s} be a set of consecutive integer labels such that s ≥
n + max{d(u)(m − d(u)) : u ∈ V (G)}. Alice (or Bob) starts playing the
ESD game on G, and our objective is to show a winning strategy for Alice.

At the beginning of the game, every vertex w ∈ V (G) has a list of
available labels L(w) = L. At each round of the game, a player (Alice or
Bob) chooses an unlabeled vertex and assigns to it an available label α such
that 1 ≤ α ≤ s. Right after a player’s move, the sets of available labels
of the remaining unlabeled vertices are updated to maintain the property
that these sets only contain available labels for the respective vertices.

At the j-th move, a player (Alice or Bob) chooses an unlabeled vertex
vj ∈ V (G) and assigns an available label f(vj) to vj . Right after the j-th
move, the set of available labels L(u) of each remaining unlabeled vertex
u ∈ V (G) is updated. Only unused vertex labels and vertex labels that
cannot generate repeated edge labels in future iterations can remain in each
set. The sets of available labels are updated according to the following two
steps:
(1) for every unlabeled vertex u ∈ V (G), remove f(vj) from L(u). Note
that, since an ESD labeling is injective, the label f(vj) cannot be assigned
to more than one vertex;
(2) for every unlabeled vertex u ∈ V (G) and for every labeled vertex
u′ ∈ N(u), delete from L(u) every label ℓ such that ℓ + f(u′) = ϕ(e), for
every edge e ∈ E(G) that has both endpoints labeled.

Based on the two steps previously described, we determine the maxi-
mum number of labels that are deleted, throughout the game, from each
set of available labels. We conclude that at most (n− 1)+max{d(u)(m−
d(u)) : u ∈ V (G)} labels are deleted from each set of available labels. Since
|L| is greater than this value, the result follows.

We recall that Tuza proposed two questions about the game. For
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Tuza’s Question 1.1, on Theorem 2.1, we present a tight upper bound
for the number of labels necessary for Alice to win the game on general
graphs. We developed computational experiments to check the result of
the game for some small graphs. We applied the backtracking technique
(an intelligent exhaustive search), growing the tree of partial solutions
by branching on the set of all possible moves and pruning the branching
process as soon as we decide which player wins the game.

We observe that, in this algorithm, at each turn of the game, a player
needs to choose one vertex in the set of remaining vertices and a label
in the set of remaining labels. Thus, at the k-th turn, the player has
(n− k + 1) · (s− k + 1) possible choices. Since s ≥ n, we have Ω(n!× n!)

possible configurations for the whole game. For this reason, we just con-
sidered graphs with at most 10 vertices to compute with our backtracking
algorithm.

In our tests, we did not find a counterexample in which Alice wins the
game with s labels but does not win with s + 1 labels, and this means
that Tuza’s Question 1.2 remains an open problem. Finally, given a graph
G, we asked what is the minimum s such that Alice wins the ESD game
independently of which player started the game, i.e., the σg(G). Our
algorithm computed the exact value of σg(G) of G for the first members
in graph classes such as stars K1,n−1, paths Pn, cycles Cn, and wheels Wn.
These results are summarized in Table 2.1.
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Graph G σg (G)

K1,n−1, n ≥ 2 n

Pn, n ≤ 3 n

Pn, 4 ≤ n ≤ 8 n+ 1

Pn, 9 ≤ n ≤ 10 n+ 2

Cn, n = 3 n

Cn, 4 ≤ n ≤ 5 n+ 1

Cn, 6 ≤ n ≤ 9 n+ 2

Cn, n = 10 n+ 3

Wn−1, 4 ≤ n ≤ 5 2n− 2

Wn−1, 6 ≤ n ≤ 10 2n− 1

Table 2.1: Graphs and their respective ESD game number.
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