Matemática Contemporânea

Vol. 55, 142–151 http://doi.org/10.21711/231766362023/rmc5516

On Identifying Codes in Complementary Prisms

Juliana Felix ¹ and Márcia Cappelle ¹

¹Instituto de Informática, Universidade Federal de Goiás, Goiânia, Brazil

Dedicated to Professor Jayme Szwarcfiter on the occasion of his 80th birthday

Abstract. Let G = (V, E) be a simple, finite, and undirected graph, and let $C \subseteq V(G)$. If for each vertex $u \in V(G)$, the intersection of C with the closed neighborhood of u are all nonempty and distinct, then we say that C is an *identifying code* (or ID code, for short). The minimum cardinality of an ID code of G is denoted by $\gamma^{ID}(G)$. In this paper, we present sharp lower and upper bounds for γ^{ID} in the complementary prism graphs and give closed formulas for the minimum ID code of the complementary prism of both the complete split and complete bipartite graphs.

Keywords: identifying codes, complementary prisms.

2020 Mathematics Subject Classification: 05C69, 05C76.

1 Introduction

We consider finite, simple, and undirected graphs and use standard notation and terminology. For a graph G, the vertex set and the edge set are denoted V(G) and E(G), respectively. For a vertex u of G, the neighborhood, and the closed neighborhood are denoted $N_G(u)$ and $N_G[u]$, respectively.

Let $C \subseteq V(G)$. We say that C is a dominating set if, for each vertex $u \in V(G)$, $C \cap N[u] \neq \emptyset$. A vertex u of C is said to dominate vertex v if either u = v, or u is adjacent to v. Two vertices u, v are separated by C if $N[u] \cap C \neq N[v] \cap C$; set C is a separating set if every pair of distinct vertices of V(G) are separated by C. A subset $C \subseteq V(G)$ is an identifying code (ID code, for short) if C is both a dominating set and a separating set of G. Note that a graph has an identifying code if and only if no two vertices have the same closed neighborhood. The ID code number of a graph G is the minimum cardinality of an ID code of G and is denoted $\gamma^{ID}(G)$. See, for example, the graph in Figure 2.1, where an ID code of the graph is represented by the black vertices.

ID codes were first introduced by Karpovsky et al. [9], where the authors relate the problem to fault diagnosis of multiprocessor systems. ID codes have been widely studied, and a detailed list of references on this subject can be found on Jean's webpage [8].

From a computational point of view, finding identifying codes of minimum cardinality has been proved to be NP-hard [3]. Therefore, it is natural that many researchers have restricted their study of identifying codes in some specific classes of graphs such as trees [1], cycles [4], and hypercubes [10, 7], for instance. ID Codes were also considered in some graph products, such as Cartesian products [11] and complementary prisms [2]. A concept similar to ID codes, called locating-dominating sets, was also studied in the complementary prisms [5, 6].

In this paper, we consider identifying codes in complementary prisms. We present sharp lower and upper bounds for γ^{ID} in these graphs and give closed formulas for the minimum ID code of the complementary prism of both the complete split and complete bipartite graphs.

2 Definitions and preliminary results

For a subset $S \subseteq V(G)$, we denote $N_G[S]$ the set $\bigcup_{u \in S} N_G[u]$. Given two sets A and B, we denote by $A \bigtriangleup B$ their symmetric difference, i.e., the set of elements belonging to A or B, but not to both. We denote as C_n and K_n , the cycle and the complete graph, respectively, on n vertices.

A graph $G = (K \cup S, E)$ is a *split graph* if its vertex set can be partitioned into a clique K and an independent set S. Moreover, if G is a split graph and each vertex of the clique is adjacent to each vertex of the independent set, then G is called a *complete split graph*.

The complementary prism $G\overline{G}$ of G is the graph formed from the disjoint union of G and the complement \overline{G} by adding the edges of a perfect matching between the corresponding vertices (same label) of G and \overline{G} . Here, we use the following notation: for a set $X \subseteq V(G)$, let \overline{X} represent the corresponding set of vertices in $V(\overline{G})$. For a vertex $v \in V(G)$, let \overline{v} be the corresponding vertex in $V(\overline{G})$.

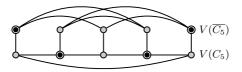


Figure 2.1: Petersen Graph, the complementary prism of C_5 .

Not all graphs admit an ID code. If $u, v \in V(G)$ are such that $N_G[u] = N_G[v]$, then u and v are called *twins*. A graph is *identifiable* if and only if it does not have twin vertices. If $N_G(u) = N_G(v)$, they are *false twins*.

The next two lemmas determine some vertices that must be in an ID code of G. Their proofs are omitted.

Lemma 2.1. Let G = (V, E) be an identifiable graph, C an identifying code of G, and let K be the set of vertices that are mutually false twins. Then, $|K \cap C| \ge |K| - 1$.

Lemma 2.2. Let G be an identifiable graph, and let C be an identifying code of G. If there exists a set of vertices $K \subseteq V(G)$ such that K induces a complete graph on n vertices, then $|(N_G[K] \setminus K) \cap C| \ge n - 1$.

The following result provides a sharp logarithmic lower bound on the size of an ID code of any graph G, if G has such a set.

Theorem 2.3. [9] Let G be an identifiable graph on n vertices. Then, $\gamma^{ID}(G) \geq \lceil \log_2(n+1) \rceil$.

3 Results on Complementary Prisms

In this section, we present our results on identifying codes in complementary prisms. We begin proving that for any graph G with at least two vertices, $G\overline{G}$ is identifiable.

Theorem 3.1. Let G be a graph with order n. The graph $G\overline{G}$ is identifiable if and only if $n \geq 2$.

Proof. If G is a trivial graph, then, $G\overline{G}$ is a complete graph on 2 vertices and it is not identifiable. Therefore, if $G\overline{G}$ is identifiable, then $n \geq 2$.

For the converse, suppose that G is a graph on $n \geq 2$ vertices. Then, for any two vertices $\overline{u}, \overline{v} \in V(\overline{G})$ in $G\overline{G}$, we have $\{u, v\} \subseteq (N_{G\overline{G}}[\overline{u}] \bigtriangleup N_{G\overline{G}}[\overline{v}])$, where $u \in N_{G\overline{G}}[\overline{u}]$ and $v \in N_{G\overline{G}}[\overline{v}]$. Analogously, the same is true for any two vertices $u, v \in V(G)$ of $G\overline{G}$.

Now consider two vertices $u \in V(G)$ and $\overline{v} \in V(\overline{G})$ of $G\overline{G}$. If $u \neq v$, these two vertices are not adjacent and $N_{G\overline{G}}[u] \neq N_{G\overline{G}}[\overline{v}]$. If u = v, since $n \geq 2$, there is at least one vertex that is adjacent to only one of these vertices, by the construction of $G\overline{G}$. Hence, for any two vertices $u, v \in$ $V(G\overline{G})$, we have $N_{G\overline{G}}[u] \neq N_{G\overline{G}}[v]$ and, therefore, $G\overline{G}$ is identifiable. \Box

Our next result is an upper bound for $\gamma^{ID}(G\overline{G})$, given that G is connected and identifiable with order $n \geq 3$.

Theorem 3.2. Let G be a connected and identifiable graph on $n \geq 3$ vertices. Then V(G) is an identifying code of $G\overline{G}$ and $\gamma^{ID}(G\overline{G}) \leq n$.

Proof. Since G is an identifiable graph, it follows that V(G) is an identifying code of G. From Theorem 3.1, we know $G\overline{G}$ is an identifiable graph. We shall prove that V(G) is also an identifying code of $G\overline{G}$. Let C = V(G). The set C dominates $V(G\overline{G})$ and it separates all vertices of G in $G\overline{G}$. In addition, for any vertex $\overline{u} \in V(\overline{G})$ in $G\overline{G}$, we have $N_{G\overline{G}}[\overline{u}] \cap C = \{u\}$. Since G has no isolated vertices, $N_{G\overline{G}}[u] \cap C \neq \{u\}$. Thus C separates all vertices of \overline{G} in $G\overline{G}$.

Now, we show that C separates each vertex in V(G) from each vertex in $V(\overline{G})$. We know that $N_{G\overline{G}}[v] \cap C = N_G[v] \cap C = N_G[v]$ and, since G is connected and has at least 3 vertices, then $N_G[v] \ge 2$. Thus, $(N_{G\overline{G}}[v] \cap C) \neq (N_{G\overline{G}}[\overline{v}] \cap C)$. Furthermore, if $u \in V(G)$, $\overline{v} \in V(\overline{G})$ with $u \neq v$, then $(N_{G\overline{G}}[u] \cap C) \neq (N_{G\overline{G}}[\overline{v}] \cap C)$.

We define some sets we shall use in the following results. Let S be an ID code of $G\overline{G}$ with $S_1 = S \cap V(G)$ and $\overline{S_2} = S \cap V(\overline{G})$. Let S_2 be the set of corresponding vertices of $\overline{S_2}$ in V(G), $\overline{S_1}$ be the set of corresponding vertices of S_1 in $V(\overline{G})$, D be the set $V(G) \setminus (S_1 \cup S_2)$ and \overline{D} be the corresponding vertices of D in $V(\overline{G})$, with $S_1 \cap S_2 = X$ and |X| = x. The reader is referred to Figure 3.1.

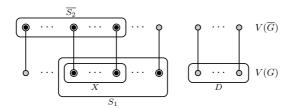


Figure 3.1: An illustration of the sets S_1 , $\overline{S_2}$, X and D where $S_1 \cup \overline{S_2}$ is an ID code of $G\overline{G}$. The edges of G and \overline{G} were omitted.

The next two lemmas provide bounds on the size of the subset $D = V(G) \setminus (S_1 \cup S_2)$ of $G\overline{G}$, considering that $S = S_1 \cup \overline{S_2}$ is an ID code of $G\overline{G}$.

Lemma 3.3. Let G be a graph of order $n \ge 3$ and S an ID code of $G\overline{G}$. If x = 0, then $n - |S_1| - |\overline{S_2}| \le 2^r - r - 1$, where $r = \min\{|S_1|, |\overline{S_2}|\}$. *Proof.* The vertices in S_2 are separated by vertices in $S_1 \cup \overline{S_2}$. By construction, $N_{G\overline{G}}(D \cup S_1) \cap \overline{S_2} = \emptyset$. For every distinct pair $u, v \in S$, we have that $(N_G[u] \cap S_1) \neq (N_G[v] \cap S_1)$. So, the size of $D \cup S_1$ is bounded by the number of nonempty subsets of S_1 . So we can conclude that $|D| + |S_1| \leq 2^{|S_1|} - 1$, which implies $|D| \leq 2^{|S_1|} - |S_1| - 1$. Analogously, $|\overline{D}| \leq 2^{|\overline{S_2}|} - |\overline{S_2}| - 1$. Since $|D| = |\overline{D}|$ and $r = \min\{|S_1|, |\overline{S_2}|\}$, it follows that $|D| = n - |S_1| - |\overline{S_2}|$ is bounded by $2^r - r - 1$. □

Lemma 3.4. Let G be a graph of order $n \ge 3$ and S an ID code of $G\overline{G}$. If $x \ne 0$, then $n - |S_1 \cup S_2| \le 2^r - r + x - 2$, where $r = \min\{|S_1|, |\overline{S_2}|\}$.

Proof. The vertices in $X \cup S_2$ are separated by $S_1 \cup \overline{S_2}$. The vertices in $(S_1 \setminus X) \cup D$ are separated by vertices in S_1 . By construction, $N_{G\overline{G}}(D) \cap \overline{S_2} = \emptyset$. For every distinct pair $u, v \in S$, we have that $(N_G[u] \cap S_1) \neq (N_G[v] \cap S_1)$. So, the size of $D \cup (S_1 \setminus X)$ is bounded by the number of nonempty proper subsets of S_1 (in case that $X = S_1$, if a vertex in D is adjacent to all vertices in S_1 , then the corresponding vertex in \overline{G} has no neighbor in $\overline{S_2}$, and it is not dominated by S). Hence, we can conclude that $|D \cup (S_1 \setminus X)| \leq 2^{|S_1|} - 2$, which implies $|D| \leq 2^{|S_1|} - |S_1| + x - 2$. Analogously, $|\overline{D}| \leq 2^{|\overline{S_2}|} - |\overline{S_2}| + x - 2$. Since $|D| = |\overline{D}|$ and $r = \min\{|S_1|, |\overline{S_2}|\}$, it follows that $|D| = n - |S_1 \cup S_2|$ is bounded by $2^r - r + x - 2$. □

The bound presented in Theorem 2.3 is now sharpened for complementary prism graphs.

Theorem 3.5. Let G be a graph of order $n \ge 4$ and S an ID code of \overline{GG} . Then, $|S| \ge 2\lceil \log_2(n+1) \rceil - 2$.

Proof. Assume $|S_1| = k_1$ and $|\overline{S_2}| = k_2$. We consider the cases where (i) x = 0 and, and (ii) $x \neq 0$. By symmetry, for each of (i) and (ii), we can assume that $k_1 \leq k_2$.

Case (i): By Lemma 3.3, $|D| = n - k_1 - k_2 \le 2^{k_1} - k_1 - 1$. Thus $n \le 2^{k_1} - k_1 - 1 + k_1 + k_2 = 2^{k_1} + k_2 - 1$. If $k_2 \le 2^{k_1}$, then $n \le 2^{k_1+1} - 1$, which implies $k_1 \ge \log_2(n+1) - 1$. If $2^{k_1} \le k_2$, then $n \le 2k_2 - 1$, which implies $k_2 \ge \log_2(k_2) \ge \log_2(n+1) - 1$.

Case (*ii*): By Lemma 3.4, $|D| = n - (k_1 + k_2 - x) \le 2^{k_1} - k_1 + x - 2$. Thus $n \le 2^{k_1} - k_1 + x - 2 + k_1 + k_2 - x = 2^{k_1} + k_2 - 2$. If $k_2 \le 2^{k_1}$, then $n \le 2^{k_1+1} - 2$, which implies $k_1 \ge \log_2(n+1) - 2$. If $2^{k_1} \le k_2$, then $n \le 2k_2 - 2$, which implies $k_2 \ge \log_2(k_2) \ge \log_2(n+1) - 2$.

By Cases (i) and (ii), and since k_1 and k_2 are both integers, we can conclude that $|S| = k_1 + k_2 \ge 2\lceil \log_2(n+1) \rceil - 2$.

Figure 3.2: $S = \{1, 2, 3, 4, 5, 6\}$ is an ID code of $G\overline{G}$. The set in each vertex v is $N_{G\overline{G}}[v] \cap S$. For simplicity, most of edges of G and \overline{G} were omitted.

The lower bound in Theorem 3.5 is sharp. Let $G\overline{G}$ be the infinite family of graphs where the order of G is $n = 2^p + p - 1$, with $p \ge 2$. We do $|S_1| = |\overline{S_2}| = p$ and |S| = 2p. Thus, $|D| = n - |S| = 2^p - p - 1$. An illustration for the case p = 3 can be seen in Figure 3.2. From Theorems 3.2 and 3.5, we conclude the following result.

Corollary 3.6. If G is a connected and identifiable graph on $n \ge 3$ vertices, then $2\lceil \log_2(n+1) \rceil - 2 \le \gamma^{ID}(G\overline{G}) \le n$, and these bounds are sharp.

Observe that the upper bound in Corollary 3.6 is not valid for $\gamma^{ID}(G\overline{G})$ when G is not an identifiable graph. For instance, $\gamma^{ID}(K_n\overline{K_n}) = n+1$. In the next result, we consider ID codes in complete bipartite graphs, which attain the upper bound of Corollary 3.6.

Theorem 3.7. Let $G = K_{r,s}$ be a complete bipartite graph, with $r, s \ge 3$ and n = r + s. Then, $\gamma^{ID}(\overline{GG}) = n$.

Proof. Let $V(G) = (A \cup B)$ with $A = \{u_1, \ldots, u_r\}$ and $B = \{v_1, \ldots, v_s\}$. Let C be a minimum ID Code of G. The set A induces a complete subgraph on r vertices and, according to Lemma 2.2, $|(N_{G\overline{G}}[\overline{A}] \setminus \overline{A}) \cap C| \ge (r-1)$. Since $(N_{G\overline{G}}[\overline{A}] \setminus \overline{A}) = A$, then $|A \cap C| \ge (r-1)$. Suppose that $|A \cap C| = r-1$. Since one of the vertices of A, for instance, u_i does not belong to C, then \overline{u}_i must belong to C or it must be adjacent to a vertex that belongs to C so that C dominates all vertices of \overline{A} . Hence, $|(A \cup \overline{A}) \cap C| \ge r$. Analogously, $|(B \cup \overline{B}) \cap C| \ge s$. Thus, $\gamma^{ID}(G\overline{G}) \ge r + s$. However, by Theorem 3.2, $C = (A \cup B)$ is an identifying code of $G\overline{G}$ with r + s vertices. Hence, $\gamma^{ID}(G\overline{G}) = r + s = n$.

Finally, we consider the complementary prism of complete split graphs. A complete split graph $G = (K \cup S, E)$ with $|K| \ge 2$ is not identifiable. This fact, however, changes when we analyze their complementary prisms.

Theorem 3.8. Let $G = (K \cup S, E)$ be a complete split graph, |K| = k, |S| = s, with $k, s \ge 2$ and n = k + s. Then, $\gamma^{ID}(G\overline{G}) = n$.

Proof. Let $K = \{u_1, \ldots, u_k\}$ and $S = \{v_1, \ldots, v_s\}$. Let C be an ID code in G. We know that $(N_{G\overline{G}}[\overline{S}] \setminus \overline{S}) = S$. The set \overline{S} induces a complete subgraph and, by Lemma 2.2, we have $|(S \cap C)| \ge s - 1$. However, if C is an ID code and $|S \cap C| = s - 1$, then there exists a vertex $\overline{v_i} \in C$, otherwise $\overline{v_i}$ would not be dominated. Therefore, $|(S \cup \overline{S}) \cap C| \ge s$. Moreover, given two distinct vertices $u_i, u_j \in V_{G\overline{G}}(K)$, we have $N_{G\overline{G}}[u_i] \bigtriangleup N_{G\overline{G}}[u_j] = \{\overline{u_i}, \overline{u_j}\}$ and, therefore, $|\overline{K} \cap C| \ge k - 1$. However, if $|\overline{K} \cap C| = k - 1$, then there exists a vertex $u_i \in C$, otherwise $\overline{u_i}$ is not dominated. Hence, $|(K \cup \overline{K}) \cap C| \ge k$. Therefore, $|C| \ge k + s$. The set $C = \{u_1\} \cup \{\overline{u_2}, \ldots, \overline{u_k}\} \cup \{v_1, \ldots, v_s\}$ is an ID code in $G\overline{G}$ of cardinality k + s = n.

An open question is whether finding minimum ID Codes in complementary prisms remains NP-hard.

4 Acknowledgments

The authors thank CAPES and FAPEG for the financial support.

References

- N. Bertrand, I. Charon, O. Hudry, and A. Lobstein. 1-identifying codes on trees. Australas. J. Comb., 31:21–35, 2005.
- [2] M. Cappelle, E. Coelho, H. Coelho, L. Penso, and D. Rautenbach. Identifying codes in the complementary prism of cycles. *Electronic Notes in Theoretical Computer Science*, 346:241–251, 2019.
- [3] I. Charon, O. Hudry, and A. Lobstein. Minimizing the size of an identifying or locating-dominating code in a graph is np-hard. *Theoretical Computer Science*, 290(3):2109–2120, 2003.
- [4] S. Gravier, J. Moncel, and A. Semri. Identifying codes of cycles. European Journal of Combinatorics, 27(5):767–776, 2006.
- [5] T. W. Haynes, K. R. S. Holmes, D. R. Koessler, and L. Sewell. Locating-domination in complementary prisms of paths and cycles. *Congressus Numerantium*, 199:45–55, 2009.
- [6] K. R. S. Holmes, D. R. Koessler, and T. W. Haynes. Locatingdomination in complementary prisms. *Journal of Combinatorial Mathematics and Combinatorial Computing*, 72:163–171, 2010.
- [7] S. Janson and T. Laihonen. On the size of identifying codes in binary hypercubes. J. Comb. Theory Ser. A., 116(5):1087–1096, 2009.
- [8] D. Jean. Watching systems, identifying, locating-dominating and discriminating codes in graphs. https://dragazo.github.io/bibdom/ main.pdf, 2023. Last accessed on: April 05, 2023.
- [9] M. Karpovsky, K. Chakrabarty, and L. Levitin. On a new class of codes for identifying vertices in graphs. *Information Theory*, *IEEE Transactions on*, 44(2):599–611, 1998.
- [10] L. Kim and S. Kim. Identifying codes in q-ary hypercubes. Bulletin of the Institute of Combinatorics and its Applications, 59:93–102, 2010.

[11] T. Laihonen and J. Moncel. On graphs admitting codes identifying sets of vertices. Australas. J. Comb., 41:81–91, 2008.