Matemática
 Contemporânea

Vol. 55, 152-160

Locally identifying coloring in some chordal graphs

Robson M. Oliveira (iD) ${ }^{1}$, Márcia R. Cappelle (iD ${ }^{1}$ and Hebert Coelho (iD1

${ }^{1}$ Universidade Federal de Goiás, Instituto de Informática, Goiânia, Brazil

Dedicated to Professor Jayme Szwarcfiter on the occasion of his 80th birthday

Abstract

A locally identifying coloring (or lid-coloring for short) in a graph is a proper vertex coloring such that, for any edge $u v$, if u and v have distinct closed neighborhoods, then the set of colors used on vertices of the closed neighborhoods of u and v are distinct. The lid-chromatic number of a graph G, denoted by $\chi_{l i d}(G)$, is the minimum number of colors needed in any lid-coloring of G. In this work, we determine the lid-chromatic number of subclasses of both powers of paths and some split graphs, which are chordal graphs. Additionally, we present a lower bound for the lid-chromatic number in twin-free graphs.

Keywords: Lid-coloring, chordal graphs, powers of paths, split graphs.

2020 Mathematics Subject Classification: 05C69, 05C76.

[^0]
1 Introduction

We consider finite, simple, and undirected graphs and use standard notation and terminology. For a graph G, the vertex set and the edge set are denoted $V(G)$ and $E(G)$, respectively. For any vertex u, we denote by $N(u)$ its open neighborhood and by $N[u]$ its closed neighborhood. For a subset $S \subseteq V(G)$, we denote $N[S]$ the set $\bigcup_{u \in S} N[u]$. Two vertices in a graph G are true twins if $N[u]=N[v]$ (although they are often called true twins in the literature, we call them twins for convenience). If G has no twins, then G is twin-free.

The vertex coloring problem consists of assigning colors to the vertices of a graph in such a way that adjacent vertices have different colors, and such coloring is a proper coloring. The minimum number of colors needed to color a graph G is called its chromatic number, denoted by $\chi(G)$. The function $c: V \rightarrow \mathbb{N}$ is a vertex coloring of G. For any $S \subseteq V$, we define $c(S)$ as the set of colors that appear on the vertices in S.

A vertex coloring c of a graph G is a locally identifying coloring (lidcoloring for short) if it satisfies the following conditions: (i) c is a proper coloring of G, that is, no two adjacent vertices have the same color, and (ii) for each pair of adjacent vertices u, v with $N[u] \neq N[v]$, we have $c(N[u]) \neq c(N[v])$. The locally identifying chromatic number of graph G, denoted by $\chi_{l i d}(G)$, is the smallest number of colors needed in any lidcoloring of G. A graph G is k-lid-colorable if it admits a locally identifying coloring using at most k colors. The lid-coloring of a graph is a combination between the concept of graph coloring and identifying codes [6]. The lidcoloring was introduced in 2010 [3], where several bounds on $\chi_{l i d}(G)$ were proposed for different families of graphs, including planar graphs, some subclasses of perfect graphs, and graphs with bounded maximum degree. It was shown that every bipartite graph G has $\chi_{l i d}(G) \leq 4$. Moreover, it was proved that deciding whether a bipartite graph is 3 -lid-colorable is an NP-complete problem, while it is possible to decide in linear time whether a tree is 3 -lid-colorable. Note that the lid-coloring is not hereditary. For
instance, $\chi_{l i d}\left(P_{n}\right)=3$ for odd n at least 3 , and $\chi_{l i d}\left(P_{n}\right)=4$ for even n.
Foucaud et al. [4] showed that every graph G has a lid-coloring with $2 \Delta^{2}-3 \Delta+3$ colors, where $\Delta \geq 3$ is the maximum degree of G. Gonçalves et al. [5] proved that for any planar graph G, it holds that $\chi_{\text {lid }}(G) \leq 1280$, answering a question posed in [3]. Martins and Sampaio [7] developed linear-time algorithms to calculate the lid-chromatic number for certain classes of graphs with few P_{4} 's, such as cographs, P_{4}-sparse graphs, and ($q, q-4$)-graphs, and showed that the lid-chromatic number is polynomially inapproximable by a factor of $O\left(n^{1-\epsilon}\right)$ for all $\epsilon>0$, unless $P=N P$.

A chordal graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle. Esperet et al. [3] conjectured that every chordal graph G has $\chi_{\text {lid }} \leq 2 \chi(G)$. The authors presented some graphs satisfying this bound. In this work, we determined the exact values of the lid-chromatic number for subclasses of both powers of paths and split graphs, which are chordal graphs. Additionally, we presented a lower bound for the lidchromatic number in twin-free graphs. Before we present our results, we present some helpful definitions.

A clique in a graph G is a set of vertices pairwise adjacent in G. The size of the largest clique in a graph G is denoted by $\omega(G)$. A clique K is maximum in G when $|K|=\omega(G)$. We use $[n]$ to denote the set $\{1, \ldots, n\}$ and $[n, m]$ to denote the set $[m] \backslash[n-1]$. The symmetric difference between sets A and B is denoted by $A \Delta B$. We denote as P_{n} and K_{n} the path graph and the complete graph, respectively, on n vertices. For basic theoretical terms not defined in this article, see [1].

2 Results

In this section, we present our results. First, we present lower bounds on the lid-coloring chromatic number for some graphs.

Proposition 2.1. Let G be a twin-free graph containing a clique K of size $k \geq 2$. Then $c(N[K]) \geq k+\log _{2} k$.

Proof. Let G be a twin-free graph containing a clique K of size $k \geq 2$ and $K=\left\{v_{1}, \ldots, v_{k}\right\}$. Suppose that c is a lid-coloring of G. Without loss of generality, suppose that $c\left(v_{i}\right)=i$ for $i \in[k]$. Let $S=N[K] \backslash K$. Since G is a twin-free graph, we claim that $|S| \geq \log _{2} k$; otherwise, $2^{|S|}<|K|$ and since every $N\left[v_{i}\right] \backslash K$ is a subset of S, this implies that at least two vertices in K are twins, contradicting the initial hypotheses. We show that $|c(S) \backslash[k]| \geq \log _{2} k$. For a contradiction, suppose that $|c(S) \backslash[k]|<\log _{2} k$. We now that $|\mathcal{P}(c(S))|=2^{|c(S)|} \leq 2^{\left\lceil\log _{2} k\right\rceil-1} \leq k-1$. Since $k-1 \geq 1$, this implies that there exist two vertices, say u and v, in K such that $c(N[u])=c(N[v])$. Since u and v are not twins, c is not a lid-coloring of G. Therefore, $c(N[K]) \geq k+\log _{2} k$.

Corollary 2.2. Let G be a twin-free graph with $\omega(G)=k \geq 2$. Then $\chi_{l i d}(G) \geq k+\log _{2} k$.

Observe that the bound presented in Corollary 2.2 is tight. Bipartite graphs with at least three vertices have lid-coloring at least 3. In Proposition 2.3, we improve this bound under some conditions.

Proposition 2.3. Let G be a graph that contains a clique K of size k. If, for every vertex $v \in K, v$ is adjacent to only one vertex u that does not belong to K, and u is not adjacent to any other vertex in K, then we have $\chi_{l i d}(G) \geq 2 k-1$.

Proof. Consider $|K|=k$, where the vertices of K are denoted by v_{i} with $1 \leq i \leq k$. According to the hypothesis, each vertex v_{i} in K has a neighbor u_{i}, with $1 \leq i \leq k$, that does not belong to K and is not adjacent to any other vertex in K. Let $S=\bigcup_{i=1}^{k} u_{i}$. Now, consider a coloring c of G in which, for $1 \leq i \leq k, c\left(v_{i}\right)=i$. We will show that to color the vertices of S, we need at least $k-1$ colors that differ from those in $[k]$. Suppose that at least two vertices in S are colored with two colors from [k]. Without loss of generality, let $c\left(u_{1}\right)=2$ and $c\left(u_{2}\right)=1$, which implies that $c\left(N\left[v_{1}\right]\right)=c\left(N\left[v_{2}\right]\right)=[k]$, which is a contradiction. Therefore, we conclude that $\chi_{l i d}(G) \geq 2 k-1$.

In the following subsections, we present some results by Esperet et al. [3] on chordal graphs, particularly k-trees, and then discuss the locally identifying coloring when restricted to powers of paths, which is a special case of k-trees. We determined the exact values of the lid-chromatic number for some powers of paths, as well as for the complete split graph with $|S| \geq 2$ and for the split graph $G=K_{n} \circ K_{1}$.

2.1 Lid-coloring in powers of paths P_{n}^{k}

A k-tree is a graph whose vertices can be ordered $v_{1}, v_{2}, \ldots, v_{n}$ in such a way that the vertices v_{1} to v_{k+1} induce a $(k+1)$-clique, and for each $k+2 \leq i \leq n$, the neighbors of v_{i} in $\left\{v_{j} \mid j<i\right\}$ induce a k-clique. By definition, for all $k+1 \leq i \leq n$, the graph G_{i} induced by $\left\{v_{j} \mid j \leq i\right\}$ is a k-tree, and every k-clique in a k-tree is contained in a $(k+1)$-clique. In Figure 2.1, we present the construction of a 3-tree.

Figure 2.1: Example of construction of a 3-tree.

Theorem 2.4. [3] If G is a k-tree, then $\chi_{l i d}(G) \leq 2 k+2$.

If G is a k-tree with at least $k+1$ vertices, then $\chi(G)=k+1$ [2]. By Theorem 2.4, we have $\chi_{l i d}(G) \leq 2 k+2$. Thus, $\chi_{l i d}(G) \leq 2 \chi(G)$, which implies that k-trees satisfy the conjecture proposed by Esperet et al. [3].

A power of path, denoted by P_{n}^{k}, is a graph where $V\left(P_{n}^{k}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$ and there exists an edge $v_{i} v_{j}$ if and only if $|i-j| \leq k, 1 \leq i, j \leq n$. In Figure 2.2, we present a power of path P_{7}^{3}.

Figure 2.2: Power of path P_{7}^{3}.
The graph P_{n}^{k} is a k-tree, and can be constructed starting from a clique formed by the vertices v_{1}, \ldots, v_{k+1} and adding at each step, for $k+2 \leq i \leq n$, a vertex v_{i} adjacent to v_{i-k}, \ldots, v_{i-1}.

Lemma 2.5. If G is a power of the path P_{n}^{k} with $k \geq 1$ and $n \geq 2 k+1$, then $\left|c\left(v_{1}, \ldots, v_{2 k+1}\right)\right|=2 k+1$.

Proof. Let c be a lid-coloring of P_{n}^{k}. Without loss of generality, we have $c\left(v_{i}\right)=i$ for each $1 \leq i \leq k+1$. Note that for any $1 \leq i \leq k$, the symmetric difference $N\left[v_{i}\right] \Delta N\left[v_{i+1}\right]=\left\{v_{i+k+1}\right\}$. Furthermore, $N\left[v_{i}\right]=$ $\left\{v_{1}, \ldots, v_{i+k}\right\}$ and thus $c\left(N\left[v_{i}\right]\right)$ contains the colors 1 to $k+1$. Therefore, $c\left(v_{i}\right)>k+1$ whenever $k+2 \leq i \leq 2 k+1$. Since the vertices $v_{k+2}, \ldots, v_{2 k+1}$ induces a complete graph, they have distinct colors. Hence, $\left|c\left(v_{1}, \ldots, v_{2 k+1}\right)\right|=2 k+1$.

From Theorem 2.4 and Lemma 2.5, we have the following bounds for $\chi_{l i d}\left(P_{n}^{k}\right)$.

Corollary 2.6. If G is a power of the path P_{n}^{k} with $k \geq 1$ and $n \geq 2 k+1$, then $2 k+1 \leq \chi_{\text {lid }}(G) \leq 2 k+2$.

We present values for n such that $\chi_{l i d}\left(P_{n}^{k}\right)=2 k+1$ in Theorem 2.7 and for $\chi_{l i d}\left(P_{n}^{k}\right)=2 k+2$ in Theorem 2.8.

Theorem 2.7. For $k \geq 1, n \geq 2 k+1$, and $n \equiv k(\bmod k+1)$, we have $\chi_{\text {lid }}\left(P_{n}^{k}\right)=2 k+1$.

Proof. By Corollary 2.6, $\chi_{\operatorname{lid}}\left(P_{n}^{k}\right) \geq 2 k+1$. Now we need to show that $\chi_{\text {lid }}\left(P_{n}^{k}\right) \leq 2 k+1$. We construct a lid-coloring c with this cardinality: $c\left(v_{i}\right)=k+1$ if $i \equiv 0(\bmod 2 k+2)$, and $c\left(v_{i}\right)=i(\bmod 2 k+2)$, otherwise.

It is easy to see that c is a proper coloring of P_{n}^{k}. To show that for each pair of adjacent vertices v_{i} and $v_{j}, c\left(N\left[v_{i}\right]\right) \neq c\left(N\left[v_{j}\right]\right)$, we present the set $c\left(N\left[v_{i}\right]\right)$ for every $1 \leq i \leq n$. If $1 \leq i \leq k-1$, we have $c\left(N\left[v_{i}\right]\right)=[k+i]$. If $k \leq i \leq n-k+1$, we have the following sets:

$$
c\left(N\left[v_{i}\right]\right)= \begin{cases}{[2 k+1],} & \text { if } c\left(v_{i}\right)=k+1, \\ {[2 k+1] \backslash\{j-1\},} & \text { if } c\left(v_{i}\right)=k+j, 2 \leq j \leq k+1, \\ {[2 k+1] \backslash\{j+k+1\},} & \text { if } c\left(v_{i}\right)=j, 1 \leq j \leq k .\end{cases}
$$

For $n-k+1 \leq i \leq n$, we have the following sets:

$$
c\left(N\left[v_{i}\right]\right)= \begin{cases}{[k+1] \cup\left[c\left(v_{i}\right)+k+2,2 k+1\right],} & \text { if } c\left(v_{i}\right) \leq k \\ {\left[c\left(v_{i}\right)-k, 2 k+1\right],} & \text { if } c\left(v_{i}\right)>k\end{cases}
$$

Since there are distinct sets of colors for vertices with different colors, c is a lid-coloring.

Theorem 2.8. For $k \geq 1$ and $2 k+2 \leq n \leq 3 k+1$, we have $\chi_{\text {lid }}\left(P_{n}^{k}\right)=$ $2 k+2$.

Proof. From Corollary 2.6, we have $\chi_{l i d}\left(P_{n}^{k}\right) \leq 2 k+2$. Now, we show that $\chi_{l i d}\left(P_{n}^{k}\right) \geq 2 k+2$. By Lemma 2.3, $\left|c\left(v_{1}, \ldots, v_{2 k+1}\right)\right|=2 k+1$. Symmetrically, $\left|c\left(v_{n-2 k}, \ldots, v_{n}\right)\right|=2 k+1$. Hence, $c\left(N\left[v_{k+1}\right]\right)=c\left(N\left[v_{n-k}\right]\right)=$ $[2 k+1]$. Since $n \leq 3 k+1$, we have $n-k-(k+1) \leq 3 k+1-k-(k+1) \leq k$, which implies that v_{k+1} and v_{n-k} are adjacent, which is a contradiction to the lid-coloring. Thus, we conclude that $\chi_{l i d}\left(P_{n}^{k}\right) \geq 2 k+2$.

For the remaining cases, we leave the following conjecture.
Conjecture 2.9. For $k \geq 1, n \geq 3 k+3$, and $n \equiv 0,1, \ldots, k-1(\bmod k+$ 1), $\chi_{l i d}\left(P_{n}^{k}\right)=2 k+2$.

2.2 Lid-coloring on split graphs

The split graph $G=(K \cup S, E)$ is a graph whose set of vertices can be partitioned into a clique K of size $|K|=k$ and an independent set S
of size $|S|=s$. The split graph is a chordal graph where the maximum clique size and its chromatic number are equal. Esperet et. al [3] proved that if G is a split graph $\chi_{\operatorname{lid}}(G) \leq 2 \omega-1$.

Theorem 2.10. [3] Let $G=(K \cup S, E)$ be a split graph. If $\omega(G) \geq 3$ or if G is a star, then $\chi_{l i d}(G) \leq 2 \omega-1$.

The corona product $G \circ H$ of two graphs G and H. It is defined as the graph obtained by taking one copy of G and $|V(G)|$ copies of H and joining the i-th vertex of G to every vertex in the i-th copy of H. The graph $K_{n} \circ K_{1}$ is also a split graph. In the following result, we determine the lid-coloring chromatic number in these graphs.

Proposition 2.11. If $G=K_{n} \circ K_{1}$, with $n \geq 3$, then $\chi_{l i d}(G)=2 \omega-1$.
Proof. Observe that $n=\omega(G) \geq 3$. By Theorem 2.10, we have that $\chi_{l i d}(G) \leq 2 \omega-1$. Moreover, by Proposition 2.3, we have that $\chi_{l i d}(G) \geq$ $2 \omega-1$. Therefore, we conclude that $\chi_{l i d}(G)=2 \omega-1=2 n-1$.

The graph G is a complete split graph if each vertex in the clique K is adjacent to every vertex in the independent set S. We prove the following result for the complete split graphs.

Theorem 2.12. Let $G=(K \cup S, E)$ be a complete split graph. If $|S| \geq 2$, then $\chi_{\text {lid }}(G)=|K|+2$.

Proof. Let $K=\left\{v_{1}, \ldots, v_{k}\right\}, S=\left\{u_{1}, \ldots, u_{s}\right\},|K|=k$ and $|S|=s$. We construct the following coloring c of G. For $i \in[k], c\left(v_{i}\right)=i, c\left(u_{1}\right)=k+2$ and for $u_{j} \in S, c\left(u_{j}\right)=k+1$ with $j \geq 2$. Note that c is a proper coloring of G. Since the vertices of the clique K are universal, we only need to verify the colors in $N\left[v_{i}\right]$ and $N\left[u_{j}\right]$, for every $i \in[k]$ and $j \in[s]$. Thus, we have $c\left(N\left[v_{i}\right]\right)=[k+2]$, while $c\left(N\left[u_{1}\right]\right)=[k] \cup\{k+2\}$ and $c\left(N\left[u_{j}\right]\right)=[k+1]$ for $j \geq 2$. Therefore, $c\left(N\left[v_{i}\right]\right) \neq c\left(N\left[u_{j}\right]\right)$, which implies that c is a lid-coloring of G. Hence, $\chi_{\text {lid }}(G) \leq|K|+2$.

For the lower bound, as the complete split graph has a clique of size $|K|+1$, we have $\chi_{l i d}(G) \geq|K|+1$. Suppose that $\chi_{l i d}(G)=|K|+1$. So,
we can color $c\left(u_{j}\right)=k+1$, for every $j \in[s]$. However, $c\left(u_{1}\right)=k+1$ implies $c\left(N\left[v_{1}\right]\right)=c\left(N\left[u_{1}\right]\right)=[k+1]$, which is a contradiction. Therefore, $\chi_{\text {lid }}(G) \geq|K|+2$. Hence, $\chi_{\text {lid }}(G)=|K|+2$.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.

References

[1] J. A. Bondy and U. S. R. Murty. Graph theory with applications, volume 290. Macmillan London, 1976.
[2] Paulo Renato da Costa Pereira. Códigos para subfamílias dos grafos cordais. PhD thesis, Universidade Federal do Rio de Janeiro, 2007.
[3] L. Esperet, S. Gravier, M. Montassier, P. Ochem, and A. Parreau. Locally identifying coloring of graphs. Electron. J. Comb., 19:40, 2010.
[4] F. Foucaud, I. Honkala, T. Laihonen, A. Parreau, and G. Perarnau. Locally identifying colourings for graphs with given maximum degree. Discrete Mathematics, 312(10):1832-1837, 2012.
[5] D. Gonçalves, A. Parreau, and A. Pinlou. Locally identifying coloring in bounded expansion classes of graphs. Discrete Applied Mathematics, 161(18):2946-2951, 2013.
[6] M. G. Karpovsky, K. Chakrabarty, and L. B Levitin. On a new class of codes for identifying vertices in graphs. IEEE transactions on information theory, 44(2):599-611, 1998.
[7] N. Martins and R. Sampaio. Locally identifying coloring of graphs with few p4s. Theoretical Computer Science, 707:69-76, 2018.

[^0]: robsonmedradooli@gmail.com

