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Abstract. A locally identifying coloring (or lid-coloring for short)
in a graph is a proper vertex coloring such that, for any edge uv, if
u and v have distinct closed neighborhoods, then the set of colors
used on vertices of the closed neighborhoods of u and v are distinct.
The lid-chromatic number of a graph G, denoted by x;;4(G), is the
minimum number of colors needed in any lid-coloring of G. In this
work, we determine the lid-chromatic number of subclasses of both
powers of paths and some split graphs, which are chordal graphs.
Additionally, we present a lower bound for the lid-chromatic number
in twin-free graphs.
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1 Introduction

We consider finite, simple, and undirected graphs and use standard
notation and terminology. For a graph G, the vertex set and the edge set
are denoted V(G) and E(G), respectively. For any vertex u, we denote by
N (u) its open neighborhood and by N[u] its closed neighborhood. For a
subset S C V(G), we denote N[S] the set J,cg N[u]. Two vertices in a
graph G are true twins if N[u] = Nv] (although they are often called true
twins in the literature, we call them twins for convenience). If G has no

twins, then G is twin-free.

The vertex coloring problem consists of assigning colors to the vertices
of a graph in such a way that adjacent vertices have different colors, and
such coloring is a proper coloring. The minimum number of colors needed
to color a graph G is called its chromatic number, denoted by x(G). The
function ¢ : V' — N is a vertex coloring of G. For any S C V, we define

c(S) as the set of colors that appear on the vertices in S.

A vertex coloring ¢ of a graph G is a locally identifying coloring (lid-
coloring for short) if it satisfies the following conditions: (i) ¢ is a proper
coloring of GG, that is, no two adjacent vertices have the same color, and
(i7) for each pair of adjacent vertices w,v with N[u] # N[v], we have
c¢(Nu]) # c¢(N[v]). The locally identifying chromatic number of graph
G, denoted by x;i4(G), is the smallest number of colors needed in any lid-
coloring of G. A graph G is k-lid-colorable if it admits a locally identifying
coloring using at most k colors. The lid-coloring of a graph is a combination
between the concept of graph coloring and identifying codes [6]. The lid-
coloring was introduced in 2010 [3|, where several bounds on x;;4(G) were
proposed for different families of graphs, including planar graphs, some
subclasses of perfect graphs, and graphs with bounded maximum degree.
It was shown that every bipartite graph G has x;;4(G) < 4. Moreover, it
was proved that deciding whether a bipartite graph is 3-lid-colorable is an
NP-complete problem, while it is possible to decide in linear time whether

a tree is 3-lid-colorable. Note that the lid-coloring is not hereditary. For
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instance, xz;4(P,) = 3 for odd n at least 3, and x;4(P,) = 4 for even n.

Foucaud et al. [4] showed that every graph G has a lid-coloring with
2A2% —3A 43 colors, where A > 3 is the maximum degree of G. Gongalves
et al. |5] proved that for any planar graph G, it holds that x;;4(G) < 1280,
answering a question posed in [3]. Martins and Sampaio [7] developed
linear-time algorithms to calculate the lid-chromatic number for certain
classes of graphs with few P,’s, such as cographs, Pj-sparse graphs, and
(q, g—4)-graphs, and showed that the lid-chromatic number is polynomially
inapproximable by a factor of O(n!=¢) for all € > 0, unless P = NP.

A chordal graph is one in which all cycles of four or more vertices have
a chord, which is an edge that is not part of the cycle but connects two
vertices of the cycle. Esperet et al. [3] conjectured that every chordal graph
G has xyq < 2x(G). The authors presented some graphs satisfying this
bound. In this work, we determined the exact values of the lid-chromatic
number for subclasses of both powers of paths and split graphs, which
are chordal graphs. Additionally, we presented a lower bound for the lid-
chromatic number in twin-free graphs. Before we present our results, we
present some helpful definitions.

A clique in a graph G is a set of vertices pairwise adjacent in GG. The
size of the largest clique in a graph G is denoted by w(G). A clique K is
mazimum in G when |K| = w(G). We use [n] to denote the set {1,...,n}
and [n, m] to denote the set [m]\ [n—1]. The symmetric difference between
sets A and B is denoted by AAB. We denote as P, and K, the path graph
and the complete graph, respectively, on n vertices. For basic theoretical

terms not defined in this article, see [1].

2 Results

In this section, we present our results. First, we present lower bounds

on the lid-coloring chromatic number for some graphs.

Proposition 2.1. Let G be a twin-free graph containing a clique K of size
k> 2. Then ¢(N[K]) > k + logy k.
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Proof. Let G be a twin-free graph containing a clique K of size k > 2 and
K = {vi1,...,v;}. Suppose that c is a lid-coloring of G. Without loss of
generality, suppose that c(v;) = i for i € [k]. Let S = N[K]\ K. Since
G is a twin-free graph, we claim that |S| > log, k; otherwise, 251 < | K|
and since every Nv;| \ K is a subset of S, this implies that at least two
vertices in K are twins, contradicting the initial hypotheses. We show that
le(S) \ [k]| > logy k. For a contradiction, suppose that |c¢(.S) \ [k]| < log, k.
We now that |P(c(S))| = 21¢) < 2llog2 k=1 <k — 1. Since k—1 > 1,
this implies that there exist two vertices, say v and v, in K such that
¢(Nu]) = ¢(Nv]). Since v and v are not twins, ¢ is not a lid-coloring of
G. Therefore, ¢(N[K]) > k + logs k. O

Corollary 2.2. Let G be a twin-free graph with w(G) = k > 2. Then
X1id(G) > k + logy k.

Observe that the bound presented in Corollary 2.2 is tight. Bipartite
graphs with at least three vertices have lid-coloring at least 3. In Propo-

sition 2.3, we improve this bound under some conditions.

Proposition 2.3. Let G be a graph that contains a clique K of size k. If,
for every vertex v € K, v is adjacent to only one vertex u that does not
belong to K, and u is not adjacent to any other vertex in K, then we have
xiid(G) > 2k — 1.

Proof. Consider |K| = k, where the vertices of K are denoted by v; with
1 <4 < k. According to the hypothesis, each vertex v; in K has a neighbor
u;, with 1 <7 < k, that does not belong to K and is not adjacent to any
other vertex in K. Let S = U,’f:l u;. Now, consider a coloring ¢ of G
in which, for 1 < ¢ < k, ¢(v;) = i. We will show that to color the
vertices of S, we need at least k — 1 colors that differ from those in [k].
Suppose that at least two vertices in S are colored with two colors from
[k]. Without loss of generality, let ¢(u;) = 2 and c(ug) = 1, which implies
that ¢(N[vi]) = ¢(NJvs]) = [k], which is a contradiction. Therefore, we
conclude that xq4(G) > 2k — 1. O
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In the following subsections, we present some results by Esperet et al.
[3] on chordal graphs, particularly k-trees, and then discuss the locally
identifying coloring when restricted to powers of paths, which is a special
case of k-trees. We determined the exact values of the lid-chromatic num-
ber for some powers of paths, as well as for the complete split graph with
|S| > 2 and for the split graph G = K, o Kj.

2.1 Lid-coloring in powers of paths P*

A k-tree is a graph whose vertices can be ordered vy, vo, ..., v, in such
a way that the vertices v; to vg41 induce a (k + 1)-clique, and for each
k42 < i < n, the neighbors of v; in {v; | j < i} induce a k-clique. By
definition, for all k41 <1 < n, the graph G; induced by {v; | j < i} is
a k-tree, and every k-clique in a k-tree is contained in a (k + 1)-clique. In

Figure 2.1, we present the construction of a 3-tree.

Figure 2.1: Example of construction of a 3-tree.

Theorem 2.4. [3] If G is a k-tree, then x;q(G) < 2k + 2.

If G is a k-tree with at least k + 1 vertices, then x(G) =k +1 [2]. By
Theorem 2.4, we have x;;4(G) < 2k + 2. Thus, x14(G) < 2x(G), which
implies that k-trees satisfy the conjecture proposed by Esperet et al. [3].

A power of path, denoted by P¥, is a graph where V (P¥) = {vq,...,v,}
and there exists an edge v;v; if and only if |i — j| < k, 1 < 4,5 <n. In
Figure 2.2, we present a power of path P3.
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Figure 2.2: Power of path P73.

The graph PF is a k-tree, and can be constructed starting from a
clique formed by the vertices vi,...,v;11 and adding at each step, for

k+2 <1 <n, avertex v; adjacent to v;_p,...,v;_1.

Lemma 2.5. If G is a power of the path P¥ with k > 1 and n > 2k + 1,
then |c(vy, ..., va541)| = 2k + 1.

Proof. Let ¢ be a lid-coloring of P,]f. Without loss of generality, we have
c(v;) = i for each 1 < ¢ < k+ 1. Note that for any 1 < ¢ < k, the
symmetric difference N[v;]JAN[v;y1] = {vitk+1}. Furthermore, N[v;] =
{v1,...,vi4%} and thus ¢(N|v;]) contains the colors 1 to k + 1. There-
fore, ¢(v;) > k + 1 whenever k + 2 < i < 2k + 1. Since the vertices
Vk42, - - -, V2i+1 induces a complete graph, they have distinct colors. Hence,
le(viy ..y vokt1)| = 2k + 1. O

From Theorem 2.4 and Lemma 2.5, we have the following bounds for
Xtid(P, /~f ).
Corollary 2.6. If G is a power of the path P with k > 1 and n > 2k +1,

then 2k + 1 < x14(G) < 2k + 2.

We present values for n such that y;q(P¥) = 2k + 1 in Theorem 2.7
and for xyiq(PF) = 2k 4 2 in Theorem 2.8.

Theorem 2.7. Fork>1,n>2k+1, and n =k (mod k + 1), we have
xuia(PF) = 2k + 1.

Proof. By Corollary 2.6, xya(P¥) > 2k + 1. Now we need to show that
xud(PF) < 2k + 1. We construct a lid-coloring ¢ with this cardinality:
c(vi) =k+1ifi=0 (mod 2k+2), and ¢(v;) =i (mod 2k +2), otherwise.
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It is easy to see that c is a proper coloring of P¥. To show that for each
pair of adjacent vertices v; and vj, ¢(N[v;]) # ¢(N[v;]), we present the set
¢(Nv)) for every 1 <i <n. If 1 <i<k—1, we have ¢(N|v]) = [k + 1.
If k<i<n-—k-+1, we have the following sets:

2k + 1], if e(vy)) =k +1,
c(Nvi]) = 2k + 1]\ {j — 1}, if e(vi) =k+j,2<j<k+1,
2k+1\{j+k+1}, ifc(v;)=4,1<j<k.

For n — k+ 1 <4 < n, we have the following sets:

[k +1]U[e(v) + k+2,2k+ 1], if e(v;) <k,

c(N(vi]) = .
[e(vy) — k, 2k + 1], if ¢(v;) > k.

Since there are distinct sets of colors for vertices with different colors,

c is a lid-coloring. O

Theorem 2.8. For k > 1 and 2k +2 < n < 3k + 1, we have xyq(P¥) =
2k + 2.

Proof. From Corollary 2.6, we have xzq(P¥) < 2k + 2. Now, we show
that yuq(P¥) > 2k 4 2. By Lemma 2.3, |c(vy, ..., vop11)| = 2k + 1. Sym-
metrically, |c(vy—2k, ..., vn)| = 2k + 1. Hence, ¢(N[vg41]) = c¢(Nvp—k]) =
[2k+1]. Sincen < 3k+1, we haven—k—(k+1) <3k+1—k—(k+1) <k,
which implies that vi,1 and v,_j are adjacent, which is a contradiction to
the lid-coloring. Thus, we conclude that x;q(P¥) > 2k + 2. O]

For the remaining cases, we leave the following conjecture.
Conjecture 2.9. Fork >1,n>3k+3, andn=0,1,...,k—1 (mod k+
1), xuia(PF) = 2k + 2.

2.2 Lid-coloring on split graphs

The split graph G = (K U S, F) is a graph whose set of vertices can

be partitioned into a clique K of size |K| = k and an independent set S
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of size |S| = s. The split graph is a chordal graph where the maximum
clique size and its chromatic number are equal. Esperet et. al [3] proved
that if G is a split graph x)q(G) < 2w — 1.

Theorem 2.10. /3] Let G = (K U S, E) be a split graph. If w(G) > 3 or
if G is a star, then x1;4(G) < 2w — 1.

The corona product G o H of two graphs G and H. It is defined as
the graph obtained by taking one copy of G and |V(G)| copies of H and
joining the i-th vertex of G to every vertex in the i-th copy of H. The
graph K, o K7 is also a split graph. In the following result, we determine

the lid-coloring chromatic number in these graphs.
Proposition 2.11. If G = K,, o K1, with n > 3, then x;;4(G) = 2w — 1.

Proof. Observe that n = w(G) > 3. By Theorem 2.10, we have that
X1id(G) < 2w — 1. Moreover, by Proposition 2.3, we have that x;q4(G) >
2w — 1. Therefore, we conclude that y;;4(G) = 2w — 1 = 2n — 1. O

The graph G is a complete split graph if each vertex in the clique K is
adjacent to every vertex in the independent set S. We prove the following

result for the complete split graphs.

Theorem 2.12. Let G = (K US, E) be a complete split graph. If |S| > 2,
then xu:a(G) = | K| + 2.

Proof. Let K = {v1,...,vx}, S = {u1,...,us}, |K| = k and |S| = s. We
construct the following coloring c of G. For ¢ € [k], ¢(v;) =14, c(u1) = k+2
and for u; € S, c¢(uj) = k+1 with j > 2. Note that c is a proper coloring of
(. Since the vertices of the clique K are universal, we only need to verify
the colors in N|v;] and Nu;], for every i € [k] and j € [s]. Thus, we have
c(Nvi]) = [k+2], while ¢(N[ui1]) = [k]U{k+2} and ¢(N[u;]) = [k+1] for
J > 2. Therefore, ¢(N[v;]) # ¢(N[u;]), which implies that c is a lid-coloring
of G. Hence, x1;4(G) < |K|+ 2.

For the lower bound, as the complete split graph has a clique of size
|K| 4+ 1, we have x;;¢(G) > |K|+ 1. Suppose that x;;4(G) = |K|+ 1. So,
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we can color ¢(u;) = k + 1, for every j € [s]. However, c¢(u1) = k + 1
implies ¢(N[v1]) = ¢(N[u1]) = [k + 1], which is a contradiction. Therefore,
X1id(G) > | K|+ 2. Hence, x;i4(G) = | K| + 2. 0
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