Matemática
 Contemporânea

On Identifying Codes in Complementary Prisms

Juliana Felix (iD1 and Márcia Cappelle (iD)
${ }^{1}$ Instituto de Informática, Universidade Federal de Goiás, Goiânia, Brazil

Dedicated to Professor Jayme Szwarcfiter on the occasion of his 80th birthday

Abstract

Let $G=(V, E)$ be a simple, finite, and undirected graph, and let $C \subseteq V(G)$. If for each vertex $u \in V(G)$, the intersection of C with the closed neighborhood of u are all nonempty and distinct, then we say that C is an identifying code (or ID code, for short). The minimum cardinality of an ID code of G is denoted by $\gamma^{I D}(G)$. In this paper, we present sharp lower and upper bounds for $\gamma^{I D}$ in the complementary prism graphs and give closed formulas for the minimum ID code of the complementary prism of both the complete split and complete bipartite graphs.

Keywords: identifying codes, complementary prisms.
2020 Mathematics Subject Classification: 05C69, 05C76.

1 Introduction

We consider finite, simple, and undirected graphs and use standard notation and terminology. For a graph G, the vertex set and the edge set are denoted $V(G)$ and $E(G)$, respectively. For a vertex u of G, the
neighborhood, and the closed neighborhood are denoted $N_{G}(u)$ and $N_{G}[u]$, respectively.

Let $C \subseteq V(G)$. We say that C is a dominating set if, for each vertex $u \in V(G), C \cap N[u] \neq \emptyset$. A vertex u of C is said to dominate vertex v if either $u=v$, or u is adjacent to v. Two vertices u, v are separated by C if $N[u] \cap C \neq N[v] \cap C$; set C is a separating set if every pair of distinct vertices of $V(G)$ are separated by C. A subset $C \subseteq V(G)$ is an identifying code (ID code, for short) if C is both a dominating set and a separating set of G. Note that a graph has an identifying code if and only if no two vertices have the same closed neighborhood. The ID code number of a graph G is the minimum cardinality of an ID code of G and is denoted $\gamma^{I D}(G)$. See, for example, the graph in Figure 2.1, where an ID code of the graph is represented by the black vertices.

ID codes were first introduced by Karpovsky et al. [9], where the authors relate the problem to fault diagnosis of multiprocessor systems. ID codes have been widely studied, and a detailed list of references on this subject can be found on Jean's webpage [8].

From a computational point of view, finding identifying codes of minimum cardinality has been proved to be NP-hard [3]. Therefore, it is natural that many researchers have restricted their study of identifying codes in some specific classes of graphs such as trees [1], cycles [4], and hypercubes [10, 7], for instance. ID Codes were also considered in some graph products, such as Cartesian products [11] and complementary prisms [2]. A concept similar to ID codes, called locating-dominating sets, was also studied in the complementary prisms [5, 6].

In this paper, we consider identifying codes in complementary prisms. We present sharp lower and upper bounds for $\gamma^{I D}$ in these graphs and give closed formulas for the minimum ID code of the complementary prism of both the complete split and complete bipartite graphs.

2 Definitions and preliminary results

For a subset $S \subseteq V(G)$, we denote $N_{G}[S]$ the set $\bigcup_{u \in S} N_{G}[u]$. Given two sets A and B, we denote by $A \triangle B$ their symmetric difference, i.e., the set of elements belonging to A or B, but not to both. We denote as C_{n} and K_{n}, the cycle and the complete graph, respectively, on n vertices.

A graph $G=(K \cup S, E)$ is a split graph if its vertex set can be partitioned into a clique K and an independent set S. Moreover, if G is a split graph and each vertex of the clique is adjacent to each vertex of the independent set, then G is called a complete split graph.

The complementary prism $G \bar{G}$ of G is the graph formed from the disjoint union of G and the complement \bar{G} by adding the edges of a perfect matching between the corresponding vertices (same label) of G and \bar{G}. Here, we use the following notation: for a set $X \subseteq V(G)$, let \bar{X} represent the corresponding set of vertices in $V(\bar{G})$. For a vertex $v \in V(G)$, let \bar{v} be the corresponding vertex in $V(\bar{G})$.

Figure 2.1: Petersen Graph, the complementary prism of C_{5}.

Not all graphs admit an ID code. If $u, v \in V(G)$ are such that $N_{G}[u]=$ $N_{G}[v]$, then u and v are called twins. A graph is identifiable if and only if it does not have twin vertices. If $N_{G}(u)=N_{G}(v)$, they are false twins.

The next two lemmas determine some vertices that must be in an ID code of G. Their proofs are omitted.

Lemma 2.1. Let $G=(V, E)$ be an identifiable graph, C an identifying code of G, and let K be the set of vertices that are mutually false twins. Then, $|K \cap C| \geq|K|-1$.

Lemma 2.2. Let G be an identifiable graph, and let C be an identifying code of G. If there exists a set of vertices $K \subseteq V(G)$ such that K induces a complete graph on n vertices, then $\left|\left(N_{G}[K] \backslash K\right) \cap C\right| \geq n-1$.

The following result provides a sharp logarithmic lower bound on the size of an ID code of any graph G, if G has such a set.

Theorem 2.3. [9] Let G be an identifiable graph on n vertices. Then, $\gamma^{I D}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil$.

3 Results on Complementary Prisms

In this section, we present our results on identifying codes in complementary prisms. We begin proving that for any graph G with at least two vertices, $G \bar{G}$ is identifiable.

Theorem 3.1. Let G be a graph with order n. The graph $G \bar{G}$ is identifiable if and only if $n \geq 2$.

Proof. If G is a trivial graph, then, $G \bar{G}$ is a complete graph on 2 vertices and it is not identifiable. Therefore, if $G \bar{G}$ is identifiable, then $n \geq 2$.

For the converse, suppose that G is a graph on $n \geq 2$ vertices. Then, for any two vertices $\bar{u}, \bar{v} \in V(\bar{G})$ in $G \bar{G}$, we have $\{u, v\} \subseteq\left(N_{G \bar{G}}[\bar{u}] \triangle N_{G \bar{G}}[\bar{v}]\right)$, where $u \in N_{G \bar{G}}[\bar{u}]$ and $v \in N_{G \bar{G}}[\bar{v}]$. Analogously, the same is true for any two vertices $u, v \in V(G)$ of $G \bar{G}$.

Now consider two vertices $u \in V(G)$ and $\bar{v} \in V(\bar{G})$ of $G \bar{G}$. If $u \neq v$, these two vertices are not adjacent and $N_{G \bar{G}}[u] \neq N_{G \bar{G}}[\bar{v}]$. If $u=v$, since $n \geq 2$, there is at least one vertex that is adjacent to only one of these vertices, by the construction of $G \bar{G}$. Hence, for any two vertices $u, v \in$ $V(G \bar{G})$, we have $N_{G \bar{G}}[u] \neq N_{G \bar{G}}[v]$ and, therefore, $G \bar{G}$ is identifiable.

Our next result is an upper bound for $\gamma^{I D}(G \bar{G})$, given that G is connected and identifiable with order $n \geq 3$.

Theorem 3.2. Let G be a connected and identifiable graph on $n \geq 3$ vertices. Then $V(G)$ is an identifying code of $G \bar{G}$ and $\gamma^{I D}(G \bar{G}) \leq n$.

Proof. Since G is an identifiable graph, it follows that $V(G)$ is an identifying code of G. From Theorem 3.1, we know $G \bar{G}$ is an identifiable graph. We shall prove that $V(G)$ is also an identifying code of $G \bar{G}$. Let $C=V(G)$. The set C dominates $V(G \bar{G})$ and it separates all vertices of G in $G \bar{G}$. In addition, for any vertex $\bar{u} \in V(\bar{G})$ in $G \bar{G}$, we have $N_{G \bar{G}}[\bar{u}] \cap C=\{u\}$. Since G has no isolated vertices, $N_{G \bar{G}}[u] \cap C \neq\{u\}$. Thus C separates all vertices of \bar{G} in $G \bar{G}$.

Now, we show that C separates each vertex in $V(G)$ from each vertex in $V(\bar{G})$. We know that $N_{G \bar{G}}[v] \cap C=N_{G}[v] \cap C=N_{G}[v]$ and, since G is connected and has at least 3 vertices, then $N_{G}[v] \geq 2$. Thus, $\left(N_{G \bar{G}}[v] \cap\right.$ $C) \neq\left(N_{G \bar{G}}[\bar{v}] \cap C\right)$. Furthermore, if $u \in V(G), \bar{v} \in V(\bar{G})$ with $u \neq v$, then $\left(N_{G \bar{G}}[u] \cap C\right) \neq\left(N_{G \bar{G}}[\bar{v}] \cap C\right)$.

We define some sets we shall use in the following results. Let S be an ID code of $G \bar{G}$ with $S_{1}=S \cap V(G)$ and $\overline{S_{2}}=S \cap V(\bar{G})$. Let S_{2} be the set of corresponding vertices of $\overline{S_{2}}$ in $V(G), \bar{S}_{1}$ be the set of corresponding vertices of S_{1} in $V(\bar{G}), D$ be the set $V(G) \backslash\left(S_{1} \cup S_{2}\right)$ and \bar{D} be the corresponding vertices of D in $V(\bar{G})$, with $S_{1} \cap S_{2}=X$ and $|X|=x$. The reader is referred to Figure 3.1.

Figure 3.1: An illustration of the sets $S_{1}, \overline{S_{2}}, X$ and D where $S_{1} \cup \overline{S_{2}}$ is an ID code of $G \bar{G}$. The edges of G and \bar{G} were omitted.

The next two lemmas provide bounds on the size of the subset $D=$ $V(G) \backslash\left(S_{1} \cup S_{2}\right)$ of $G \bar{G}$, considering that $S=S_{1} \cup \overline{S_{2}}$ is an ID code of $G \bar{G}$.

Lemma 3.3. Let G be a graph of order $n \geq 3$ and S an ID code of $G \bar{G}$. If $x=0$, then $n-\left|S_{1}\right|-\left|\overline{S_{2}}\right| \leqslant 2^{r}-r-1$, where $r=\min \left\{\left|S_{1}\right|,\left|\overline{S_{2}}\right|\right\}$.

Proof. The vertices in S_{2} are separated by vertices in $S_{1} \cup \overline{S_{2}}$. By construction, $N_{G \bar{G}}\left(D \cup S_{1}\right) \cap \overline{S_{2}}=\emptyset$. For every distinct pair $u, v \in S$, we have that $\left(N_{G}[u] \cap S_{1}\right) \neq\left(N_{G}[v] \cap S_{1}\right)$. So, the size of $D \cup S_{1}$ is bounded by the number of nonempty subsets of S_{1}. So we can conclude that $|D|+\left|S_{1}\right| \leq 2^{\left|S_{1}\right|}-1$, which implies $|D| \leq 2^{\left|S_{1}\right|}-\left|S_{1}\right|-1$. Analogously, $|\bar{D}| \leq 2^{\left|\overline{S_{2}}\right|}-\left|\overline{S_{2}}\right|-1$. Since $|D|=|\bar{D}|$ and $r=\min \left\{\left|S_{1}\right|,\left|\overline{S_{2}}\right|\right\}$, it follows that $|D|=n-\left|S_{1}\right|-\left|\overline{S_{2}}\right|$ is bounded by $2^{r}-r-1$.

Lemma 3.4. Let G be a graph of order $n \geq 3$ and S an ID code of $G \bar{G}$. If $x \neq 0$, then $n-\left|S_{1} \cup S_{2}\right| \leqslant 2^{r}-r+x-2$, where $r=\min \left\{\left|S_{1}\right|,\left|\overline{S_{2}}\right|\right\}$.

Proof. The vertices in $X \cup S_{2}$ are separated by $S_{1} \cup \overline{S_{2}}$. The vertices in $\left(S_{1} \backslash\right.$ $X) \cup D$ are separated by vertices in S_{1}. By construction, $N_{G \bar{G}}(D) \cap \overline{S_{2}}=\emptyset$. For every distinct pair $u, v \in S$, we have that $\left(N_{G}[u] \cap S_{1}\right) \neq\left(N_{G}[v] \cap S_{1}\right)$. So, the size of $D \cup\left(S_{1} \backslash X\right)$ is bounded by the number of nonempty proper subsets of S_{1} (in case that $X=S_{1}$, if a vertex in D is adjacent to all vertices in S_{1}, then the corresponding vertex in \bar{G} has no neighbor in $\overline{S_{2}}$, and it is not dominated by S). Hence, we can conclude that $\left|D \cup\left(S_{1} \backslash X\right)\right| \leq 2^{\left|S_{1}\right|}-2$, which implies $|D| \leq 2^{\left|S_{1}\right|}-\left|S_{1}\right|+x-2$. Analogously, $|\bar{D}| \leq 2^{\left|\overline{S_{2}}\right|}-\left|\overline{S_{2}}\right|+x-2$. Since $|D|=|\bar{D}|$ and $r=\min \left\{\left|S_{1}\right|,\left|\overline{S_{2}}\right|\right\}$, it follows that $|D|=n-\left|S_{1} \cup S_{2}\right|$ is bounded by $2^{r}-r+x-2$.

The bound presented in Theorem 2.3 is now sharpened for complementary prism graphs.

Theorem 3.5. Let G be a graph of order $n \geq 4$ and S an ID code of $G \bar{G}$. Then, $|S| \geq 2\left\lceil\log _{2}(n+1)\right\rceil-2$.

Proof. Assume $\left|S_{1}\right|=k_{1}$ and $\left|\overline{S_{2}}\right|=k_{2}$. We consider the cases where (i) $x=0$ and, and (ii) $x \neq 0$. By symmetry, for each of (i) and (ii), we can assume that $k_{1} \leq k_{2}$.

Case (i): By Lemma 3.3, $|D|=n-k_{1}-k_{2} \leq 2^{k_{1}}-k_{1}-1$. Thus $n \leq 2^{k_{1}}-k_{1}-1+k_{1}+k_{2}=2^{k_{1}}+k_{2}-1$. If $k_{2} \leq 2^{k_{1}}$, then $n \leq 2^{k_{1}+1}-1$, which implies $k_{1} \geq \log _{2}(n+1)-1$. If $2^{k_{1}} \leq k_{2}$, then $n \leq 2 k_{2}-1$, which implies $k_{2} \geq \log _{2}\left(k_{2}\right) \geq \log _{2}(n+1)-1$.

Case (ii): By Lemma 3.4, $|D|=n-\left(k_{1}+k_{2}-x\right) \leq 2^{k_{1}}-k_{1}+x-2$. Thus $n \leq 2^{k_{1}}-k_{1}+x-2+k_{1}+k_{2}-x=2^{k_{1}}+k_{2}-2$. If $k_{2} \leq 2^{k_{1}}$, then $n \leq 2^{k_{1}+1}-2$, which implies $k_{1} \geq \log _{2}(n+1)-2$. If $2^{k_{1}} \leq k_{2}$, then $n \leq 2 k_{2}-2$, which implies $k_{2} \geq \log _{2}\left(k_{2}\right) \geq \log _{2}(n+1)-2$.

By Cases (i) and (ii), and since k_{1} and k_{2} are both integers, we can conclude that $|S|=k_{1}+k_{2} \geq 2\left\lceil\log _{2}(n+1)\right\rceil-2$.

Figure 3.2: $S=\{1,2,3,4,5,6\}$ is an ID code of $G \bar{G}$. The set in each vertex v is $N_{G \bar{G}}[v] \cap S$. For simplicity, most of edges of G and \bar{G} were omitted.

The lower bound in Theorem 3.5 is sharp. Let $G \bar{G}$ be the infinite family of graphs where the order of G is $n=2^{p}+p-1$, with $p \geq 2$. We do $\left|S_{1}\right|=\left|\overline{S_{2}}\right|=p$ and $|S|=2 p$. Thus, $|D|=n-|S|=2^{p}-p-1$. An illustration for the case $p=3$ can be seen in Figure 3.2. From Theorems 3.2 and 3.5 , we conclude the following result.

Corollary 3.6. If G is a connected and identifiable graph on $n \geq 3$ vertices, then $2\left\lceil\log _{2}(n+1)\right\rceil-2 \leq \gamma^{I D}(G \bar{G}) \leq n$, and these bounds are sharp.

Observe that the upper bound in Corollary 3.6 is not valid for $\gamma^{I D}(G \bar{G})$ when G is not an identifiable graph. For instance, $\gamma^{I D}\left(K_{n} \overline{K_{n}}\right)=n+1$. In the next result, we consider ID codes in complete bipartite graphs, which attain the upper bound of Corollary 3.6.

Theorem 3.7. Let $G=K_{r, s}$ be a complete bipartite graph, with $r, s \geq 3$ and $n=r+s$. Then, $\gamma^{I D}(G \bar{G})=n$.

Proof. Let $V(G)=(A \cup B)$ with $A=\left\{u_{1}, \ldots, u_{r}\right\}$ and $B=\left\{v_{1}, \ldots, v_{s}\right\}$. Let C be a minimum ID Code of G.

The set \bar{A} induces a complete subgraph on r vertices and, according to Lemma 2.2, $\left|\left(N_{G \bar{G}}[\bar{A}] \backslash \bar{A}\right) \cap C\right| \geq(r-1)$. Since $\left(N_{G \bar{G}}[\bar{A}] \backslash \bar{A}\right)=A$, then $|A \cap C| \geq(r-1)$. Suppose that $|A \cap C|=r-1$. Since one of the vertices of A, for instance, u_{i} does not belong to C, then \bar{u}_{i} must belong to C or it must be adjacent to a vertex that belongs to C so that C dominates all vertices of \bar{A}. Hence, $|(A \cup \bar{A}) \cap C| \geq r$. Analogously, $|(B \cup \bar{B}) \cap C| \geq s$. Thus, $\gamma^{I D}(G \bar{G}) \geq r+s$. However, by Theorem 3.2, $C=(A \cup B)$ is an identifying code of $G \bar{G}$ with $r+s$ vertices. Hence, $\gamma^{I D}(G \bar{G})=r+s=n$.

Finally, we consider the complementary prism of complete split graphs. A complete split graph $G=(K \cup S, E)$ with $|K| \geq 2$ is not identifiable. This fact, however, changes when we analyze their complementary prisms.

Theorem 3.8. Let $G=(K \cup S, E)$ be a complete split graph, $|K|=$ $k,|S|=s$, with $k, s \geq 2$ and $n=k+s$. Then, $\gamma^{I D}(G \bar{G})=n$.

Proof. Let $K=\left\{u_{1}, \ldots, u_{k}\right\}$ and $S=\left\{v_{1}, \ldots, v_{s}\right\}$. Let C be an ID code in G. We know that $\left(N_{G \bar{G}}[\bar{S}] \backslash \bar{S}\right)=S$. The set \bar{S} induces a complete subgraph and, by Lemma 2.2, we have $|(S \cap C)| \geq s-1$. However, if C is an ID code and $|S \cap C|=s-1$, then there exists a vertex $\overline{v_{i}} \in C$, otherwise $\overline{v_{i}}$ would not be dominated. Therefore, $|(S \cup \bar{S}) \cap C| \geq s$. Moreover, given two distinct vertices $u_{i}, u_{j} \in V_{G \bar{G}}(K)$, we have $N_{G \bar{G}}\left[u_{i}\right] \triangle N_{G \bar{G}}\left[u_{j}\right]=\left\{\bar{u}_{i}, \bar{u}_{j}\right\}$ and, therefore, $|\bar{K} \cap C| \geq k-1$. However, if $|\bar{K} \cap C|=k-1$, then there exists a vertex $u_{i} \in C$, otherwise $\overline{u_{i}}$ is not dominated. Hence, $|(K \cup \bar{K}) \cap C| \geq k$. Therefore, $|C| \geq k+s$. The set $C=\left\{u_{1}\right\} \cup\left\{\bar{u}_{2}, \ldots, \bar{u}_{k}\right\} \cup\left\{v_{1}, \ldots, v_{s}\right\}$ is an ID code in $G \bar{G}$ of cardinality $k+s=n$.

An open question is whether finding minimum ID Codes in complementary prisms remains NP-hard.

4 Acknowledgments

The authors thank CAPES and FAPEG for the financial support.

References

[1] N. Bertrand, I. Charon, O. Hudry, and A. Lobstein. 1-identifying codes on trees. Australas. J. Comb., 31:21-35, 2005.
[2] M. Cappelle, E. Coelho, H. Coelho, L. Penso, and D. Rautenbach. Identifying codes in the complementary prism of cycles. Electronic Notes in Theoretical Computer Science, 346:241-251, 2019.
[3] I. Charon, O. Hudry, and A. Lobstein. Minimizing the size of an identifying or locating-dominating code in a graph is np-hard. Theoretical Computer Science, 290(3):2109-2120, 2003.
[4] S. Gravier, J. Moncel, and A. Semri. Identifying codes of cycles. European Journal of Combinatorics, 27(5):767-776, 2006.
[5] T. W. Haynes, K. R. S. Holmes, D. R. Koessler, and L. Sewell. Locating-domination in complementary prisms of paths and cycles. Congressus Numerantium, 199:45-55, 2009.
[6] K. R. S. Holmes, D. R. Koessler, and T. W. Haynes. Locatingdomination in complementary prisms. Journal of Combinatorial Mathematics and Combinatorial Computing, 72:163-171, 2010.
[7] S. Janson and T. Laihonen. On the size of identifying codes in binary hypercubes. J. Comb. Theory Ser. A., 116(5):1087-1096, 2009.
[8] D. Jean. Watching systems, identifying, locating-dominating and discriminating codes in graphs. https://dragazo.github.io/bibdom/ main.pdf, 2023. Last accessed on: April 05, 2023.
[9] M. Karpovsky, K. Chakrabarty, and L. Levitin. On a new class of codes for identifying vertices in graphs. Information Theory, IEEE Transactions on, 44(2):599-611, 1998.
[10] L. Kim and S. Kim. Identifying codes in q-ary hypercubes. Bulletin of the Institute of Combinatorics and its Applications, 59:93-102, 2010.
[11] T. Laihonen and J. Moncel. On graphs admitting codes identifying sets of vertices. Australas. J. Comb., 41:81-91, 2008.

