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Abstract. Let G be a graph with adjacency matrix A(G) and let
D(G) be the diagonal matrix of the degrees of G. For every real
α ∈ [0, 1], Nikiforov [Applicable Analysis and Discrete Mathematics,
11(1): 81-107, 2017] defined the matrix Aα(G) by Aα(G) = αD(G)+

(1−α)A(G). In this paper, we obtain the eigenvalues of some families
of graphs which have vertex connectivity equals to 1.
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1 Introduction

Let G = (V (G), E(G)) be a simple graph of order n with vertex
set V (G) and edge set E(G). If {vi, vj} ∈ E(G), vi and vj are called
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adjacency vertices and denoted by vi ∼ vj . Otherwise, we denote by
vi ̸∼ vj . The set of neighbours of a vertex v in G is denoted by NG(v)

and NG[v] = NG(v) ∪ {v}. The degree of a vertex v of G, d(v), is de-
fined by |NG(v)|. Two distinct vertices u and v are called true twins if
NG[u] = NG[v] and are called false twins if NG(u) = NG(v) and u is not
adjacent to v. A graph G is called r-regular if each vertex of G has degree
r. We denote the complete graph, the path and the cycle with n vertices
by Kn, Pn and Cn, respectively. The join G ≃ G1 ∨ G2 of the graphs
G1 = (V1, E1) and G2 = (V2, E2), where V1 ∩ V2 = ∅ is the graph which
is the union of G1 and G2 together with all the edges joining the elements
of V1 and V2. The vertex connectivity of a graph G, k(G), is the minimum
size of a vertex subset S ⊆ V (G) such that G − S is disconnected or has
only one vertex. The adjacency matrix of G, A(G) = [aij ], is defined by
aij = 1 if vi is adjacent to vj and aij = 0 otherwise. The matrix of degrees
of G, D(G) = [dij ], is defined by dii = d(vi) and dij = 0, ∀i ̸= j. The
signless Laplacian matrix is defined by Q(G) = D(G) + A(G). In 2017,
Nikiforov [5] defined for any real α ∈ [0, 1], the convex linear combinations
Aα(G) of A(G) and D(G) by Aα(G) = αD(G) + (1 − α)A(G). It is easy
to see that A(G) = A0(G), D(G) = A1(G) and Q(G) = 2A 1

2
(G). The Aα-

characteristic polynomial of G is defined by PAα(G)(x) = det(xI −Aα(G))

and its roots are called the α-eigenvalues of G. As usual, we shall in-
dex the eigenvalues of Aα(G) in a non-increasing order and denote them
as λ1(Aα(G)) ≥ λ2(Aα(G)) ≥ · · · ≥ λn(Aα(G)). The Aα-spectrum is
the multi-set of the eigenvalues of Aα(G) denoted by Spec(Aα(G)) ={
λ1(Aα(G))[m(λ1)], λ2(Aα(G))[m(λ2)], . . . , λr(Aα(G))[m(λr)]

}
, where m(λj)

is the multiplicity of the eigenvalue λj(Aα(G)), for 1 ≤ j ≤ r. For simplic-
ity, we use notations Aα and λi(Aα) when there is no risk of ambiguity.
Given a square matrix M , the classical adjoint matrix of M and the trace
of M are denoted by adj(M) and tr(M), respectively. We denote the
m × n all-ones matrix by Jm×n, the all-zeros matrix by 0m×n, and the
m ×m identity matrix by Im. In particular, we denote Jm and 0m when
m = n. The signless Laplacian matrix, Q(G), is positive semidefinite, but
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this is not true for Aα if α is sufficiently small. In 2017, Nikiforov [5]
proved that if α ≥ 1

2 then Aα is positive semidefinite and if α > 1
2 and G

has no isolated vertices then Aα is positive definite. Also in 2017, Niki-
forov and Rojo [6] defined α0(G) as the smallest value in the interval [0, 1]
such that λn(Aα0) ≥ 0. Then Aα is positive semidefinite if and only if
α0(G) ≤ α ≤ 1. In the same paper, the authors raised the following prob-
lem: "Given a graph G, find α0(G)" and solved this problema when G is
d-regular, r-colorable and when G contains bipartite components. In 2022,
Brondani et al. [2] also solved this problem for some families of graphs that
contain cliques. Moreover, there are some works the explicit the eigenval-
ues of Aα of some classes of graphs. For more details, we suggest [1, 2] and
references therein. In this paper, we solve the problem present above and
explicit the eigenvalues of some families of graphs with vertex connectivity
equal to 1. The paper is organized such that the preliminary results are
presented in the next section and the main results are in the Section 3.

2 Preliminaries

In this section we fix some notations and review some important results
for the development of the next section.

Proposition 2.1 ([4]). Let M be a matrix of the form

[
A x

yT a

]
, where

a ∈ R, x, y ∈ Rn and A is a square matrix of order (n − 1). Then

det

[
A x

yT a

]
= a det(A)− yT(adj(A))x.

Proposition 2.2 ([4]). Let M be a symmetric matrix of order n defined

by M =


M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k

...
...

. . .
...

Mk,1 Mk,2 · · · Mk,k

 , where Mi,j, 1 ≤ i, j ≤ k, is a

submatrix of order ni × nj such that the sum of each of its rows is equal
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to ci,j. If M = [ci,j ]k×k, then the eigenvalues of M are also eigenvalues of
M.

Let A = [aij ] be a m× n matrix and B = [bij ] be a p× q matrix. The
Kronecker product of A and B, denoted by A⊗B, is the mp× nq matrix
obtained by replacing each entry aij of A by aijB.

Proposition 2.3 ([4]). Let A and B be squares matrices of order n and
m, respectively. If Spec(A) = {λi : 1 ≤ i ≤ n} and Spec(B) = {µj : 1 ≤
j ≤ m}, then Spec(A⊗B) = {λiµj : 1 ≤ i ≤ n and 1 ≤ j ≤ m}.

Proposition 2.4 ([2]). Let G be a graph on n ≥ 2 vertices with twin
vertices vi and vjp , for some 1 ≤ p ≤ r < n.

(i) If vi and vjp are false twins, then λ = αd(vi) ∈ Spec(Aα(G)).

(ii) If vi and vjp are true twins, then α(d(vi) + 1)− 1 ∈ Spec(Aα(G)).

In both cases, the multiplicity of the eigenvalue is at least r.

Proposition 2.5 ([3]). Let Kt be a complete graph on t vertices. Then,
Spec(A(Kt)) =

{
(t− 1), (−1)[t−1]

}
.

Proposition 2.6 ([5]). Let G1 and G2 be graphs on n1 and n2 vertices,
respectively. If G1 is an r1-regular graph, G2 is an r2-regular graph then,
for α ∈ [0, 1], the largest and smallest eigenvalues of Aα(G1 ∨G2) are the

eigenvalues of the matrix

(
r1 + αn2 (1− α)2n1n2

1 r2 + αn1

)
. The others n1 +

n2 − 2 eigenvalues of Aα(G1 ∨G2) are αr1 + (1− α)λi(A(G1)) and αr2 +

(1− α)λj(A(G2)), where 2 ≤ i ≤ n1 and 2 ≤ j ≤ n2.

Proposition 2.7 ([6]). A connected graph G is bipartite if and only if
α0 =

1
2 .

Now, we present the definitions the families of graphs studied in this
paper.

Definition 2.8. Given the integers r, t ≥ 1, let Lr,t be the graph obtained
from join of K1 and r copies of the Kt, that is, Lr,t ≃ K1 ∨ rKt.
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Definition 2.9. Given the integers a1 ≥ a2 ≥ · · · ≥ ak ≥ 3 and k ≥ 2,
let Fa1,a2,...,ak be a graph that consists of k cycles of order a1, a2, . . . , ak,
respectively, all of them sharing a single vertex.

Definition 2.10. Given the integers n ≥ 3 and k ≥ 2, the graph Gk(Cn)

consists of k cycles C1
n, . . . , C

k
n of the same size n and an extra vertex,

s, adjacent to exactly one vertex of each cycle, that is, V (Gk(Cn)) =

(
k⋃

i=1
V (Ci

n)) ∪ {s} and E(Gk(Cn)) = (
k⋃

i=1
E(Ci

n)) ∪ (
k⋃

i=1
{ui,n, s}), where

ui,n ∈ V (Ci
n) for each 1 ≤ i ≤ k.

Figure 2.1 shows graphs corresponding to definitions 2.8, 2.9 and 2.10.

Figure 2.1: Graphs L3,3, F4,6,8 and G4(C5).

3 Main Results

In this section, we present the results involving the eigenvalues of Aα

matrix for families of graphs defined in Section 2 and we determine the
smallest value of α for which the matrix Aα is positive semidefinite.

Proposition 3.1. Let r and t be positive integers. If G ≃ Lr,t and α ∈
[0, 1], then PAα(G)(x) = f(x)(x− (t− 1))r−1(x− (αt− 1))r(t−1), where
f(x) = x2 + (1− rtα− t− α)x+ (rtα+ rt2α− rt).

Proof. By definition G ≃ Lr,t ≃ K1 ∨ rKt. From Proposition 2.6, the
largest and smallest eigenvalues of Aα(G) are the roots of polynomial
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f(x) = x2 + (1 − rtα − t − α)x + (rtα + rt2α − rt). Moreover, from
Proposition 2.5, the others eigenvalues are t− 1 and αt− 1 with multiplic-
ities r − 1 and r(t− 1), respectively, and the result follows.

Corollary 3.2 determines the smallest α for which Aα(Lr,t) is positive
semidefinite.

Corollary 3.2. Let G ≃ Lr,t with r, t ≥ 1. The matrix Aα(Lr,t) is positive
semidefinite if and only if α ∈ [α0, 1), where α0 =

1
t+1 .

Proof. From Proposition 3.1 the smallest eigenvalue of Aα(Lr,t) is
λ = −1+rtα+t+α−

√
∆

2 , where ∆ = (1− rtα− t− α)2 − 4(rtα + rt2α − rt).
Therefore, λ ≥ 0 if and only if α ≥ 1

1+t , which proves the result.

Remark 3.3. If the order of cycles, a1, a2, . . . , ak, are even the graphs
Fa1,a2,...,ak are bipartite and consequently from Proposition 2.7 the matri-
ces Aα(Fa1,a2,...,ak) are positive semidefinite for α ≥ 1

2 . For the other cases,
the problem of finding α0(G) is open.

Now, we present the results for graphs of the family of graphs F4,4,...,4 ≃
F4[q] present in Figure 3.1 with the labeling of its vertices.

Figure 3.1: Family F4[q] .

From this labeling of vertices, the matrix Aα(F4[q]) can be written as

Aα(F4[q]) =

 2qα (1− α)J1×2q 01×q

(1− α)J2q×1 2αI2q B2q×q

0q×1 (B2q×q)
T 2αIq

 , (3.1)
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where q is the number of cycles C4 and B = (1− α)Iq ⊗ J2×1

Lemma 3.4. If G ≃ F4[q] , q ≥ 1, and α ∈ [0, 1], then t1 = (2−
√
2)α+

√
2

and t2 = (2 +
√
2)α−

√
2 are eigenvalues of Aα(G), both with multiplicity

at least q − 1.

Proof. We take the vector y = [y1, . . . , yq] ∈ Rq, such that
∑q

k=1 yk = 0

and we consider the vectors, in R3q+1, x =
[
0 1√

2
y ⊗ J2×1 y

]T
and

z =
[
0 − 1√

2
y ⊗ J2×1 y

]T
. Note that

Aα(F4[q])x =
[
0 2α√

2
y ⊗ J2×1 +B2q×qy (B2q×q)

T ( 1√
2
y ⊗ J2×1) + 2αy

]T
=

[
0 (

√
2α+ 1− α)(y ⊗ J2×1) (

√
2−

√
2α+ 2α)y

]T
=

[
(2−

√
2)α+

√
2
]
x.

Analogously we can show that z is an eigenvector of Aα(G) associated
with the eigenvalue t2 = (2 +

√
2)α−

√
2. Now, it is simple to verify that

the eigenspace associated with t1 (respectively, t2) has dimension q − 1

because the dimension of
{
(y1, y2, . . . , yq) ∈ Rq;

∑q
k=1 yk = 0

}
is equal to

q − 1 and the result follows.

Proposition 3.5. If G ≃ F4[q], q ≥ 1, and α ∈ [0, 1], then PAα(G)(x) =

(x − 2α)q[x2 − 4αx + 2(α2 + 2α − 1)]q−1g(x), where g(x) = x3 − 2α(q +

2)x2 + 2[2α2q + (α2 + 2α− 1)(q + 1)]x− 8α(2α− 1)q.

Proof. Let G ≃ F4[q] . Applying the Propositions 2.4 for each cycle of G,
we obtain that 2α is an eigenvalue of Aα(G) with multiplicity at least
q. Applying the Proposition 2.2 in (3.1), the spectrum of matrix M = 2qα 2q(1− α) 0

1− α 2α 1− α

0 2(1− α) 2α

 , whose characteristic polynomial is g(x), is

contained in the spectrum of Aα(G). The other eigenvalues of Aα(G), given
in Lemma 3.4, are roots of the polynomial h(x) = x2−4αx+2(α2+2α−1)

and the result follows.
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Remark 3.6. If the order of cycle, Cn, is even the graphs Gq(Cn) are
bipartite and consequently from Proposition 2.7 the matrices Aα(Gq(Cn))

are positive semidefinite for α ≥ 1

2
. For the other cases, the problem of

finding α0(G) is open.

Figure 3.2 shows the family of graphs Gq(C4).

Figure 3.2: Family Gq(C4).

Proposition 3.7. If G ≃ Gq(C4), then PAα(G)(x) is given by

(x− 2α)qf(x)q−1
[
(x− αq)f(x)− q(1− α)2(x2 − 4αx+ 2α2 + 4α− 2)

]
,

where f(x) = x3 − 7αx2 + 4(α+ 1)(3α− 1)x− 2α
(
α2 + 10α− 5

)
.

Proof. Let G ≃ Gq(C4) be the graph whose vertices are rotulated accord-
ing to the Figure 3.2. So Aα(G) can be written the following way

Aα(G) =


Aα(C4) + αD3 0 0 (1− α)Z

0
. . . 0

...
0 0 Aα(C4) + αD3 (1− α)Z

(1− α)ZT . . . (1− α)ZT αq

 ,

where D3 =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 and ZT =
[
0 0 1 0

]
. So the matrix Aα(G)

can be written as

Aα(G) =

[
B Y

Y T αq

]
,
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where B = Iq ⊗ [Aα(C4)+αD3] and Y T = (1−α)
[
ZT ZT . . . ZT

]
∈

R4q. From Proposition 2.1, we can write PAα(G) as

PAα(G)(x) = (x− αq)PB(x)− Y T adj(xI −B)Y.

From Proposition 2.3, PB(x) = (x− 2α)qf(x)q, where f(x) = x3− 7αx2+

4(α+1)(3α−1)x−2α(α2+10α−5). Since adj(xI−B) = PB(x)(xI−B)−1,
we have

PAα(G)(x) = (x− αq)PB(x)− Y TPB(x)(xI −B)−1Y

= PB(x)[x− αq − Y T (xI −B)−1Y ].

As B is a block diagonal matrix the form Aα(C4) + αD3 we have

Y T(xI −B)−1Y = qZT(xI − F )−1Z

=
q(x2 − 4αx+ 2α2 + 4α− 2)

f(x)
,

where F = Aα(C4) + αD3. So the result follows.
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