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Abstract. A locally identifying coloring (or lid-coloring for short)
in a graph is a proper vertex coloring such that, for any edge uv, if
u and v have distinct closed neighborhoods, then the set of colors
used on vertices of the closed neighborhoods of u and v are distinct.
The lid-chromatic number of a graph G, denoted by χlid(G), is the
minimum number of colors needed in any lid-coloring of G. In this
work, we determine the lid-chromatic number of subclasses of both
powers of paths and some split graphs, which are chordal graphs.
Additionally, we present a lower bound for the lid-chromatic number
in twin-free graphs.
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1 Introduction

We consider finite, simple, and undirected graphs and use standard
notation and terminology. For a graph G, the vertex set and the edge set
are denoted V (G) and E(G), respectively. For any vertex u, we denote by
N(u) its open neighborhood and by N [u] its closed neighborhood. For a
subset S ⊆ V (G), we denote N [S] the set

⋃
u∈S N [u]. Two vertices in a

graph G are true twins if N [u] = N [v] (although they are often called true
twins in the literature, we call them twins for convenience). If G has no
twins, then G is twin-free.

The vertex coloring problem consists of assigning colors to the vertices
of a graph in such a way that adjacent vertices have different colors, and
such coloring is a proper coloring. The minimum number of colors needed
to color a graph G is called its chromatic number, denoted by χ(G). The
function c : V → N is a vertex coloring of G. For any S ⊆ V , we define
c(S) as the set of colors that appear on the vertices in S.

A vertex coloring c of a graph G is a locally identifying coloring (lid-
coloring for short) if it satisfies the following conditions: (i) c is a proper
coloring of G, that is, no two adjacent vertices have the same color, and
(ii) for each pair of adjacent vertices u, v with N [u] ̸= N [v], we have
c(N [u]) ̸= c(N [v]). The locally identifying chromatic number of graph
G, denoted by χlid(G), is the smallest number of colors needed in any lid-
coloring of G. A graph G is k-lid-colorable if it admits a locally identifying
coloring using at most k colors. The lid-coloring of a graph is a combination
between the concept of graph coloring and identifying codes [6]. The lid-
coloring was introduced in 2010 [3], where several bounds on χlid(G) were
proposed for different families of graphs, including planar graphs, some
subclasses of perfect graphs, and graphs with bounded maximum degree.
It was shown that every bipartite graph G has χlid(G) ≤ 4. Moreover, it
was proved that deciding whether a bipartite graph is 3-lid-colorable is an
NP-complete problem, while it is possible to decide in linear time whether
a tree is 3-lid-colorable. Note that the lid-coloring is not hereditary. For
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instance, χlid(Pn) = 3 for odd n at least 3, and χlid(Pn) = 4 for even n.
Foucaud et al. [4] showed that every graph G has a lid-coloring with

2∆2−3∆+3 colors, where ∆ ≥ 3 is the maximum degree of G. Gonçalves
et al. [5] proved that for any planar graph G, it holds that χlid(G) ≤ 1280,
answering a question posed in [3]. Martins and Sampaio [7] developed
linear-time algorithms to calculate the lid-chromatic number for certain
classes of graphs with few P4’s, such as cographs, P4-sparse graphs, and
(q, q−4)-graphs, and showed that the lid-chromatic number is polynomially
inapproximable by a factor of O(n1−ϵ) for all ϵ > 0, unless P = NP .

A chordal graph is one in which all cycles of four or more vertices have
a chord, which is an edge that is not part of the cycle but connects two
vertices of the cycle. Esperet et al. [3] conjectured that every chordal graph
G has χlid ≤ 2χ(G). The authors presented some graphs satisfying this
bound. In this work, we determined the exact values of the lid-chromatic
number for subclasses of both powers of paths and split graphs, which
are chordal graphs. Additionally, we presented a lower bound for the lid-
chromatic number in twin-free graphs. Before we present our results, we
present some helpful definitions.

A clique in a graph G is a set of vertices pairwise adjacent in G. The
size of the largest clique in a graph G is denoted by ω(G). A clique K is
maximum in G when |K| = ω(G). We use [n] to denote the set {1, . . . , n}
and [n,m] to denote the set [m]\[n−1]. The symmetric difference between
sets A and B is denoted by A∆B. We denote as Pn and Kn the path graph
and the complete graph, respectively, on n vertices. For basic theoretical
terms not defined in this article, see [1].

2 Results

In this section, we present our results. First, we present lower bounds
on the lid-coloring chromatic number for some graphs.

Proposition 2.1. Let G be a twin-free graph containing a clique K of size
k ≥ 2. Then c(N [K]) ≥ k + log2 k.
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Proof. Let G be a twin-free graph containing a clique K of size k ≥ 2 and
K = {v1, . . . , vk}. Suppose that c is a lid-coloring of G. Without loss of
generality, suppose that c(vi) = i for i ∈ [k]. Let S = N [K] \ K. Since
G is a twin-free graph, we claim that |S| ≥ log2 k; otherwise, 2|S| < |K|
and since every N [vi] \ K is a subset of S, this implies that at least two
vertices in K are twins, contradicting the initial hypotheses. We show that
|c(S) \ [k]| ≥ log2 k. For a contradiction, suppose that |c(S) \ [k]| < log2 k.
We now that |P(c(S))| = 2|c(S)| ≤ 2⌈log2 k⌉−1 ≤ k − 1. Since k − 1 ≥ 1,
this implies that there exist two vertices, say u and v, in K such that
c(N [u]) = c(N [v]). Since u and v are not twins, c is not a lid-coloring of
G. Therefore, c(N [K]) ≥ k + log2 k.

Corollary 2.2. Let G be a twin-free graph with ω(G) = k ≥ 2. Then
χlid(G) ≥ k + log2 k.

Observe that the bound presented in Corollary 2.2 is tight. Bipartite
graphs with at least three vertices have lid-coloring at least 3. In Propo-
sition 2.3, we improve this bound under some conditions.

Proposition 2.3. Let G be a graph that contains a clique K of size k. If,
for every vertex v ∈ K, v is adjacent to only one vertex u that does not
belong to K, and u is not adjacent to any other vertex in K, then we have
χlid(G) ≥ 2k − 1.

Proof. Consider |K| = k, where the vertices of K are denoted by vi with
1 ≤ i ≤ k. According to the hypothesis, each vertex vi in K has a neighbor
ui, with 1 ≤ i ≤ k, that does not belong to K and is not adjacent to any
other vertex in K. Let S =

⋃k
i=1 ui. Now, consider a coloring c of G

in which, for 1 ≤ i ≤ k, c(vi) = i. We will show that to color the
vertices of S, we need at least k − 1 colors that differ from those in [k].
Suppose that at least two vertices in S are colored with two colors from
[k]. Without loss of generality, let c(u1) = 2 and c(u2) = 1, which implies
that c(N [v1]) = c(N [v2]) = [k], which is a contradiction. Therefore, we
conclude that χlid(G) ≥ 2k − 1.
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In the following subsections, we present some results by Esperet et al.
[3] on chordal graphs, particularly k-trees, and then discuss the locally
identifying coloring when restricted to powers of paths, which is a special
case of k-trees. We determined the exact values of the lid-chromatic num-
ber for some powers of paths, as well as for the complete split graph with
|S| ≥ 2 and for the split graph G = Kn ◦K1.

2.1 Lid-coloring in powers of paths P k
n

A k-tree is a graph whose vertices can be ordered v1, v2, . . . , vn in such
a way that the vertices v1 to vk+1 induce a (k + 1)-clique, and for each
k + 2 ≤ i ≤ n, the neighbors of vi in {vj | j < i} induce a k-clique. By
definition, for all k + 1 ≤ i ≤ n, the graph Gi induced by {vj | j ≤ i} is
a k-tree, and every k-clique in a k-tree is contained in a (k+ 1)-clique. In
Figure 2.1, we present the construction of a 3-tree.

Figure 2.1: Example of construction of a 3-tree.

Theorem 2.4. [3] If G is a k-tree, then χlid(G) ≤ 2k + 2.

If G is a k-tree with at least k + 1 vertices, then χ(G) = k + 1 [2]. By
Theorem 2.4, we have χlid(G) ≤ 2k + 2. Thus, χlid(G) ≤ 2χ(G), which
implies that k-trees satisfy the conjecture proposed by Esperet et al. [3].

A power of path, denoted by P k
n , is a graph where V (P k

n ) = {v1, . . . , vn}
and there exists an edge vivj if and only if |i − j| ≤ k, 1 ≤ i, j ≤ n. In
Figure 2.2, we present a power of path P 3

7 .
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Figure 2.2: Power of path P 3
7 .

The graph P k
n is a k-tree, and can be constructed starting from a

clique formed by the vertices v1, . . . , vk+1 and adding at each step, for
k + 2 ≤ i ≤ n, a vertex vi adjacent to vi−k, . . . , vi−1.

Lemma 2.5. If G is a power of the path P k
n with k ≥ 1 and n ≥ 2k + 1,

then |c(v1, . . . , v2k+1)| = 2k + 1.

Proof. Let c be a lid-coloring of P k
n . Without loss of generality, we have

c(vi) = i for each 1 ≤ i ≤ k + 1. Note that for any 1 ≤ i ≤ k, the
symmetric difference N [vi]∆N [vi+1] = {vi+k+1}. Furthermore, N [vi] =

{v1, . . . , vi+k} and thus c(N [vi]) contains the colors 1 to k + 1. There-
fore, c(vi) > k + 1 whenever k + 2 ≤ i ≤ 2k + 1. Since the vertices
vk+2, . . . , v2k+1 induces a complete graph, they have distinct colors. Hence,
|c(v1, . . . , v2k+1)| = 2k + 1.

From Theorem 2.4 and Lemma 2.5, we have the following bounds for
χlid(P

k
n ).

Corollary 2.6. If G is a power of the path P k
n with k ≥ 1 and n ≥ 2k+1,

then 2k + 1 ≤ χlid(G) ≤ 2k + 2.

We present values for n such that χlid(P
k
n ) = 2k + 1 in Theorem 2.7

and for χlid(P
k
n ) = 2k + 2 in Theorem 2.8.

Theorem 2.7. For k ≥ 1, n ≥ 2k + 1, and n ≡ k (mod k + 1), we have
χlid(P

k
n ) = 2k + 1.

Proof. By Corollary 2.6, χlid(P
k
n ) ≥ 2k + 1. Now we need to show that

χlid(P
k
n ) ≤ 2k + 1. We construct a lid-coloring c with this cardinality:

c(vi) = k+1 if i ≡ 0 (mod 2k+2), and c(vi) = i (mod 2k+2), otherwise.
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It is easy to see that c is a proper coloring of P k
n . To show that for each

pair of adjacent vertices vi and vj , c(N [vi]) ̸= c(N [vj ]), we present the set
c(N [vi]) for every 1 ≤ i ≤ n. If 1 ≤ i ≤ k − 1, we have c(N [vi]) = [k + i].
If k ≤ i ≤ n− k + 1, we have the following sets:

c(N [vi]) =


[2k + 1], if c(vi) = k + 1,

[2k + 1] \ {j − 1}, if c(vi) = k + j, 2 ≤ j ≤ k + 1,

[2k + 1] \ {j + k + 1}, if c(vi) = j, 1 ≤ j ≤ k.

For n− k + 1 ≤ i ≤ n, we have the following sets:

c(N [vi]) =

[k + 1] ∪ [c(vi) + k + 2, 2k + 1], if c(vi) ≤ k,

[c(vi)− k, 2k + 1], if c(vi) > k.

Since there are distinct sets of colors for vertices with different colors,
c is a lid-coloring.

Theorem 2.8. For k ≥ 1 and 2k + 2 ≤ n ≤ 3k + 1, we have χlid(P
k
n ) =

2k + 2.

Proof. From Corollary 2.6, we have χlid(P
k
n ) ≤ 2k + 2. Now, we show

that χlid(P
k
n ) ≥ 2k + 2. By Lemma 2.3, |c(v1, . . . , v2k+1)| = 2k + 1. Sym-

metrically, |c(vn−2k, . . . , vn)| = 2k+ 1. Hence, c(N [vk+1]) = c(N [vn−k]) =

[2k+1]. Since n ≤ 3k+1, we have n−k−(k+1) ≤ 3k+1−k−(k+1) ≤ k,
which implies that vk+1 and vn−k are adjacent, which is a contradiction to
the lid-coloring. Thus, we conclude that χlid(P

k
n ) ≥ 2k + 2.

For the remaining cases, we leave the following conjecture.

Conjecture 2.9. For k ≥ 1, n ≥ 3k+3, and n ≡ 0, 1, . . . , k−1 (mod k+

1), χlid(P
k
n ) = 2k + 2.

2.2 Lid-coloring on split graphs

The split graph G = (K ∪ S,E) is a graph whose set of vertices can
be partitioned into a clique K of size |K| = k and an independent set S
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of size |S| = s. The split graph is a chordal graph where the maximum
clique size and its chromatic number are equal. Esperet et. al [3] proved
that if G is a split graph χlid(G) ≤ 2ω − 1.

Theorem 2.10. [3] Let G = (K ∪ S,E) be a split graph. If ω(G) ≥ 3 or
if G is a star, then χlid(G) ≤ 2ω − 1.

The corona product G ◦ H of two graphs G and H. It is defined as
the graph obtained by taking one copy of G and |V (G)| copies of H and
joining the i-th vertex of G to every vertex in the i-th copy of H. The
graph Kn ◦K1 is also a split graph. In the following result, we determine
the lid-coloring chromatic number in these graphs.

Proposition 2.11. If G = Kn ◦K1, with n ≥ 3, then χlid(G) = 2ω − 1.

Proof. Observe that n = ω(G) ≥ 3. By Theorem 2.10, we have that
χlid(G) ≤ 2ω − 1. Moreover, by Proposition 2.3, we have that χlid(G) ≥
2ω − 1. Therefore, we conclude that χlid(G) = 2ω − 1 = 2n− 1.

The graph G is a complete split graph if each vertex in the clique K is
adjacent to every vertex in the independent set S. We prove the following
result for the complete split graphs.

Theorem 2.12. Let G = (K ∪S,E) be a complete split graph. If |S| ≥ 2,
then χlid(G) = |K|+ 2.

Proof. Let K = {v1, . . . , vk}, S = {u1, . . . , us}, |K| = k and |S| = s. We
construct the following coloring c of G. For i ∈ [k], c(vi) = i, c(u1) = k+2

and for uj ∈ S, c(uj) = k+1 with j ≥ 2. Note that c is a proper coloring of
G. Since the vertices of the clique K are universal, we only need to verify
the colors in N [vi] and N [uj ], for every i ∈ [k] and j ∈ [s]. Thus, we have
c(N [vi]) = [k+2], while c(N [u1]) = [k]∪{k+2} and c(N [uj ]) = [k+1] for
j ≥ 2. Therefore, c(N [vi]) ̸= c(N [uj ]), which implies that c is a lid-coloring
of G. Hence, χlid(G) ≤ |K|+ 2.

For the lower bound, as the complete split graph has a clique of size
|K|+ 1, we have χlid(G) ≥ |K|+ 1. Suppose that χlid(G) = |K|+ 1. So,
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we can color c(uj) = k + 1, for every j ∈ [s]. However, c(u1) = k + 1

implies c(N [v1]) = c(N [u1]) = [k+1], which is a contradiction. Therefore,
χlid(G) ≥ |K|+ 2. Hence, χlid(G) = |K|+ 2.
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