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Abstract. The coloring game is a two player non-cooperative game
conceived by Steven Brams, firstly published in 1981. In this game,
Alice and Bob, alternately take turns properly coloring the vertices
of a finite graph G with t colors. The goal of Alice is to properly
color the vertices of G with t colors, and Bob does his best to prevent
it. If at any point there exists an uncolored vertex without available
color, then Bob wins; otherwise Alice wins. The game chromatic
number χg(G) of G is the smallest number t such that Alice has
a winning strategy. In 1991, Bodlaender showed the smallest tree
T with χg(T ) equals to 4, and in 1993 Faigle et al. proved that
every tree T satisfies the upper bound χg(T ) ≤ 4. In this paper, we
discuss an interesting tree family with maximum degree 3 that has
game chromatic number 3 for its first members but game chromatic
number 4 otherwise.
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1 Introduction

Let G = (V,E) be a finite, simple, undirected graph with vertex set
V = V (G) and edge set E = E(G). In 1981, Martin Gardner [6] pub-
lished for the first time a two player non-cooperative map-coloring game
conceived by Steven Brams. Ten years later, this game was reinvented by
Bodlaender [1] in the context of graphs, and called the coloring game.

The two players, Alice and Bob, take turns properly coloring an uncol-
ored vertex of graph G by a color in a given color set with t colors (moves),
such that adjacent vertices have different colors. Alice’s goal is to color
the input graph with the t colors, and Bob does his best to prevent it.
Alice wins when the graph is completely (properly) colored with t colors;
otherwise, Bob wins.

The game chromatic number χa
g(G) (or simply χg(G)) of G is the small-

est number t of colors such that Alice has a winning strategy for the graph
coloring game on G when she starts the game. In the vast literature about
the coloring game, it is only considered the case when Alice starts. The
case when Bob starts is also studied in this paper for proof purposes. So,
let χb

g(G) be the smallest number t of colors such that Alice has a winning
strategy for the graph coloring game on G, when Bob starts the game.

Clearly, for any graph G, we have that χ(G) ≤ χg(G) ≤ ∆(G) + 1,
where χ(G) denotes the chromatic number and ∆(G) the maximum degree
of graph G. So, we have that a complete graph Kn has χg(Kn) = n,
because χ(Kn) = ∆(Kn) + 1 = n, and, analogously, an independent set
Sn has χg(Sn) = 1.

Analyzing the game chromatic number of paths Pn, with n vertices, we
can quickly check that χg(P1) = 1 and χg(P2) = χg(P3) = 2. For n ≥ 4,
we have that χg(Pn) = 3 because, regardless of where Alice colors on her
first turn, Bob can always assign a different color to a vertex at distance 2

from the vertex that Alice colored, forcing the third color. We recall that
the distance d(u, v) between two vertices u and v in a graph is the number
of edges in a shortest path connecting them. Using the same idea, we have
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that cycles Cn have χg(Cn) = 3, and stars K1,p with p ≥ 1 are the only
connected graphs satisfying χg(G) = 2.

The coloring game has been extensively studied for different graph
classes in order to obtain better upper and lower bounds for χg(G): toroidal
grids [9], Cartesian products of some classes of graphs [2], planar graphs [10],
outerplanar graphs [7], forests [3] and partial k-trees [11].

Bodlaender [1] showed an example of a tree with game chromatic num-
ber at least 4, and proved that every tree has game chromatic number at
most 5. Faigle et al. [4] subsequently improved this bound by proving that
every forest has game chromatic number at most 4.

Despite the variety of papers in this area, the distinction between
forests with different game chromatic numbers was only considered in 2015
by Dunn et al. [3]. They characterized forests with game chromatic num-
ber 2, and suggested the characterization of forests with game chromatic
number 3 and 4 as open problems, due to the difficulty concerning this
subject. We contribute to their study by considering a special family of
trees called caterpillars in order to define an infinite family of trees with
game chromatic number 4.

A caterpillar H = cat(k1, k2, . . . , ks) is a tree obtained from a central
path v1, v2, v3, . . ., vs (called spine) by joining ki leaf vertices to vi, for
each i = 1, . . . , s; and with number of vertices n = s +

∑s
i=1 ki. We

consider caterpillars with k1 = ks = 0. For i = 2, . . . , s− 1, if ki ≥ 1, then
we say that the vertex vi has ki adjacent leg leaves.

Our motivation to focus on caterpillars relies on the fact that Bod-
laender [1] proved the existence of a tree with χg(T ) ≥ 4 by considering
the caterpillar Hd = cat(0, 2, 2, 2, 2, 0) depicted in Figure 1.1. Actually,
Dunn et al. [3] proved that the caterpillar Hd is the smallest tree such
that χg(T ) = 4, and is the unique tree with fourteen vertices and game
chromatic number 4. We observe that this tree has maximum degree 4.

Faigle et al. [4] proved that χg(T ) ≤ 4, for trees T , and stated that this
result can be extended to forests F , that is, χg(F ) ≤ 4. Dunn et al. [3]
asked whether the maximum degree is relevant to characterize graphs with
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Figure 1.1: The caterpillar Hd satisfies χg(Hd) = 4.

game chromatic number equal to 3. Recall that the smallest tree with
game chromatic number 4 has maximum degree 4. In a previous extended
abstract [5], we have defined necessary and sufficient conditions for a tree
with maximum degree 4 to have game chromatic number 4.

In the present paper, we contribute to this maximum degree question
by analyzing, in Section 2, a family of caterpillars with maximum degree
3 and without vertex of degree 2. We analyze caterpillars in which we
can use a strategy for Alice to win with 3 colors in Theorem 2.1, but this
strategy fails for a sufficiently large s.

Our work establishes that the required maximum degree to ensure game
chromatic number 4 is in fact 3. Finally, we present in Section 3 a sketch
of Theorem 3.1 about members of the family which have game chromatic
number 4, and further questions.

2 Trees with game chromatic number 3

We recall that, by Faigle et al. [4], every caterpillar H, which is not a
star, has 3 ≤ χg(H) ≤ 4. According to our notation, the star with n − 1

leaves, for n ≥ 4, is denoted K1,n−1 = cat(0, n− 3, 0).
It is an open challenge to characterize the caterpillars with game chro-

matic number respectively equal to 3 and to 4.
We refer to Figure 2.1, where vertex vi is simply labeled i. In the

coloring game on a caterpillar, a player is forced to use four colors if,
during the game, there exists an induced subgraph isomorphic to a claw,
the caterpillar cat(0, 1, 0), with its leaves colored with different colors, as
depicted in Figure 2.1(a). Thus, Bob’s strategy is to obtain a previously
partially colored claw subgraph as in Figure 2.1(b) to start coloring on it.
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Let G be a graph, Z be a previously colored vertex set of V (G), and
(G,Z) be the partially colored graph. We say that Alice (resp. Bob) plays
on (G,Z), if Alice (resp. Bob) colors the uncolored vertices of V (G) \ Z.
Let χa

g(G,Z) (resp. χb
g(G,Z)) be the smallest number t of colors such that

Alice has a winning strategy for the graph coloring game on G, when Alice
(resp. Bob) starts playing on a graph G with a previously colored set of
vertices Z ⊆ V (G).

Let C = cat(0, 1, 0) be a claw and Z = {v1, v3 | c(v1) ̸= c(v3)} be a
previously colored set of vertices of C. We claim that χa

g(C,Z) = 3 and
χb
g(C,Z) = 4. We refer to Figure 2.1(b). First, we observe that, since

vertex v2 can not be properly colored with the two colors previously given
to v1 and to v3, at least three colors are necessary. If Bob starts playing
on (C,Z), then he colors the unique leg leaf (adjacent to v2) with a third
color, forcing a fourth color in v2. If Alice starts playing on (C,Z), then
she colors v2 with a third color, which ensures that she is able to win the
game with 3 colors.

Figure 2.1: (a) The partially colored claw forces the game chromatic num-
ber to be 4; (b) claw-situation.

We define the claw-situation as an ordered pair (C,Z), where C =

cat(0, 1, 0) is a claw and Z = {v1, v3 | c(v1) ̸= c(v3)} is a previously colored
set of vertices (see Figure 2.1(b)). The claw-situation generalizes the key
tool implicitly used by Bodlaender to build the smallest tree with game
chromatic number 4. We strengthen the tool in order to define an infinite
family of trees with game chromatic number 4 and maximum degree 3.

We shall focus on the tree family Hs composed by caterpillars with
k1 = ks = 0 and ki = 1, for 2 ≤ i ≤ (s− 1). We study how Alice can win
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the game with 3 colors in caterpillars with maximum degree 3 and without
vertices of degree 2. We apply this winning strategy to H7 and H9.

Theorem 2.1. The game chromatic number of H7 and H9 is equal to 3.

Sketch of the proof: First, we consider H7. Alice colors v4 with color 1
in her first move, as in Figure 2.2. In Table 2, we analyse Bob and Al-
ice’s possible next moves. By the symmetry of the graph, Bob playing at
v5, v6, v7, λ5 or λ6 is analogous. For every possible Bob’s first move, Alice
avoids claw-situations, and plays so that 3 colors are enough to color the
graph H7.

Figure 2.2: H7 after Alice’s first move.

Table 2.1: Possibilities of how Bob plays in his first move, and plays next.
Bob’s first turn Alice’s second turn
c(v1) = 1 c(λ2) = 1

c(v1) = 2 or c(λ2) = 2 or c(λ4) = 2 c(v2) = 1

c(v2) = 1 or c(λ3) = 1 or c(v2) = 2 or c(λ3) = 2 c(v3) = 3

c(λ2) = 1 c(v1) = 1

c(v3) = 2 c(v1) = 2

Now, we use an analogous argument to establish that χa
g(H9) = 3.

Figure 2.3: H9 after Alice’s first move.
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Alice colors v5 with color 1 in her first move, as in Figure 2.3. If Bob
colors v1 (or λ2) with color 1, then Alice colors v3 with color 1. If Bob
colors v1 (or λ2) with color 2, then Alice colors λ2 (resp. v1) with color 2.
The other plays have already been analyzed in H7, we can use the exact
same plays.

By the previous result, it would be expected that, at least for s odd,
each caterpillar H = cat(k1, ..., ks) with k1 = ks = 0 and ki = 1, for
2 ≤ i ≤ s− 1 should have χa

g(H) = 3. But this it is not always true, as we
can see next.

3 Towards a full dichotomy for maximum degree
3 trees

In this section, we observe that Theorem 2.1, fails for a sufficiently
large s. As we see, Theorem 3.1 presents an infinite family of trees with
maximum degree 3 and game chromatic number 4. It is still a work in
progress to achieve a full dichotomy for maximum degree 3 trees.

Theorem 3.1. Let H be a caterpillar cat(k1, ..., ks), with k1 = ks = 0 and
ki = 1, for 2 ≤ i ≤ s− 1. If s ≥ 40, then χa

g(H) = χb
g(H) = 4.

Sketch of the proof: This proof is based on the claw-situation, and it is
constructed in stages, with two of them as the main ones:
(i) If H is a caterpillar cat(k1, ..., ks), k1 = ks = 0 and ki = 1, for 2 ≤ i ≤
s− 1, s ≥ 10 and let Z = {v1, vs | c(v1) ̸= c(vs)}, then χb

g(H,Z) = 4;
(ii) If H is a caterpillar cat(k1, ..., k20), k1 = k20 = 0 and ki = 1, for
2 ≤ i ≤ 19 and let Z = {v1, v20 | c(v1) ̸= c(v20)}, then χa

g(H,Z) = 4.
In fact, if Alice starts the game by coloring a spine vertex vi, then Bob

colors another spine vertex vj such that d(vi, vj) = 19 and c(vj) ̸= c(vi),
and the result χa

g(H) = 4 follows by (i) and (ii).
If Alice starts the game by coloring a leg leaf λi, then Bob colors a

spine vertex vi−1 or vi+1 with a different color of λi. Now, to avoid a
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claw-situation, Alice is forced to color the spine vertex vi, and the result
χa
g(H) = 4 follows as in the previous case.

On the other hand, if Bob starts the game, then Bob colors v20. De-
pending on Alice’s second move, Bob colors next v1 or v40 with a different
color of v20. Again, the result χb

g(H) = 4 follows by (i) and (ii).

We recall that, in the proof of Theorem 3.1, we use the tools χb
g(H,Z)

and χa
g(H,Z). We are able to ensure that χa

g(H) = 4, for cat(k1, ..., ks),
with s ≥ 40, k1 = ks = 0 and ki = 1, for 2 ≤ i ≤ s− 1. But first, we show
strategies for χa

g(H) = 3 when s = 7 and s = 9. Therefore, we leave as
an open question what is the minimum s that guarantees that χa

g(H) = 4,
for cat(k1, ..., ks), with k1 = ks = 0 and ki = 1, for 2 ≤ i ≤ s− 1.
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