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Abstract. We introduce the maximal transitive subtournament op-
erator τ of a digraph D. We study some basic properties of the
operator and exhibit infinite families of convergent and divergent di-
graphs under τ . It is proved that for every p ∈ N there exists an
infinite family of finite τ -periodic digraphs of period p.
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1 Introduction and preliminaries

Throughout this paper we consider simple digraphs (or oriented graphs),
i.e. without loops or symmetric edges. We will use standard terminology
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for digraphs [2] and graph dynamics [7]. For convenience we recall some
useful definitions and notation.

Let D = (V,A) be a digraph. An arc from u ∈ V (D) to v ∈ V (D) is
denoted by u→ v. The in-degree and the out-degree of a vertex v ∈ V (D)

are denoted by d−(v) and d+(v), respectively. A vertex v ∈ V (D) is a
source if d−(v) = 0 and a sink if d+(v) = 0.

A tournament on n vertices is an orientation of the complete graph
Kn. A tournament T = (V,A) is called transitive if the condition u → v

and v → w are arcs of T , implies that u → w is an arc of T . It is
well-known that a transitive tournament is acyclic and its vertices may be
totally ordered by the arc relation (see [2]). Consequently, T has exactly
one source and one sink denoted by f and s, respectively.

Let D be a digraph. We consider the set of the inclusion-wise maximal
transitive subtournaments (that we call tt-cliques) of D, denoted by T(D).
The maximal transitive subtournament digraph (or the tt-clique digraph)
of D, denoted by τ(D), is the digraph such that V (τ(D)) = T(D) and if
T1, T2 ∈ T(D), then T1 → T2 is an arc of τ(D) if f1, s2 /∈ V (T1) ∩ V (T2)

and s1, f2 ∈ V (T1)∩ V (T2) (where fi is the source and si is the sink of Ti
for i = 1, 2). We say that τ(D) is the tt-clique operator or the τ operator
in brief. Notice that if D is a digraph with no arcs, then τ(D) = ∅.

In a sense, this operator is a corresponding notion to the widely studied
clique operator of graphs. The clique graph K(G) is the graph whose vertex
set is the set of its cliques (i.e. its maximal complete subgraphs) and two
cliques of G are adjacent if their vertex intersection is nonempty. We call
K the clique operator. A characterization of clique graphs was given by
Roberts and Spencer in [8]. Among the extensive literature on the clique
operator, see the book [7] by Prisner and the survey [9] by Szwarcfiter.

Given a digraph D, the line digraph
−→
L (D) of D has the arcs of D

as its vertices and if u → v and w → x are arcs of D, then there is an
arc (u, v) → (w, x) in

−→
L (D) if and only if v = w. Let m(D) denote

the maximum order of a tt-clique of D. Observe that if m(D) ≤ 2, then
τ(D) =

−→
L (D). There are several characterizations of line digraphs (see
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the book [1] by Bagga and Beineke and the already mentioned book [7]).
By convention, τ0(D) = D and τn(D) = τ(τn−1(D)) for every n ≥ 1.

Following the theory of graph operators, let us recall some definitions.
A digraph is τ -divergent if limn→∞ |τn(D)| = ∞, otherwise, it is τ -
convergent. Equivalently, a digraph is τ -convergent if τm(D) ∼= τm+p(D)

for some integers m ≥ 0 and p ≥ 1. The smallest such numbers m and p

are called the transition index and the period of D (under τ), respectively.
In this case, we say that D converges to the set {τm+k(D) : 0 ≤ k ≤ p−1}.
If p = 1, we simply say that D converges to τm(D). If m = 0, then D is
called τ -periodic of period p and when m = 0 and p = 1, D is said to be
self-τ -convergent or τ -invariant.

There are many results on divergent, convergent and self-clique graphs.
However, the behaviour of the iterated clique operator is far from being
characterized. On the other hand, the behavior of the iterated line digraph
has been completely characterized by Beineke (see for example [1]) and
Hemminger [5].

Applications of (transitive) tournaments include the study of voting
theory and social choice theory, game theory and computer science (see [6]
and its references).

In the following sections, we study some basic properties of the τ op-
erator and exhibit infinite families of convergent and divergent digraphs
under τ . In particular we prove that for every p ∈ N there exists an infinite
family of finite τ -periodic digraphs of period p.

2 Properties of the τ operator

Let D be a digraph. Recall that if T(D) = {Ti : i = 1, ..., k}, then
fi and si denote the source and the sink of Ti, respectively. For brevity,
if u1 → v, ..., uk → v (k ≥ 2) are arcs of D, we write u1, ..., uk → v.
Analogously, we use u→ v1, ..., vk instead of u→ v1, ..., u→ vk.

Proposition 2.1. The τ operator is not surjective.
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Proof. Define the digraphH by setting V (H) = {T1, T2, T3, T4} andA(D) =

{T1 → T2, T3, T4;T2 → T3;T3 → T4;T4 → T2}. We claim that H ̸∈ Im(τ).
For a contradiction, suppose that there exists τ−1(H) (accordingly, T1,
T2, T3 and T4 are the tt-cliques of τ−1(H)). By the definition of τ , the
sources f2, f3, f4 ∈ T1. Since T2 → T3, T3 → T4 y T4 → T2, we have that
f2 → f3 → f4 → f2 is a directed cycle of τ−1(H). This is a contradic-
tion.

Consider the following generalization of the digraph H used in the
proof of Proposition 2.1. Let

−→
C n be a directed cycle with vertex set

{T0, T1, ..., Tn−1} (n ≥ 3) and arcs Ti → Ti+1 (the sum is taken modulo
n). Define the digraph Hn by V (Hn) = {T0, T1, ..., Tn−1} ∪ {Tv}. We
construct Hn by taking a copy of

−→
C n and Tv such that Tv → Ti for every

i ∈ {0, 1, ..., n− 1}.
If Hn is a subdigraph of a digraph D, then fi ∈ Tv in τ−1(H) for

every i ∈ {0, 1, ..., n − 1}, where fi is the source of the tt-clique Ti in
τ−1(H). Analogously as in the previous proof, the set of sources fi induces
a directed cycle in Tv, which is impossible. This proves the following:

Theorem 2.2. Let D be a digraph and Hn a subdigraph of D. Then
D ̸∈ Im(τ).

We conjecture that D ∈ Im(τ) if and only if D does not contain Hn as
a subdigraph.

Recall that m(D) is the maximum order of a tt-clique of D. Using the
definition of the τ operator, it is straightforward to prove the following:

Theorem 2.3. m(D) ≥ m(τ(D)) for every digraph D. 2

Denote by
←−
D the converse of a digraph D, i.e.

←−
D is obtained from D

by reversing every arc of D. From the definitions of τ and of the converse
of a digraph, we have that τ(

←−
D) =

←−−−
τ(D).

Recall that a digraphD is strongly connected if for every pair of vertices
u and v there is a directed path from u to v and from v to u. Notice that
a strongly connected digraph has neither a source nor a sink.



The maximal transitive tournament operator of a digraph 61

In general, if D is strongly connected, then τ(D) is not necessarily
strongly connected as the following example shows. Let D be a digraph
defined by V (D) = {0, 1, 2, 3, 4, 5} and A(D) = {0 → 1 → 2 → 3 →
5 → 0, 0 → 2 → 4 → 0, 4 → 5 → 1 → 3, 4 → 3}. Then T(D) = {T0 =

[012], T1 = [123], T2 = [243], T3 = [435], T4 = [450], T5 = [501]}, where
[xyz] denotes the transitive tournament on 3 vertices such that x→ y → z

and x → z. Hence V (τ(D)) = T(D) and A(τ(D)) = {T0 → T2 → T3 →
T5 → T1, T4 → T5 → T0 → T1, T4 → T0}. Observe that T4 is a source and
T1 is a sink. We conclude that τ(D) is not strongly connected.

3 Convergence and divergence under τ

We first consider acyclic digraphs. Recall that every acyclic digraph
has a source and a sink. According to the definition of τ operator, it
is straightforward to show that τ(D) is acyclic whenever D is an acyclic
digraph. Observe that K1 is acyclic.

The distance from vertex u to vertex v in D is the length of the shortest
directed path from u to v. A longest directed path of D is a directed path
of maximum length. We denote by l(D) the length of a longest directed
path of D.

Proposition 3.1. Let D be a connected acyclic digraph such that |V (D)| ≥
2. Then l(D) > l(τ(D)).

Proof. Consider l = l(D) and l′ = l(τ(D)). Let T0 → T1 → . . .→ Tl′ be a
directed path of length l′ in τ(D). The vertices f0, f1, . . . fl′ and sl′ induce
a directed path in D of length l′ + 1. Therefore, l′ + 1 ≤ l.

Let D be an acyclic digraph of order n. Notice that τk(D) is acyclic
and l(τk(D)) > l(τk+1(D)) for every k ∈ {1, ..., n}. Hence there exists
m ≤ k such that τm(D) = K1. We have the following consequence.

Corollary 3.2. Every acyclic digraph is τ -convergent.
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Let Zn be the group of the residues modulo n and ∅ ≠ J ⊆ Zn \ {0}.
The circulant digraph

−→
C n(J) is defined by V (

−→
C n(J)) = Zn and i → j is

an arc of
−→
C n(J) if j− i ∈ J with i, j ∈ Zn. Since we only deal with simple

digraphs, we set |J ∩{i,−i}| ≤ 1 for every i ∈ Zn to avoid symmetric arcs.
We say that a digraph D is vertex-transitive if for every pair of vertices

u, v ∈ V (D), there exists an automorphism of D that maps u to v. In
particular, circulant digraphs

−→
C n(J) are vertex-transitive and ϕ(u) = u+

k (modn) for every k ∈ Zn is an automorphism of
−→
C n(J). We define the

interval [k, l] ⊆ Zn (k ̸= l) by [k, l] = {k, k + 1, ..., l} (modn) (i.e. every
sum is taken modulo n, for example, [11, 3] = {11, 12, 0, 1, 2, 3} in Z13).

Theorem 3.3.
−→
C n(1, 2, ..., k), where n ≥ 5 and 2 ≤ k ≤ ⌊(n − 1)/2⌋, is

τ -invariant.

Proof. Let D =
−→
C n(1, 2, ..., k). Notice that T0 = [0, k] is a tt-clique of

D. Moreover, Ti = [i, k + i] induces a tt-clique for every i ∈ Zn since D
is vertex-transitive. Then T(D) = {Ti : i ∈ Zn}. Consider τ(D) whose
vertex set is T(D) and Ti → Ti+j is an arc of τ(D) for every j = 1, ..., k.
Define the digraph homomorphism ϕ : D → τ(D) by ϕ(i) = Ti for every
i ∈ Zn. It is straightforward to check that ϕ is a digraph isomorphism.

Let D =
−→
C n(1, 2, ..., k). Define Da and Db to be the digraphs for which

V (Da) = Zn ∪ {a}, V (Db) = Zn ∪ {b} and A(Da) = A(D) ∪ {a → 0, 1},
A(Db) = A(D) ∪ {0, 1 → b}, respectively. We recall that [u, v, w] denotes
the transitive tournament T such that V (T ) = {u, v, w} and A(T ) = {u→
v → w, u→ w}.

Theorem 3.4. Da and Db are τ -invariant.

Proof. Notice that V (τ(Da)) = T(Da) = T(D) ∪ [a, 0, 1] and V (τ(Db)) =

T(Db) = T(D) ∪ [0, 1, b], where T(D) = {Ti : i ∈ Zn}. Therefore,
A(τ(Da)) = A(τ(D)) ∪ {[a, 0, 1] → T0, T1} and A(τ(Db)) = A(τ(D)) ∪
{Tn−k, Tn−k+1 → [0, 1, b]} with Ti = [i, k + i] ∈ T(D) for i ∈ {0, 1, n −
k, n − k + 1}. If we define ϕ : Da → τ(Da) by ϕ(i) = Ti with i ∈ Zn
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and ϕ(a) = [a, 0, 1], then it is routine to prove that ϕ is a digraph isomor-
phism. Similarly, let ψ : Db → τ(Db) be a digraph homomorphism such
that ψ(i) = Tn−k+i with i ∈ Zn and ψ(b) = [0, 1, b]. It is straightforward
to show that ψ is an isomorphism.

We emphasize that geometrically the isomorphism ψ of the previous
proof is a rotation of Db identified by sending 0 ∈ Zn to n− k ∈ Zn.

In [3], Escalante proved that for every p ∈ N there exist infinitely many
finite connected K-periodic graphs of period p (see also Theorem 14.17 of
[7]). We show an analogous result for digraphs under τ .

We define a digraph H = Da ∪ Db, i.e. V (H) = Zn ∪ {a, b} and
A(H) = A(D) ∪ {a→ 0, 1} ∪ {0, 1→ b}.

Theorem 3.5. Let n ≥ 5 and 2 ≤ k ≤ ⌊(n− 1)/2⌋. Then H is τ -periodic
of period p = n

gcd(n,k) .

Proof. From the definition of H (the sums are taken modulo n throughout
the proof), V (τ(H)) = T(H) = T(D) ∪ {[a, 0, 1], [0, 1, b]} and

A(τ(H)) = A(τ(D)) ∪ {[a, 0, 1]→ T0, T1}∪

{Tn−k, Tn−k+1 → [0, 1, b]} ∪ {[a, 0, 1]→ [0, 1, b]}.

We relabel the vertices of τ(H). Let f : V (τ(H))→ Zn∪{a, b1} be the
bijection such that f(Ti) = i for i ∈ Zn, f([a, 0, 1]) = a and f([0, 1, b]) = b1.
Therefore V (τ(H)) = Zn ∪ {a, b1} and

A(τ(H)) = A(D) ∪ {a→ 0, 1} ∪ {(n− k), (n− k + 1)→ b1} ∪ {a→ b1}.

Notice that the arc a → b1 is a tt-clique of τ(H). Then, it is a vertex of
τ2(H) denoted by [a, b1]. Accordingly,

V (τ2(H)) = T(τ(H)) = T(D) ∪ {[a, 0, 1], [n− k, n− k + 1, b1], [a, b1]},

A(τ2(H)) = A(τ(D)) ∪ {[a, 0, 1]→ T0, T1}∪

{Tn−2k, Tn−2k+1 → [n− k, n− k + 1, b1]},
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since Tn−2k = [n− 2k, n− k], Tn−2k+1 = [n− 2k+ 1, n− k+ 1] and [a, b1]

is an isolated vertex of τ2(H) such that τ([a, b1]) = ∅. Relabeling again
the vertices, we obtain that V (τ2(H)) = T(τ(H)) = T(D) ∪ {a, b2, [a, b2]}
(note that b2 is the new label for [n− k, n− k + 1, b1]) and

A(τ2(H)) = A(D) ∪ {a→ 0, 1} ∪ {(n− 2k), (n− 2k + 1)→ b2}.

We continue this procedure and for p ≥ 2, we obtain that

V (τp(H)) = T(τp−1(H)) = T(D) ∪ {a, bp−1} and

A(τp(H)) = A(D)) ∪ {a→ 0, 1} ∪ {(n− pk), (n− pk + 1)→ bp−1},

where bp−1 is the new label for the vertex [n−(p−1)k, n−(p−1)k+1, bp−2].
We remark that an isolated vertex [a, bp−1] appears in τp(H) if and only if
n− (p− 1)k ≡ 1 (mod n). This means that there exists the arc [a, 0, 1]→
[1, 2, bp−1] and we proceed as with the case of τ(H).

Observe that τp(H) = H if and only if n−pk ≡ 0 (mod n) (recall that
0→ b is an arc ofH). Equivalently, pk ≡ 0 (mod n). If gcd(n, k) = 1, then
p ≡ 0 (mod n) and H is τ -periodic of period p = n. If gcd(n, k) = d ≥ 2,
then pk ≡ 0 (mod n) ⇔ p k

d ≡ 0 (mod n
d ) ⇔ p ≡ 0 (mod n

d ) and H is
τ -periodic of period p = n

gcd(n,k) .

As a consequence of Theorem 3.5, for every p ∈ N such that p ≥ 3

there exists an infinite family of finite τ -periodic digraphs of period p. For
the remaining case p = 2 we state the following proposition whose proof
is left to the reader.

Let n ≥ 2 and define the digraph J2n+1 by V (J2n+1) = Z2n+1 ∪ {a, b}
and A(J2n+1) = A(

−→
C 2n+1(1, 2) ∪ {a → 0, 1} ∪ {n, (n + 1) → b}. Simi-

larly, for n ≥ 3 we define J2n by V (J2n) = Z2n ∪ {a, b} and A(J2n) =

A(
−→
C 2n(1, 2) ∪ {a→ 0, 1} ∪ {(n+ 1), (n+ 2)→ b}. The proof of the next

proposition is left to the reader.

Proposition 3.6. τ2(J2n+1) ∼= J2n+1 for every n ≥ 2 and τ2(J2n) ∼= J2n

for every n ≥ 3. 2
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From Theorems 3.3 and 3.5 and Proposition 3.6, we have the following:

Theorem 3.7. For every p ∈ N there exists an infinite family of finite
τ -periodic digraphs of period p. 2

Finally, we exhibit without proof an infinite family of divergent di-
graphs. Let D =

−→
C n(1, ..., k) and D′ =

−→
C ′

n(1, ..., k) be the circulants such
that V (D) = Zn and V (D′) = Z′

n = {0′, 1′, ..., n′ − 1}. Define a digraph
F2n such that V (F2n) = Zn ∪ Z′

n and A(F2n) = A(D) ∪ A(D′) ∪ {0 →
0′, 1 → 0′, 1 → 1′}. Therefore, |V (τ(F2n)| = |V (F2n)| + 2 and in gen-
eral, |V (τm+1(F2n)| = |V (τm(F2n)| + 2 for every m ∈ N. Hence, F2n is
τ -divergent of linear growth for every n ≥ 10.

References

[1] J.S. Bagga and L.W. Beineke. Line Graphs and Line Digraphs.
Springer, Switzerland, 2021.

[2] J. Bang-Jensen and G. Gutin. Digraphs. Theory, algorithms and ap-
plications. Springer-Verlag, London, 2001.

[3] F. Escalante. Über Iterierte Clique-Graphen. Abh. Math. Sem. Univ.
Hamburg. 39 (1973) 58–68.

[4] B. Hedman. Clique graphs of time graphs. J. Combinatorial Theory
Ser. B 37 (1984) 270–278.

[5] R.L. Hemminger. Digraphs with periodic line digraphs. Studia Sci.
Math. Hungar. B 9 (1974) 27–31.

[6] L. Kiviluoto. P.R. Östergård and V.P. Vaskelainen. Algorithms for
finding maximum transitive subtournaments. J. Combin. Optimiza-
tion 31 (2016) 802–814.

[7] E. Prisner. Graph dynamics. Longman, Harlow, 1995.



66 M. Gutierrez, B. Llano and G. Sánchez-Vallduví

[8] F.S. Roberts and J.H. Spencer. A characterization of clique graphs.
J. Combinatorial Theory Ser. B 10 (1971) 102–108.

[9] J.L. Szwarcfiter. A survey on clique graphs. In B.A. Reed and C.
Linhares-Sales, editors, Recent advances in algorithms and combina-
torics, volume 11 of CMS Books Math./Ouvrages Math. SMC, pages
109–136. Springer, New York, 2003.


	Introduction and preliminaries
	Properties of the  operator
	Convergence and divergence under 

