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Abstract. The k-independence number of a graph, which extends the
classical independence number, is the maximum size of a set of vertices
at pairwise distance greater than k. The associated decision problem is
known to be NP-complete for general graphs, and it is also known to
remain NP-complete for regular bipartite graphs when k ∈ {2, 3, 4} and for
planar bipartite graphs of maximum degree 3 for all k ≥ 2. We continue
this line of research by showing that the problem remains NP-complete
when considering several other graph classes. Moreover, we establish a
new connection between the k-independence number and the h-diameter,
which is a natural generalization of the graph diameter. Finally, we use this
new link to show the (parametrized) complexity of the decision problem
associated to computing the h-diameter.
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1 Introduction

Let graph G and integer k ≥ 1 be given. A set of vertices S ⊆ V (G) is
said to be k-independent if all vertices in S have a pairwise distance greater
than k. A natural extension of Maximum Independent Set problem concerns the
Maximum k-Independent Set Problem (for short, k-ISP), the determination of a
maximum k-independent set. Hence, it is equivalent to Maximum Independent
Set for k = 1. Moreover, the k-independence number of G (sometimes also called
the distance-k independence number), denoted as αk(G), is thus the cardinality
of a maximum k-independent set.

The k-independence number of a graph has received a considerable amount of
attention over the years. From the complexity point of view, Kong and Zhao [8]
showed that for every k ≥ 2, determining αk(G) is NP-complete for general
graphs, and that this problem remains NP-complete for regular bipartite graphs
when k ∈ {2, 3, 4} [7]. The complexity of the decision problem k-ISP has further
been investigated by Eto, Guo and Miyano [5], who showed that the problem
remains NP-complete for planar bipartite graphs of maximum degree 3 for all
k ≥ 2. Additionally, they proved that in chordal graphs, the problem is NP-hard
for all even k ≥ 2, but polynomial time solvable for odd k ≥ 1. Finally, they
consider the complexity of the problem when parameterised by the size of the k-
independent set, and show that the problem is then W[1]-hard on chordal graphs
for any even k ≥ 2.

In this paper, we continue this line of research by showing that the k-ISP
remains NP-complete on several other graph classes. We will also show that αk

is closely related to another graph parameter, the socalled h-diameter. The h-
diameter of a graph G, denoted by Dh(G), was introduced by Chung, Delorme
and Solé [2] as an extension of the classical diameter, and it is defined as the
largest pairwise minimum distance of a set of h vertices in G, i.e., the best
possible distance of a code of size h in G. Note that D2(G) = D(G). While
there exist polynomial time algorithms to calculate the diameter of a graph [1],
to our knowledge, the complexity of the h-diameter (and the more general version
known as (s1, s2, . . . , sr)-diameter) has not previously been established. Thus, in
the second part we will use this connection between both parameters for showing
the (parametrized) complexity of the decision problem associated to computing
the h-diameter ((s1, s2, . . . , sr)-diameter), which we refer to by h-DP.
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2 k-Independent set problem

To show NP-completeness of k-ISP, Kong and Zhao [8] provide a reduction
from the regular Independent Set Problem for any fixed k. In this paper, we
analyse two slightly adapted versions of the Kong and Zhao [8] reduction to
prove further results. We will refer to these as Reduction 1 and Reduction 2.

Reduction 1: Let a graph G be given. We construct a graph G′ as follows. All
edges in G are first replaced by a path of length k, where the length of a path is
the number of edges it contains. Then, if k is even, we add edges between all the
midpoints of these paths. Thus, these midpoints form a clique in G′. Otherwise,
if k is odd, the midpoint of the paths is not well-defined. Instead, we consider the
two vertices closest to the theoretical midpoint of the path. We add edges from
all these points to a single additional vertex. This reduction differs only from
the reduction provided by Kong and Zhao in that for the case where k is odd, we
connect the two vertices closest to the midpoint of each edge replacement path
with an additional vertex, whereas Kong and Zhao add a connection to only one
of the vertices on each edge replacement path. The correctness analysis is highly
similar and omitted here.

Reduction 2: This only applies if k is even and at least 4. Let again a graph
G be given. As in Reduction 1, in the construction of G′, all edges in G are
replaced by a path of length k. However, instead of adding edges between all
midpoints of these added paths, we connect each pair of added paths by a small
gadget. For P1 and P2 two edge-replacing paths, we add additional vertices vP1P2

and vP2P1
. These two vertices are then connected to the (k2 − 1)th and (k2 + 1)th

vertices along P1 and P2 respectively. Finally, an edge is added between the two
vertices vP1P2

and vP2P1
. Note that we thus add

(|E(G)|
2

)
such gadgets. We again

omit the correctness analysis.
Based on the structure preserving properties of the two reductions, as well as

inherent structural features introduced by the reductions, we can now show that
k-ISP is still NP-hard for several graph classes. We will use dG(u, v) to denote
the distance between a pair of vertices u, v in a graph G.

Lemma 2.1. k-ISP is NP-complete

(i) for K4-free graphs for all k ≥ 1 odd,

(ii) and for K3-free graphs for all k ≥ 4 even.

Proof. (i) Note that as k-ISP is equivalent to ISP for k = 1, and as ISP is known
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to be NP-complete even for K3-free graphs [10], it suffices to consider k ≥ 3. We
will prove the result by showing that the graphs resulting from Reduction 1 are
K4-free for k ≥ 3 odd. Let G be a graph and let G′ be the graph resulting from
applying Reduction 1 to G. To show that G′ is K4-free for all k ≥ 3 odd, we
consider which vertices in V (G′) could form a clique of size 4.

First, we consider the vertices in V (G). By construction, such a vertex v ∈
V (G) is adjacent to exactly one vertex per edge in E(G) connecting to v. As
these vertices are on different edge-replacing paths, and as these paths are not
directly connected for k odd, the largest clique in G′ containing v is of size at
most 2. Next, we consider the added vertex connected to the midpoints of all
edge-replacing paths, which we denote by vc ∈ V (G′)\V (G). By the construction
provided in the reduction, vc is adjacent to exactly two vertices on each edge-
replacing path. As these paths are not directly connected, the largest clique in
G containing vc is of size at most 3. Finally, we consider the added vertices on
the edge-replacing paths. Let u ∈ V (G′) \ V (G) be such a vertex. Because no
vertex in V (G) ∪ {vc} is contained in a clique of size 4, a clique must exist of
only vertices on the edge-replacing paths. As no edge connects two such paths
for k odd, no such clique exists. Therefore, G′ is K4-free, as desired.

(ii) We will consider the structure of the graph G′ resulting from Reduction 2.
As for (i), we consider the different categories of vertices. Again, it holds that for
all vertices v1, v2 in V (G), if (v1, v2) ∈ E(G), it must hold that dG′(v1, v2) = k.
If (v1, v2) ̸∈ E(G), it must moreover hold that dG′(v1, v2) > k. By the described
construction, for v1, v2 in V̂ = V (G′) \V (G) the set of added vertices and k ≥ 6,
the distance between v1 and v2 in G′ is at most k. As these are the same properties
that hold and are used in the correctness proof of the original reduction, we
conclude that this additional reduction is valid as well.

We will consider the structure of the graph resulting from this reduction for
k even. Let G be a graph and let G′ be the graph resulting from applying the
reduction to G. To show that G′ is K3-free for all k ≥ 4 even, we consider which
vertices in V (G′) could form a clique of size 3.

First, we consider the vertices in V (G). By construction, such a vertex v ∈
V (G) is directly connected to exactly a single vertex per edge in E connecting
to v. As these vertices are on different edge-replacing paths, and as these paths
are not directly connected in the considered reduction, the largest clique in G′

containing v is of size at most 2. Next, we consider the vertices on the edge-
replacing paths between vertices in V . Any such vertex vp ∈ V ′ \ V is either
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connected to two other vertices on the path, or one other vertex on the path
and one vertex in V . The (k2 − 1)th and (k2 + 1)th vertices on the path are
additionally connected to one of the added vertices connecting the edge-replacing
paths. As none of these neighbors share an edge by the reduction’s construction,
the largest clique in G′ containing vp is of size at most 2. Finally, we consider the
added vertices connecting the edge-replacing paths. Such a vertex vc ∈ V ′ \ V is
connected to three other vertices; another vertex connecting edge-replacing paths
and two non-adjacent vertices on an edge-replacing path. As thus also for vc it
holds that its neighbors do not share an edge, the largest clique in G′ containing
vp is of size at most 2. There does not exist vertices in V ′ which can be contained
in a clique of size 3. Therefore, G′ is K3-free. Then, as thus every graph resulting
from the reduction for k ≥ 4 is K3-free, the lemma must hold.

A graph G is maximal clique irreducible if every maximal clique in G contains
an edge that is not contained in any other maximal clique.

Lemma 2.2. k-ISP is NP-complete for maximal clique irreducible graphs for all
k ≥ 2.

Proof. We will consider the structure of the path resulting from Reduction 1.
Let G be a graph and let G′ be the graph resulting from applying the reduction
to G. To show that G′ is maximal clique irreducible for all k ≥ 2, we consider
which maximal cliques contain individual edges in G′. We will consider the cases
for k odd and even separately.

First, we consider the case where k is even. Then the graph G′ contains two
types of edges, those between two vertices in V (G) along edge-replacing paths,
and those connecting the midpoints of the edge-replacing paths. The edges in
the edge-replacing paths and those connecting the path graph to the vertices in
V (G), form maximal cliques of size 2 by construction. The midpoints of all the
edge-replacing paths form a maximal clique of size |E(G)| containing exactly the
edges of the second type. Thus, each edge is contained in only a single maximal
clique in G′ for k even.

Next, we consider the case where k is odd. As shown in the proof of Lemma 2.1(i),
G′ does not contain a clique of size 4. Trivially, an edge in a maximal clique of size
2 cannot be contained in another maximal clique. Thus, we consider only cliques
of size 3. By the construction provided in the reduction, such cliques only occur
between the two midpoints of an edge-replacing path and vc, for vc ∈ V (G′)\V (G)

the added vertex connected to the midpoints of all edge-replacing paths. Due
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to no two of the edge-replacing paths being connected by an edge, these maxi-
mal cliques cannot share an edge. Thus, each edge is contained in only a single
maximal clique in G′ for k ≥ 2 odd.

Then, because each edge in E(G′) is contained in only a single maximal clique
in G′ for all k ≥ 2, every graph resulting from the reduction for k ≥ 2 is maximal
clique irreducible. Therefore, the lemma must hold.

Note that there exist classes of graphs such that α can be computed in poly-
nomial time, but for which the computation of αk for k ≥ 2 is NP-hard. This
holds, for example, for the class of regular bipartite graphs. The independence
number of bipartite graphs is well known to be computable in polynomial time.
For instance, using that the minimum vertex cover is the complement of the
maximum independent set, and that by Kőnig’s Theorem the number of vertices
in the minimum vertex cover is equal to the number of edges in a maximum
matching [9], we can use polynomial time algorithms for maximum matchings to
compute α in polynomial time [6]. In contrast, for k ≥ 2, Kong and Zhao show
that computing αk remains NP-hard for regular bipartite graphs [8]. Moreover,
Eto, Guo and Miyano [5] show that approximating αk to within a factor of n1/2−ϵ

for bipartite graphs on n vertices is NP-hard.
Observe also that for k ≥ D(G), where D(G) is the diameter of a graph G,

it trivially holds that αk(G) = 1. More generally, for larger k, the density of
the power graph Gk increases. However, as the Independent Set Problem is not
fixed-parameter tractable for general graphs [3], the k-Independent Set Problem
does not allow a polynomial algorithm parameterized by the density.

3 h-Diameter

In this section we consider the complexity of h-DP. That is, the problem of
deciding whether for a graph G and a fixed h and p, there exist a set of vertices
S ⊆ V (G) such that |S| = h and the distance between vertices in S in G is at
least p. Equivalently, the problem can be stated as whether Dh(G) ≥ p holds.
The following fact will be useful in this section and it follows directly from the
parameter definitions:

Lemma 3.1. Dh(G) ≥ p if and only if αp−1(G) ≥ h.

Using Lemma 3.1, the complexity of h-DP follows directly from the complexity
of k-ISP seen in Section 2.
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Theorem 3.2. h-DP is NP-complete.

Moreover, we observe that the relation from Lemma 3.1 implies that h-DP
is W [1]-hard when parameterized by h, noting that k-ISP is W [1]-hard when
parameterized by k as shown by Eto, Guo and Miyano [5]. Next, we show that
h-DP is in fact contained in this parameterized complexity class.

Theorem 3.3. For general h, h-DP is in the W [1] complexity class parameterized
by p.

Proof. To show that the decision problem associated with the computation of the
h-diameter is contained in the W [1] complexity class, we will provide a param-
eterized reduction to Weighted Circuit Satisfiability of the set of circuits having
weft at most 1 and constant depth.

Let a graph G be given. To construct the circuit, we first create an input for
every vertex in V (G). Next, we invert all inputs. In the next layer of the circuit,
an or-gate is added for each pair of inputs v1, v2 ∈ V (G) with dG(v1, v2) < h.
Each such gate is then connected with the inverted inputs of the two corre-
sponding vertices. Finally, the or-gates are connected to a single and-gate, which
functions as the output. By design, this final gate is the only gate in the circuit
with an input degree greater than two, satisfying the weft requirement. The
construction of the circuit is illustrated in Figure 3.1.

Next, we will show that the h-diameter of G is at least ℓ if and only if the
circuit is satisfiable for some assignment of weight ℓ. We observe that the circuit
outputs True if and only if all or-gates evaluate to True. Moreover, such an
or-gate evaluates to True if and only if at most one of the associated inputs is
True. By the construction, two inputs are associated to an or-gate if and only
if the distance between the associated vertices in G is smaller than h. Thus, the
circuit outputs True if and only if inputs are set to True such that the associated
vertices are at least at distance h of one another in G. Therefore, the circuit is
satisfiable for some assignment of weight ℓ if and only if there exist ℓ vertices in G

which are pairwise at a distance of at least h, which is equivalent to Dh(G) ≥ ℓ.
It remains to show that the reduction is a valid parameterized reduction. For

the translation of the graph to the corresponding circuit, the all-pairs shortest
paths can be computed in O(|V (G)|3) with the Floyd-Warshall algorithm. As
the subsequent construction of the circuit can be completed in O(|V (G)|2), the
reduction is of polynomial complexity only dependent on the number of vertices
in the graph. Then, as by the formulation of the reduction the parameter p
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associated to the h-diameter decision problem instance is equal to the weight of
the corresponding instance of Weighted Circuit Satisfiability, the reduction is a
valid parameterized reduction.

As we have thus provided a parameterized reduction from the decision prob-
lem associated with the computation of the h-diameter to Weighted Circuit Sat-
isfiability of the set of circuits with weft at most 1, we conclude that said decision
problem parameterized by p is contained in the W [1]-hardness class.

∨ ∨ ∨ ∨ ∨ ∨ ∨

∧

¬ ¬ ¬ ¬ ¬

v1

v2

v3

v4

v5
v1 v2 v3 v4 v5

output

Figure 3.1: Illustration of the reduction of decision problem associated to the
computation of the h-diameter to Weighted Circuit Satisfiability as used in the
proof of Proposition 3.3. On the left, the graph P5 is given, and on the right the
corresponding circuit for h = 3.

Remark 3.4. We take the opportunity to correct an error on [2, Section 4.1],
and in particular on the first bound for the graph girth g(G) in terms of the h-
diameter: g(G) ≤ h·Dh(G)+1. Such a bound is clearly violated by a 10-cycle and
h = 4, and several other graph families. However, it can easily be fixed by taking
a minimal cycle and choose ⌊ g(G)

h ⌋ vertices on it that have distance at least k from
one another. This being lower than Dh(G) is equivalent to g(G) ≤ h·Dh(G)+h−1

(provided that h < g(G), otherwise the bound is trivial).

Fiol and Garriga [[4], Section 2.4] proposed a generalization of the h-diameter.
The (s1, s2, . . . , sr)-diameter of a graph G is the maximum distance between r

vertex subsets V1, V2, . . . Vr,⊆ V (G) of sizes s1, s2, . . . , sr respectively. Note that
for si = 1, for 1 ≤ i ≤ r, the (s1, s2, . . . , sr)-diameter equals the r-diameter.
Observing that for si = 1, for 1 ≤ i ≤ r, the (s1, s2, . . . , sr)-diameter equals the
r-diameter, we obtain the following complexity result.

Theorem 3.5. The decision problem associated to the computation of the
(s1, s2, . . . , sr)-diameter is NP-hard.
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