Matemática
 Contemporânea

SOCIEDADE BRASILEIRA DE MATEMÁTICA
Vol. 55, 20-29
(C) 2023

A_{α}-spectral properties of some families of graphs with vertex connectivity equal to 1

Victor M. X. Leal ${ }^{[1)^{1}}$, Carla S. Oliveira (Did ${ }^{1}$ and André E. Brondani
(id ${ }^{2}$
${ }^{1}$ Escola Nacional de Ciências Estatísticas, Rua André Cavalcanti 106, Rio de Janeiro, Brazil
${ }^{2}$ Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal Fluminense, Volta Redonda, RJ, Brazil

Dedicated to Professor Jayme Szwarcfiter on the occasion of his 80th birthday

Abstract

Let G be a graph with adjacency matrix $A(G)$ and let $D(G)$ be the diagonal matrix of the degrees of G. For every real $\alpha \in[0,1]$, Nikiforov [Applicable Analysis and Discrete Mathematics, 11(1): 81-107, 2017] defined the matrix $A_{\alpha}(G)$ by $A_{\alpha}(G)=\alpha D(G)+$ $(1-\alpha) A(G)$. In this paper, we obtain the eigenvalues of some families of graphs which have vertex connectivity equals to 1 .

Keywords: eigenvalues, A_{α}-matrix.
2020 Mathematics Subject Classification: 12A34, 67B89.

1 Introduction

Let $G=(V(G), E(G))$ be a simple graph of order n with vertex set $V(G)$ and edge set $E(G)$. If $\left\{v_{i}, v_{j}\right\} \in E(G), v_{i}$ and v_{j} are called

The second author is partially supported by CNPq Grant 304548/2020-0, email:carla.oliveira@ibge.gov.br
adjacency vertices and denoted by $v_{i} \sim v_{j}$. Otherwise, we denote by $v_{i} \nsim v_{j}$. The set of neighbours of a vertex v in G is denoted by $N_{G}(v)$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$. The degree of a vertex v of $G, d(v)$, is defined by $\left|N_{G}(v)\right|$. Two distinct vertices u and v are called true twins if $N_{G}[u]=N_{G}[v]$ and are called false twins if $N_{G}(u)=N_{G}(v)$ and u is not adjacent to v. A graph G is called r-regular if each vertex of G has degree r. We denote the complete graph, the path and the cycle with n vertices by K_{n}, P_{n} and C_{n}, respectively. The join $G \simeq G_{1} \vee G_{2}$ of the graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, where $V_{1} \cap V_{2}=\emptyset$ is the graph which is the union of G_{1} and G_{2} together with all the edges joining the elements of V_{1} and V_{2}. The vertex connectivity of a graph $\mathrm{G}, k(G)$, is the minimum size of a vertex subset $S \subseteq V(G)$ such that $G-S$ is disconnected or has only one vertex. The adjacency matrix of $G, A(G)=\left[a_{i j}\right]$, is defined by $a_{i j}=1$ if v_{i} is adjacent to v_{j} and $a_{i j}=0$ otherwise. The matrix of degrees of $G, D(G)=\left[d_{i j}\right]$, is defined by $d_{i i}=d\left(v_{i}\right)$ and $d_{i j}=0, \forall i \neq j$. The signless Laplacian matrix is defined by $Q(G)=D(G)+A(G)$. In 2017, Nikiforov [5] defined for any real $\alpha \in[0,1]$, the convex linear combinations $A_{\alpha}(G)$ of $A(G)$ and $D(G)$ by $A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)$. It is easy to see that $A(G)=A_{0}(G), D(G)=A_{1}(G)$ and $Q(G)=2 A_{\frac{1}{2}}(G)$. The $A_{\alpha^{-}}$ characteristic polynomial of G is defined by $P_{A_{\alpha}(G)}(x)=\operatorname{det}\left(x I-A_{\alpha}(G)\right)$ and its roots are called the α-eigenvalues of G. As usual, we shall index the eigenvalues of $A_{\alpha}(G)$ in a non-increasing order and denote them as $\lambda_{1}\left(A_{\alpha}(G)\right) \geq \lambda_{2}\left(A_{\alpha}(G)\right) \geq \cdots \geq \lambda_{n}\left(A_{\alpha}(G)\right)$. The A_{α}-spectrum is the multi-set of the eigenvalues of $A_{\alpha}(G)$ denoted by $\operatorname{Spec}\left(A_{\alpha}(G)\right)=$ $\left\{\lambda_{1}\left(A_{\alpha}(G)\right)^{\left[m\left(\lambda_{1}\right)\right]}, \lambda_{2}\left(A_{\alpha}(G)\right)^{\left[m\left(\lambda_{2}\right)\right]}, \ldots, \lambda_{r}\left(A_{\alpha}(G)\right)^{\left[m\left(\lambda_{r}\right)\right]}\right\}$, where $m\left(\lambda_{j}\right)$ is the multiplicity of the eigenvalue $\lambda_{j}\left(A_{\alpha}(G)\right)$, for $1 \leq j \leq r$. For simplicity, we use notations A_{α} and $\lambda_{i}\left(A_{\alpha}\right)$ when there is no risk of ambiguity. Given a square matrix M, the classical adjoint matrix of M and the trace of M are denoted by $\operatorname{adj}(M)$ and $\operatorname{tr}(M)$, respectively. We denote the $m \times n$ all-ones matrix by $J_{m \times n}$, the all-zeros matrix by $0_{m \times n}$, and the $m \times m$ identity matrix by I_{m}. In particular, we denote J_{m} and 0_{m} when $m=n$. The signless Laplacian matrix, $Q(G)$, is positive semidefinite, but
this is not true for A_{α} if α is sufficiently small. In 2017, Nikiforov [5] proved that if $\alpha \geq \frac{1}{2}$ then A_{α} is positive semidefinite and if $\alpha>\frac{1}{2}$ and G has no isolated vertices then A_{α} is positive definite. Also in 2017, Nikiforov and Rojo [6] defined $\alpha_{0}(G)$ as the smallest value in the interval $[0,1]$ such that $\lambda_{n}\left(A_{\alpha_{0}}\right) \geq 0$. Then A_{α} is positive semidefinite if and only if $\alpha_{0}(G) \leq \alpha \leq 1$. In the same paper, the authors raised the following problem: "Given a graph G, find $\alpha_{0}(G)$ " and solved this problema when G is d-regular, r-colorable and when G contains bipartite components. In 2022, Brondani et al. [2] also solved this problem for some families of graphs that contain cliques. Moreover, there are some works the explicit the eigenvalues of A_{α} of some classes of graphs. For more details, we suggest [1, 2] and references therein. In this paper, we solve the problem present above and explicit the eigenvalues of some families of graphs with vertex connectivity equal to 1 . The paper is organized such that the preliminary results are presented in the next section and the main results are in the Section 3.

2 Preliminaries

In this section we fix some notations and review some important results for the development of the next section.

Proposition 2.1 ([4]). Let M be a matrix of the form $\left[\begin{array}{cc}A & x \\ y^{T} & a\end{array}\right]$, where $a \in \mathbb{R}, x, y \in \mathbb{R}^{n}$ and A is a square matrix of order $(n-1)$. Then $\operatorname{det}\left[\begin{array}{cc}A & x \\ y^{T} & a\end{array}\right]=a \operatorname{det}(A)-y^{\mathrm{T}}(\operatorname{adj}(\mathrm{A})) x$.

Proposition 2.2 ([4]). Let M be a symmetric matrix of order n defined by $M=\left[\begin{array}{cccc}M_{1,1} & M_{1,2} & \cdots & M_{1, k} \\ M_{2,1} & M_{2,2} & \cdots & M_{2, k} \\ \vdots & \vdots & \ddots & \vdots \\ M_{k, 1} & M_{k, 2} & \cdots & M_{k, k}\end{array}\right]$, where $M_{i, j}, 1 \leq i, j \leq k$, is a submatrix of order $n_{i} \times n_{j}$ such that the sum of each of its rows is equal
to $c_{i, j}$. If $\bar{M}=\left[c_{i, j}\right]_{k \times k}$, then the eigenvalues of \bar{M} are also eigenvalues of M.

Let $A=\left[a_{i j}\right]$ be a $m \times n$ matrix and $B=\left[b_{i j}\right]$ be a $p \times q$ matrix. The Kronecker product of A and B, denoted by $A \otimes B$, is the $m p \times n q$ matrix obtained by replacing each entry $a_{i j}$ of A by $a_{i j} B$.

Proposition 2.3 ([4]). Let A and B be squares matrices of order n and m, respectively. If $\operatorname{Spec}(A)=\left\{\lambda_{i}: 1 \leq i \leq n\right\}$ and $\operatorname{Spec}(B)=\left\{\mu_{j}: 1 \leq\right.$ $j \leq m\}$, then $\operatorname{Spec}(A \otimes B)=\left\{\lambda_{i} \mu_{j}: 1 \leq i \leq n\right.$ and $\left.1 \leq j \leq m\right\}$.

Proposition 2.4 ([2]). Let G be a graph on $n \geq 2$ vertices with twin vertices v_{i} and $v_{j_{p}}$, for some $1 \leq p \leq r<n$.
(i) If v_{i} and $v_{j_{p}}$ are false twins, then $\lambda=\alpha d\left(v_{i}\right) \in \operatorname{Spec}\left(A_{\alpha}(G)\right)$.
(ii) If v_{i} and $v_{j_{p}}$ are true twins, then $\alpha\left(d\left(v_{i}\right)+1\right)-1 \in \operatorname{Spec}\left(A_{\alpha}(G)\right)$.

In both cases, the multiplicity of the eigenvalue is at least r.
Proposition 2.5 ([3]). Let K_{t} be a complete graph on t vertices. Then, $\operatorname{Spec}\left(A\left(K_{t}\right)\right)=\left\{(t-1),(-1)^{[t-1]}\right\}$.

Proposition 2.6 ([5]). Let G_{1} and G_{2} be graphs on n_{1} and n_{2} vertices, respectively. If G_{1} is an r_{1}-regular graph, G_{2} is an r_{2}-regular graph then, for $\alpha \in[0,1]$, the largest and smallest eigenvalues of $A_{\alpha}\left(G_{1} \vee G_{2}\right)$ are the eigenvalues of the matrix $\left(\begin{array}{cc}r_{1}+\alpha n_{2} & (1-\alpha)^{2} n_{1} n_{2} \\ 1 & r_{2}+\alpha n_{1}\end{array}\right)$. The others $n_{1}+$ $n_{2}-2$ eigenvalues of $A_{\alpha}\left(G_{1} \vee G_{2}\right)$ are $\alpha r_{1}+(1-\alpha) \lambda_{i}\left(A\left(G_{1}\right)\right)$ and $\alpha r_{2}+$ $(1-\alpha) \lambda_{j}\left(A\left(G_{2}\right)\right)$, where $2 \leq i \leq n_{1}$ and $2 \leq j \leq n_{2}$.

Proposition 2.7 ([6]). A connected graph G is bipartite if and only if $\alpha_{0}=\frac{1}{2}$.

Now, we present the definitions the families of graphs studied in this paper.

Definition 2.8. Given the integers $r, t \geq 1$, let $L_{r, t}$ be the graph obtained from join of K_{1} and r copies of the K_{t}, that is, $L_{r, t} \simeq K_{1} \vee r K_{t}$.

Definition 2.9. Given the integers $a_{1} \geq a_{2} \geq \cdots \geq a_{k} \geq 3$ and $k \geq 2$, let $F_{a_{1}, a_{2}, \ldots, a_{k}}$ be a graph that consists of k cycles of order $a_{1}, a_{2}, \ldots, a_{k}$, respectively, all of them sharing a single vertex.

Definition 2.10. Given the integers $n \geq 3$ and $k \geq 2$, the graph $G_{k}\left(C_{n}\right)$ consists of k cycles $C_{n}^{1}, \ldots, C_{n}^{k}$ of the same size n and an extra vertex, s, adjacent to exactly one vertex of each cycle, that is, $V\left(G_{k}\left(C_{n}\right)\right)=$ $\left(\bigcup_{i=1}^{k} V\left(C_{n}^{i}\right)\right) \cup\{s\}$ and $E\left(G_{k}\left(C_{n}\right)\right)=\left(\bigcup_{i=1}^{k} E\left(C_{n}^{i}\right)\right) \cup\left(\bigcup_{i=1}^{k}\left\{u_{i, n}, s\right\}\right)$, where $u_{i, n} \in V\left(C_{n}^{i}\right)$ for each $1 \leq i \leq k$.

Figure 2.1 shows graphs corresponding to definitions 2.8, 2.9 and 2.10.

Figure 2.1: Graphs $L_{3,3}, F_{4,6,8}$ and $G_{4}\left(C_{5}\right)$.

3 Main Results

In this section, we present the results involving the eigenvalues of A_{α} matrix for families of graphs defined in Section 2 and we determine the smallest value of α for which the matrix A_{α} is positive semidefinite.

Proposition 3.1. Let r and t be positive integers. If $G \simeq L_{r, t}$ and $\alpha \in$ $[0,1]$, then $P_{A_{\alpha}(G)}(x)=f(x)(x-(t-1))^{r-1}(x-(\alpha t-1))^{r(t-1)}$, where $f(x)=x^{2}+(1-r t \alpha-t-\alpha) x+\left(r t \alpha+r t^{2} \alpha-r t\right)$.

Proof. By definition $G \simeq L_{r, t} \simeq K_{1} \vee r K_{t}$. From Proposition 2.6, the largest and smallest eigenvalues of $A_{\alpha}(G)$ are the roots of polynomial
$f(x)=x^{2}+(1-r t \alpha-t-\alpha) x+\left(r t \alpha+r t^{2} \alpha-r t\right)$. Moreover, from Proposition 2.5, the others eigenvalues are $t-1$ and $\alpha t-1$ with multiplicities $r-1$ and $r(t-1)$, respectively, and the result follows.

Corollary 3.2 determines the smallest α for which $A_{\alpha}\left(L_{r, t}\right)$ is positive semidefinite.

Corollary 3.2. Let $G \simeq L_{r, t}$ with $r, t \geq 1$. The matrix $A_{\alpha}\left(L_{r, t}\right)$ is positive semidefinite if and only if $\alpha \in\left[\alpha_{0}, 1\right)$, where $\alpha_{0}=\frac{1}{t+1}$.

Proof. From Proposition 3.1 the smallest eigenvalue of $A_{\alpha}\left(L_{r, t}\right)$ is $\lambda=\frac{-1+r t \alpha+t+\alpha-\sqrt{\Delta}}{2}$, where $\Delta=(1-r t \alpha-t-\alpha)^{2}-4\left(r t \alpha+r t^{2} \alpha-r t\right)$. Therefore, $\lambda \geq 0$ if and only if $\alpha \geq \frac{1}{1+t}$, which proves the result.

Remark 3.3. If the order of cycles, $a_{1}, a_{2}, \ldots, a_{k}$, are even the graphs $F_{a_{1}, a_{2}, \ldots, a_{k}}$ are bipartite and consequently from Proposition 2.7 the matrices $A_{\alpha}\left(F_{a_{1}, a_{2}, \ldots, a_{k}}\right)$ are positive semidefinite for $\alpha \geq \frac{1}{2}$. For the other cases, the problem of finding $\alpha_{0}(G)$ is open.

Now, we present the results for graphs of the family of graphs $F_{4,4, \ldots, 4} \simeq$ $F_{4[q]}$ present in Figure 3.1 with the labeling of its vertices.

Figure 3.1: Family $F_{4}[q]$.

From this labeling of vertices, the matrix $A_{\alpha}\left(F_{4}[q]\right)$ can be written as

$$
A_{\alpha}\left(F_{4[q]}\right)=\left[\begin{array}{ccc}
2 q \alpha & (1-\alpha) J_{1 \times 2 q} & \mathbf{0}_{1 \times q} \tag{3.1}\\
(1-\alpha) J_{2 q \times 1} & 2 \alpha I_{2 q} & B_{2 q \times q} \\
\mathbf{0}_{q \times 1} & \left(B_{2 q \times q}\right)^{T} & 2 \alpha I_{q}
\end{array}\right],
$$

where q is the number of cycles C_{4} and $B=(1-\alpha) I_{q} \otimes J_{2 \times 1}$
Lemma 3.4. If $G \simeq F_{4}[q], q \geq 1$, and $\alpha \in[0,1]$, then $t_{1}=(2-\sqrt{2}) \alpha+\sqrt{2}$ and $t_{2}=(2+\sqrt{2}) \alpha-\sqrt{2}$ are eigenvalues of $A_{\alpha}(G)$, both with multiplicity at least $q-1$.

Proof. We take the vector $\mathbf{y}=\left[y_{1}, \ldots, y_{q}\right] \in \mathbb{R}^{q}$, such that $\sum_{k=1}^{q} \mathbf{y}_{k}=0$ and we consider the vectors, in $\mathbb{R}^{3 q+1}, \mathbf{x}=\left[\begin{array}{lll}0 & \frac{1}{\sqrt{2}} \mathbf{y} \otimes J_{2 \times 1} & \mathbf{y}\end{array}\right]^{T}$ and $\mathbf{z}=\left[\begin{array}{lll}0 & -\frac{1}{\sqrt{2}} \mathbf{y} \otimes J_{2 \times 1} & \mathbf{y}\end{array}\right]^{T}$. Note that

$$
\begin{aligned}
A_{\alpha}\left(F_{4[q]}\right) \mathbf{x} & =\left[\begin{array}{lll}
0 & \frac{2 \alpha}{\sqrt{2}} \mathbf{y} \otimes J_{2 \times 1}+B_{2 q \times q} \mathbf{y} & \left(B_{2 q \times q}\right)^{T}\left(\frac{1}{\sqrt{2}} \mathbf{y} \otimes J_{2 \times 1}\right)+2 \alpha \mathbf{y}
\end{array}\right]^{T} \\
& =\left[\begin{array}{lll}
0 & (\sqrt{2} \alpha+1-\alpha)\left(\mathbf{y} \otimes J_{2 \times 1}\right) & (\sqrt{2}-\sqrt{2} \alpha+2 \alpha) \mathbf{y}
\end{array}\right]^{T} \\
& =\left[\begin{array}{ll}
(2-\sqrt{2}) \alpha+\sqrt{2}
\end{array}\right] \mathbf{x} .
\end{aligned}
$$

Analogously we can show that \mathbf{z} is an eigenvector of $A_{\alpha}(G)$ associated with the eigenvalue $t_{2}=(2+\sqrt{2}) \alpha-\sqrt{2}$. Now, it is simple to verify that the eigenspace associated with t_{1} (respectively, t_{2}) has dimension $q-1$ because the dimension of $\left\{\left(y_{1}, y_{2}, \ldots, y_{q}\right) \in \mathbb{R}^{q} ; \sum_{k=1}^{q} y_{k}=0\right\}$ is equal to $q-1$ and the result follows.

Proposition 3.5. If $G \simeq F_{4[q]}, q \geq 1$, and $\alpha \in[0,1]$, then $P_{A_{\alpha}(G)}(x)=$ $(x-2 \alpha)^{q}\left[x^{2}-4 \alpha x+2\left(\alpha^{2}+2 \alpha-1\right)\right]^{q-1} g(x)$, where $g(x)=x^{3}-2 \alpha(q+$ 2) $x^{2}+2\left[2 \alpha^{2} q+\left(\alpha^{2}+2 \alpha-1\right)(q+1)\right] x-8 \alpha(2 \alpha-1) q$.

Proof. Let $G \simeq F_{4[q]}$. Applying the Propositions 2.4 for each cycle of G, we obtain that 2α is an eigenvalue of $A_{\alpha}(G)$ with multiplicity at least q. Applying the Proposition 2.2 in (3.1), the spectrum of matrix $M=$ $\left[\begin{array}{ccc}2 q \alpha & 2 q(1-\alpha) & 0 \\ 1-\alpha & 2 \alpha & 1-\alpha \\ 0 & 2(1-\alpha) & 2 \alpha\end{array}\right]$, whose characteristic polynomial is $g(x)$, is
contained in the spectrum of $A_{\alpha}(G)$. The other eigenvalues of $A_{\alpha}(G)$, given in Lemma 3.4, are roots of the polynomial $h(x)=x^{2}-4 \alpha x+2\left(\alpha^{2}+2 \alpha-1\right)$ and the result follows.

Remark 3.6. If the order of cycle, C_{n}, is even the graphs $G_{q}\left(C_{n}\right)$ are bipartite and consequently from Proposition 2.7 the matrices $A_{\alpha}\left(G_{q}\left(C_{n}\right)\right)$ are positive semidefinite for $\alpha \geq \frac{1}{2}$. For the other cases, the problem of finding $\alpha_{0}(G)$ is open.

Figure 3.2 shows the family of graphs $G_{q}\left(C_{4}\right)$.

Figure 3.2: Family $G_{q}\left(C_{4}\right)$.

Proposition 3.7. If $G \simeq G_{q}\left(C_{4}\right)$, then $P_{A_{\alpha}(G)}(x)$ is given by $(x-2 \alpha)^{q} f(x)^{q-1}\left[(x-\alpha q) f(x)-q(1-\alpha)^{2}\left(x^{2}-4 \alpha x+2 \alpha^{2}+4 \alpha-2\right)\right]$,
where $f(x)=x^{3}-7 \alpha x^{2}+4(\alpha+1)(3 \alpha-1) x-2 \alpha\left(\alpha^{2}+10 \alpha-5\right)$.
Proof. Let $G \simeq G_{q}\left(C_{4}\right)$ be the graph whose vertices are rotulated according to the Figure 3.2. So $A_{\alpha}(G)$ can be written the following way

$$
A_{\alpha}(G)=\left[\begin{array}{cccc}
A_{\alpha}\left(C_{4}\right)+\alpha D_{3} & \mathbf{0} & \mathbf{0} & (1-\alpha) Z \\
\mathbf{0} & \ddots & \mathbf{0} & \vdots \\
\mathbf{0} & \mathbf{0} & A_{\alpha}\left(C_{4}\right)+\alpha D_{3} & (1-\alpha) Z \\
(1-\alpha) Z^{T} & \cdots & (1-\alpha) Z^{T} & \alpha q
\end{array}\right]
$$

where $D_{3}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ and $Z^{T}=\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$. So the matrix $A_{\alpha}(G)$ can be written as

$$
A_{\alpha}(G)=\left[\begin{array}{cc}
B & Y \\
Y^{T} & \alpha q
\end{array}\right]
$$

where $B=I_{q} \otimes\left[A_{\alpha}\left(C_{4}\right)+\alpha D_{3}\right]$ and $Y^{\mathrm{T}}=(1-\alpha)\left[\begin{array}{llll}Z^{T} & Z^{T} & \ldots & Z^{T}\end{array}\right] \in$ $\mathbb{R}^{4 q}$. From Proposition 2.1, we can write $P_{A_{\alpha}(G)}$ as

$$
P_{A_{\alpha}(G)}(x)=(x-\alpha q) P_{B}(x)-Y^{\mathrm{T}} \operatorname{adj}(x I-B) Y .
$$

From Proposition 2.3, $P_{B}(x)=(x-2 \alpha)^{q} f(x)^{q}$, where $f(x)=x^{3}-7 \alpha x^{2}+$ $4(\alpha+1)(3 \alpha-1) x-2 \alpha\left(\alpha^{2}+10 \alpha-5\right)$. Since $\operatorname{adj}(x I-B)=P_{B}(x)(x I-B)^{-1}$, we have

$$
\begin{aligned}
P_{A_{\alpha}(G)}(x) & =(x-\alpha q) P_{B}(x)-Y^{T} P_{B}(x)(x I-B)^{-1} Y \\
& =P_{B}(x)\left[x-\alpha q-Y^{T}(x I-B)^{-1} Y\right] .
\end{aligned}
$$

As B is a block diagonal matrix the form $A_{\alpha}\left(C_{4}\right)+\alpha D_{3}$ we have

$$
\begin{aligned}
Y^{\mathrm{T}}(x I-B)^{-1} Y & =q Z^{\mathrm{T}}(x I-F)^{-1} Z \\
& =\frac{q\left(x^{2}-4 \alpha x+2 \alpha^{2}+4 \alpha-2\right)}{f(x)},
\end{aligned}
$$

where $F=A_{\alpha}\left(C_{4}\right)+\alpha D_{3}$. So the result follows.

Acknowledgements

The research of C. S. Oliveira is supported by CNPq Grant 304548/2020-0.

References

[1] A. E. Brondani, F. A. M. França, and C. S. Oliveira. Positive semidefiniteness of $A_{\alpha}(G)$ on some families of graphs. Discrete Applied Mathematics, 323:113-123, 2022.
[2] A. E. Brondani, F. A. M. França, C. S. Oliveira, and L. Lima. $A_{\alpha^{-}}$ spectrum of a firefly graphs. Electronic Notes in Theoretical Computer Science, 346:209-219, 2019.
[3] D. Cvetković, P. Rowlinson, and S. Simić. An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2010.
[4] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, New York, 1992.
[5] V. Nikiforov. Merging the A- and Q-Spectral Theories. Applicable Analysis and Discrete Mathematics, 11(1):81-107, 2017.
[6] V. Nikiforov and O. Rojo. A note on the positive semidefiniteness of $A_{\alpha}(G)$. Linear Algebra and its Applications, 519:156-163, 2017.

