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Abstract. Let G = (V,E) be a simple, finite, and undirected graph,
and let C ⊆ V (G). If for each vertex u ∈ V (G), the intersection of
C with the closed neighborhood of u are all nonempty and distinct,
then we say that C is an identifying code (or ID code, for short).
The minimum cardinality of an ID code of G is denoted by γID(G).
In this paper, we present sharp lower and upper bounds for γID in
the complementary prism graphs and give closed formulas for the
minimum ID code of the complementary prism of both the complete
split and complete bipartite graphs.
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1 Introduction

We consider finite, simple, and undirected graphs and use standard
notation and terminology. For a graph G, the vertex set and the edge
set are denoted V (G) and E(G), respectively. For a vertex u of G, the
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neighborhood, and the closed neighborhood are denoted NG(u) and NG[u],
respectively.

Let C ⊆ V (G). We say that C is a dominating set if, for each vertex
u ∈ V (G), C ∩N [u] ̸= ∅. A vertex u of C is said to dominate vertex v if
either u = v, or u is adjacent to v. Two vertices u, v are separated by C

if N [u] ∩ C ̸= N [v] ∩ C; set C is a separating set if every pair of distinct
vertices of V (G) are separated by C. A subset C ⊆ V (G) is an identifying
code (ID code, for short) if C is both a dominating set and a separating
set of G. Note that a graph has an identifying code if and only if no two
vertices have the same closed neighborhood. The ID code number of a
graph G is the minimum cardinality of an ID code of G and is denoted
γID(G). See, for example, the graph in Figure 2.1, where an ID code of
the graph is represented by the black vertices.

ID codes were first introduced by Karpovsky et al. [9], where the au-
thors relate the problem to fault diagnosis of multiprocessor systems. ID
codes have been widely studied, and a detailed list of references on this
subject can be found on Jean’s webpage [8].

From a computational point of view, finding identifying codes of min-
imum cardinality has been proved to be NP-hard [3]. Therefore, it is
natural that many researchers have restricted their study of identifying
codes in some specific classes of graphs such as trees [1], cycles [4], and hy-
percubes [10, 7], for instance. ID Codes were also considered in some graph
products, such as Cartesian products [11] and complementary prisms [2].
A concept similar to ID codes, called locating-dominating sets, was also
studied in the complementary prisms [5, 6].

In this paper, we consider identifying codes in complementary prisms.
We present sharp lower and upper bounds for γID in these graphs and give
closed formulas for the minimum ID code of the complementary prism of
both the complete split and complete bipartite graphs.
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2 Definitions and preliminary results

For a subset S ⊆ V (G), we denote NG[S] the set
⋃

u∈S NG[u]. Given
two sets A and B, we denote by A △ B their symmetric difference, i.e.,
the set of elements belonging to A or B, but not to both. We denote as
Cn and Kn, the cycle and the complete graph, respectively, on n vertices.

A graph G = (K ∪ S,E) is a split graph if its vertex set can be par-
titioned into a clique K and an independent set S. Moreover, if G is a
split graph and each vertex of the clique is adjacent to each vertex of the
independent set, then G is called a complete split graph.

The complementary prism GG of G is the graph formed from the dis-
joint union of G and the complement G by adding the edges of a perfect
matching between the corresponding vertices (same label) of G and G.
Here, we use the following notation: for a set X ⊆ V (G), let X represent
the corresponding set of vertices in V (G). For a vertex v ∈ V (G), let v be
the corresponding vertex in V (G).

V (C5)

V (C5)

Figure 2.1: Petersen Graph, the complementary prism of C5.

Not all graphs admit an ID code. If u, v ∈ V (G) are such that NG[u] =

NG[v], then u and v are called twins. A graph is identifiable if and only if
it does not have twin vertices. If NG(u) = NG(v), they are false twins.

The next two lemmas determine some vertices that must be in an ID
code of G. Their proofs are omitted.

Lemma 2.1. Let G = (V,E) be an identifiable graph, C an identifying
code of G, and let K be the set of vertices that are mutually false twins.
Then, |K ∩ C| ≥ |K| − 1.
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Lemma 2.2. Let G be an identifiable graph, and let C be an identifying
code of G. If there exists a set of vertices K ⊆ V (G) such that K induces
a complete graph on n vertices, then |(NG[K] \K) ∩ C| ≥ n− 1.

The following result provides a sharp logarithmic lower bound on the
size of an ID code of any graph G, if G has such a set.

Theorem 2.3. [9] Let G be an identifiable graph on n vertices. Then,
γID(G) ≥ ⌈log2(n+ 1)⌉.

3 Results on Complementary Prisms

In this section, we present our results on identifying codes in comple-
mentary prisms. We begin proving that for any graph G with at least two
vertices, GG is identifiable.

Theorem 3.1. Let G be a graph with order n. The graph GG is identifiable
if and only if n ≥ 2.

Proof. If G is a trivial graph, then, GG is a complete graph on 2 vertices
and it is not identifiable. Therefore, if GG is identifiable, then n ≥ 2.

For the converse, suppose that G is a graph on n ≥ 2 vertices. Then, for
any two vertices u, v ∈ V (G) in GG, we have {u, v} ⊆ (NGG[u]△NGG[v]),
where u ∈ NGG[u] and v ∈ NGG[v]. Analogously, the same is true for any
two vertices u, v ∈ V (G) of GG.

Now consider two vertices u ∈ V (G) and v ∈ V (G) of GG. If u ̸= v,
these two vertices are not adjacent and NGG[u] ̸= NGG[v]. If u = v, since
n ≥ 2, there is at least one vertex that is adjacent to only one of these
vertices, by the construction of GG. Hence, for any two vertices u, v ∈
V (GG), we have NGG[u] ̸= NGG[v] and, therefore, GG is identifiable.

Our next result is an upper bound for γID(GG), given that G is con-
nected and identifiable with order n ≥ 3.

Theorem 3.2. Let G be a connected and identifiable graph on n ≥ 3

vertices. Then V (G) is an identifying code of GG and γID(GG) ≤ n.
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Proof. Since G is an identifiable graph, it follows that V (G) is an identi-
fying code of G. From Theorem 3.1, we know GG is an identifiable graph.
We shall prove that V (G) is also an identifying code of GG. Let C = V (G).
The set C dominates V (GG) and it separates all vertices of G in GG. In
addition, for any vertex u ∈ V (G) in GG, we have NGG[u] ∩ C = {u}.
Since G has no isolated vertices, NGG[u]∩C ̸= {u}. Thus C separates all
vertices of G in GG.

Now, we show that C separates each vertex in V (G) from each vertex
in V (G). We know that NGG[v] ∩ C = NG[v] ∩ C = NG[v] and, since G

is connected and has at least 3 vertices, then NG[v] ≥ 2. Thus, (NGG[v]∩
C) ̸= (NGG[v]∩C). Furthermore, if u ∈ V (G), v ∈ V (G) with u ̸= v, then
(NGG[u] ∩ C) ̸= (NGG[v] ∩ C).

We define some sets we shall use in the following results. Let S be an
ID code of GG with S1 = S ∩ V (G) and S2 = S ∩ V (G). Let S2 be the
set of corresponding vertices of S2 in V (G), S1 be the set of corresponding
vertices of S1 in V (G), D be the set V (G) \ (S1 ∪ S2) and D be the
corresponding vertices of D in V (G), with S1 ∩S2 = X and |X| = x. The
reader is referred to Figure 3.1.

. . . . . . . . . . . .

. . . . . . . . . . . .

V (G)

V (G)

S2

X

S1

D

Figure 3.1: An illustration of the sets S1, S2, X and D where S1 ∪ S2 is
an ID code of GG. The edges of G and G were omitted.

The next two lemmas provide bounds on the size of the subset D =

V (G)\ (S1∪S2) of GG, considering that S = S1∪S2 is an ID code of GG.

Lemma 3.3. Let G be a graph of order n ≥ 3 and S an ID code of GG.
If x = 0, then n− |S1| − |S2| ⩽ 2r − r − 1, where r = min{|S1|, |S2|}.
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Proof. The vertices in S2 are separated by vertices in S1∪S2. By construc-
tion, NGG(D∪S1)∩S2 = ∅. For every distinct pair u, v ∈ S, we have that
(NG[u]∩S1) ̸= (NG[v]∩S1). So, the size of D∪S1 is bounded by the number
of nonempty subsets of S1. So we can conclude that |D|+ |S1| ≤ 2|S1|− 1,
which implies |D| ≤ 2|S1| − |S1| − 1. Analogously, |D| ≤ 2|S2| − |S2| − 1.
Since |D| = |D| and r = min{|S1|, |S2|}, it follows that |D| = n−|S1|−|S2|
is bounded by 2r − r − 1.

Lemma 3.4. Let G be a graph of order n ≥ 3 and S an ID code of GG.
If x ̸= 0, then n− |S1 ∪ S2| ⩽ 2r − r + x− 2, where r = min{|S1|, |S2|}.

Proof. The vertices in X∪S2 are separated by S1∪S2. The vertices in (S1\
X)∪D are separated by vertices in S1. By construction, NGG(D)∩S2 = ∅.
For every distinct pair u, v ∈ S, we have that (NG[u]∩S1) ̸= (NG[v]∩S1).
So, the size of D∪ (S1 \X) is bounded by the number of nonempty proper
subsets of S1 (in case that X = S1, if a vertex in D is adjacent to all vertices
in S1, then the corresponding vertex in G has no neighbor in S2, and it is
not dominated by S). Hence, we can conclude that |D∪(S1\X)| ≤ 2|S1|−2,
which implies |D| ≤ 2|S1|−|S1|+x−2. Analogously, |D| ≤ 2|S2|−|S2|+x−2.
Since |D| = |D| and r = min{|S1|, |S2|}, it follows that |D| = n−|S1∪S2|
is bounded by 2r − r + x− 2.

The bound presented in Theorem 2.3 is now sharpened for complemen-
tary prism graphs.

Theorem 3.5. Let G be a graph of order n ≥ 4 and S an ID code of GG.
Then, |S| ≥ 2⌈log2(n+ 1)⌉ − 2.

Proof. Assume |S1| = k1 and |S2| = k2. We consider the cases where (i)
x = 0 and, and (ii) x ̸= 0. By symmetry, for each of (i) and (ii), we can
assume that k1 ≤ k2.

Case (i): By Lemma 3.3, |D| = n − k1 − k2 ≤ 2k1 − k1 − 1. Thus
n ≤ 2k1 − k1 − 1+ k1 + k2 = 2k1 + k2 − 1. If k2 ≤ 2k1 , then n ≤ 2k1+1 − 1,
which implies k1 ≥ log2(n + 1) − 1. If 2k1 ≤ k2, then n ≤ 2k2 − 1, which
implies k2 ≥ log2(k2) ≥ log2(n+ 1)− 1.



148 J. Felix and M. Cappelle

Case (ii): By Lemma 3.4, |D| = n− (k1 + k2 − x) ≤ 2k1 − k1 + x− 2.
Thus n ≤ 2k1 − k1 + x − 2 + k1 + k2 − x = 2k1 + k2 − 2. If k2 ≤ 2k1 ,
then n ≤ 2k1+1 − 2, which implies k1 ≥ log2(n+ 1)− 2. If 2k1 ≤ k2, then
n ≤ 2k2 − 2, which implies k2 ≥ log2(k2) ≥ log2(n+ 1)− 2.

By Cases (i) and (ii), and since k1 and k2 are both integers, we can
conclude that |S| = k1 + k2 ≥ 2⌈log2(n+ 1)⌉ − 2.

V (G)

V (G)

1 2 3

4 5 6

{1, 2} {1, 2, 3} {2, 3} {1, 4} {2, 5} {3, 6} {1} {2} {3} {1, 3}

{1, 5, 6}{2, 4, 6}{3, 4, 5} {4, 5} {4, 5, 6} {5, 6} {4} {5} {6} {4, 6}

Figure 3.2: S = {1, 2, 3, 4, 5, 6} is an ID code of GG. The set in each vertex
v is NGG[v] ∩ S. For simplicity, most of edges of G and G were omitted.

The lower bound in Theorem 3.5 is sharp. Let GG be the infinite
family of graphs where the order of G is n = 2p + p − 1, with p ≥ 2. We
do |S1| = |S2| = p and |S| = 2p. Thus, |D| = n − |S| = 2p − p − 1. An
illustration for the case p = 3 can be seen in Figure 3.2. From Theorems 3.2
and 3.5, we conclude the following result.

Corollary 3.6. If G is a connected and identifiable graph on n ≥ 3 ver-
tices, then 2⌈log2(n+1)⌉−2 ≤ γID(GG) ≤ n, and these bounds are sharp.

Observe that the upper bound in Corollary 3.6 is not valid for γID(GG)

when G is not an identifiable graph. For instance, γID(KnKn) = n+1. In
the next result, we consider ID codes in complete bipartite graphs, which
attain the upper bound of Corollary 3.6.

Theorem 3.7. Let G = Kr,s be a complete bipartite graph, with r, s ≥ 3

and n = r + s. Then, γID(GG) = n.

Proof. Let V (G) = (A ∪ B) with A = {u1, . . . , ur} and B = {v1, . . . , vs}.
Let C be a minimum ID Code of G.
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The set A induces a complete subgraph on r vertices and, according
to Lemma 2.2, |(NGG[A] \ A) ∩ C| ≥ (r − 1). Since (NGG[A] \ A) = A,
then |A ∩ C| ≥ (r − 1). Suppose that |A ∩ C| = r − 1. Since one of
the vertices of A, for instance, ui does not belong to C, then ui must
belong to C or it must be adjacent to a vertex that belongs to C so that
C dominates all vertices of A. Hence, |(A ∪ A) ∩ C| ≥ r. Analogously,
|(B ∪ B) ∩ C| ≥ s. Thus, γID(GG) ≥ r + s. However, by Theorem 3.2,
C = (A ∪ B) is an identifying code of GG with r + s vertices. Hence,
γID(GG) = r + s = n.

Finally, we consider the complementary prism of complete split graphs.
A complete split graph G = (K ∪ S,E) with |K| ≥ 2 is not identifiable.
This fact, however, changes when we analyze their complementary prisms.

Theorem 3.8. Let G = (K ∪ S,E) be a complete split graph, |K| =

k, |S| = s, with k, s ≥ 2 and n = k + s. Then, γID(GG) = n.

Proof. Let K = {u1, . . . , uk} and S = {v1, . . . , vs}. Let C be an ID code
in G. We know that (NGG[S] \ S) = S. The set S induces a complete
subgraph and, by Lemma 2.2, we have |(S∩C)| ≥ s−1. However, if C is an
ID code and |S∩C| = s−1, then there exists a vertex vi ∈ C, otherwise vi

would not be dominated. Therefore, |(S∪S)∩C| ≥ s. Moreover, given two
distinct vertices ui, uj ∈ VGG(K), we have NGG[ui]△NGG[uj ] = {ui, uj}
and, therefore, |K∩C| ≥ k−1. However, if |K∩C| = k−1, then there exists
a vertex ui ∈ C, otherwise ui is not dominated. Hence, |(K ∪K)∩C| ≥ k.
Therefore, |C| ≥ k + s. The set C = {u1} ∪ {u2, . . . , uk} ∪ {v1, . . . , vs} is
an ID code in GG of cardinality k + s = n.

An open question is whether finding minimum ID Codes in comple-
mentary prisms remains NP-hard.
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