

Vol. 55, 133–141 http://doi.org/10.21711/231766362023/rmc5515

Faster computing of graph square roots with girth at least six

Cristopher Carcereri ^(D), Aleffer Rocha ^(D) and Renato Carmo ^(D)

Federal University of Paraná, R. Coronel Francisco Heráclito dos Santos 100, 81531-980, Curitiba, PR, Brazil

Dedicated to Professor Jayme Szwarcfiter on the occasion of his 80th birthday

Abstract. We consider the problem of finding a graph which is a square root of girth at least k of a graph G with n vertices and m edges, for $k \in \{6,7\}$. The best-known solutions for these problems are an $\mathcal{O}(\delta(G) \cdot n^4)$ algorithm for k = 6 and an $\mathcal{O}(m \cdot n^2)$ algorithm for k = 7. We show that it is possible to solve these problems in time $\mathcal{O}(\delta(G) \cdot n^2)$ for k = 6 and $\mathcal{O}(n^2)$ for k = 7.

 ${\bf Keywords:}\ {\rm graph}\ {\rm square}\ {\rm roots},\ {\rm cycle}\ {\rm detection},\ {\rm algorithm}\ {\rm complex-ity}$ ity

2020 Mathematics Subject Classification: 05C76, 68R10, 68W40.

1 Introduction

The square of a graph H is the graph H^2 obtained by adding to H edges joining all vertices at distance 2. We say that H is a square root of

Corresponding author: arocha@inf.ufpr.br

G if $G = H^2$. Not every graph has a square root. On the other hand, a graph can have several square roots.

The problem of deciding if a given graph has a square root is \mathcal{NP} complete [5]. The problem of computing a square root of a given graph is,
therefore, \mathcal{NP} -hard.

Given a graph class C, a related and relevant problem is, given a graph G, computing a square root of G belonging to C. This problem is called the C-square root problem.

Let \mathcal{G}_k denote the class of graphs of girth at least k. An interesting dichotomy exists with respect to the \mathcal{G}_k -square root problems, namely, the \mathcal{G}_k -square root problem is polynomially solvable if $k \geq 6$ and is \mathcal{NP} -hard otherwise [3–5].

Also, if there is a square root in \mathcal{G}_6 , it is unique up to isomorphism [1].

That \mathcal{G}_k -square root is polynomially solvable for $k \geq 6$ was proved in [3]. In doing so, the authors introduce an $\mathcal{O}(\delta(G) \cdot n^4)$ algorithm for \mathcal{G}_6 -square root (where $\delta(G)$ denotes the minimum degree in G) and an $\mathcal{O}(m \cdot n^2)$ algorithm for \mathcal{G}_7 -square root. Here we improve these algorithms showing that \mathcal{G}_6 -square root can be solved in time $\mathcal{O}(\delta(G) \cdot n^2)$ and that \mathcal{G}_7 -square root can be solved in time $\mathcal{O}(\delta(G) \cdot n^2)$

The text is organized as follows. Section 1.1 introduces some definitions and the notation used. Section 2 discusses the algorithm of [3] for \mathcal{G}_6 square root. Section 3 explains the modification proposed to the algorithm described in Section 2 and performs the correspondent analysis. Section 4 discusses our $\mathcal{O}(n^2)$ time algorithm for the \mathcal{G}_7 -square root problem.

1.1 Definitions and notation

A (simple) graph is a pair G = (V(G), E(G)) where V(G) is a finite set and $E(G) \subseteq \binom{V(G)}{2}$. Their elements are called *vertices* and *edges* of G, respectively. We follow the standard definitions for graph related concepts. As usual, we denote an edge $\{u, v\}$ by uv whenever possible. If v is a vertex of G, we denote its neighborhood in G by $N_G(v)$ and its closed neighborhood in G (that is $N_G(v) \cup \{v\}$) by $N_G[v]$. The distance between vertices u and v in G is denoted $d_G(u, v)$. The minimum degree of G is denoted $\delta(G)$. Cycles of length n are denoted by C_n . The square of a graph G is the graph G^2 where $V(G^2) = V(G)$ and $E(G^2) = \{uv : d_G(u, v) \leq 2\}$. A square root of G is a graph whose square is G.

As in Section 1, for each $k \geq 3$ we denote the class of graphs of girth at least k by \mathcal{G}_k and define the \mathcal{G}_k -square root problem as the problem of, given a graph G, compute a square root of G belonging to \mathcal{G}_k or determining that no such root exists.

2 Square roots with girth at least 6

Farzad et al. [3] show that it is possible to find a square root of girth at least 6 of a given graph or to determine that no such root exists in polynomial time. Their algorithm corresponds to the G_6 -Sqrt(G) procedure.

$G_6\operatorname{-Sqrt}(G)$
Input: a connected graph G with at least 3 vertices
Output: a square root of G with girth at least 6, if it exists; "Does Not
Compute", otherwise
$v \leftarrow a \min degree vertex of G$
For each $u \in N_G(v)$
$H \leftarrow G_{6}\text{-}SqrtEdge(G, uv)$
If $H eq$ "Does Not Compute"
Return H
Return "Does Not Compute"

Algorithm G_6 -Sqrt(G) and the following discussion assume that G is connected and has at least 3 vertices. The square of a graph is the union of the squares of its connected components, and every connected graph with less than 3 vertices is a square root of itself.

We refer the reader to [3] for a full discussion of the correctness of algorithm G_6 -Sqrt and limit ourselves to state the propositions upon which said correctness is based plus some brief comments.

Proposition 2.1 (Lemma 3.1 in [3]). Let H be a connected $\{C_3, C_5\}$ -free graph and let $G = H^2$. For all $v \in V(H)$ and all $u \in N_H(v)$,

$$N_H(u) = N_G(u) \cap (N_G[v] - N_H(v)).$$

Proposition 2.2 (Lemma 3.3 in [3]). Let H be a graph of girth at least 6, let $uv \in E(H)$ and let $G = H^2$. The graph $G[N_G(u) \cap N_G(v)]$ has at most 2 connected components. Moreover, if A and B are the vertex sets of these components (one of them may be empty), then (i) $A = N_H(u) - \{v\}$ and $B = N_H(v) - \{u\}$, or (ii) $B = N_H(u) - \{v\}$ and $A = N_H(v) - \{u\}$.

$G_6 ext{-}SqrtEdge(G,uv)$	
Input: a connected graph G with at least 3 vertices and an edge uv of G	
Output: a square root H of G with girth at least 6 such that	
$uv \in E(H)$, if it exists; "Does Not Compute", otherwise	
$K \leftarrow G[N_G(u) \cap N_G(v)]$	
If K has one or two components	
$A \leftarrow$ the vertex set of a (non-empty) component of K	
$H \leftarrow G_6\operatorname{-SqrtNgbh}(G, v, A \cup \{u\})$	
If $H eq$ "Does Not Compute"	
Return H	
Return G_6 -SqrtNgbh $(G, u, A \cup \{v\})$	
Return "Does Not Compute"	

Suppose H is a square root of G with girth at least 6. Proposition 2.2 tells us that if $uv \in E(H)$ and A is the vertex set of a component of $G[N_G(u) \cap N_G(v)]$, then¹ either (i) $N_H(u) = A \cup \{v\}$ or (ii) $N_H(v) =$ $A \cup \{u\}$. Besides, if the neighborhood in H of a vertex $x \in V(G)$ is known, Proposition 2.1 tells us how to compute the neighborhood in H of every vertex in $N_H(x)$. Besides, if the neighborhood in H of a vertex $x \in V(G)$ is known, Proposition 2.1 tells us how to compute the neighborhood in H of every vertex in $N_H(x)$.

Algorithm G_6 -Sqrt(G) chooses a minimum degree vertex $v \in V(G)$ and, for each $u \in N_G(v)$, calls G_6 -SqrtEdge(G, uv) trying to find a root of girth at least 6 of G containing this edge. Algorithm G_6 -SqrtEdge(G, uv)uses Proposition 2.2 to determine the possible neighborhood of u and v in

¹The algorithm in [3] also considers the possibilities that (i) $N_H(v) = B \cup \{u\}$ or (ii) $N_H(u) = B \cup \{u\}$. Note however that, by symmetry, we can consider either pair of conditions without loss of generality.

this root, and calls G_6 -SqrtNgbh for both cases. G_6 -SqrtNgbh(G, v, U) uses a BFS-like procedure that computes H if $N_H(v) = U$. As $N_H(v) \neq U$ may be the case, we need to check if the $\{C_3, C_5\}$ -free output by the algorithm is indeed a root of G. Also, to guarantee it has girth at least 6, we need to check if it is C_4 -free. Algorithm Check(G, H) tests these conditions: as H is $\{C_3, C_5\}$ -free, if it is also C_4 -free and $H^2 = G$, then it is a solution.

_

$G_6 ext{-SqrtNgbh}(G,v,U)$
Input: a connected graph G with at least 3 vertices, a vertex v of G and
a nonempty set $U \subseteq N_G(v)$
Output: a square root H of G with girth at least 6 such that
$N_H(v) = U$, if it exists; "Does Not Compute", otherwise
$Q \leftarrow \text{empty queue}$
$H \leftarrow \text{empty graph}$
For $each \ u \in V(G)$
$u. \mathrm{parent} \leftarrow NULL$
For $each \ u \in U$
add uv to H
add u to Q
$u. parent \leftarrow v$
While Q is not empty
remove a vertex u from Q
$X \leftarrow N_G[u.\text{parent}] - N_H(u.\text{parent})$
$W \leftarrow N_G(u) \cap X$
For each $w \in W$
add uw to H
If $w.parent = NULL$
add w to Q
$w. ext{parent} \leftarrow u$
Return $Check(G, H)$

The analysis in [3] concludes that if n = |V(G)|, then algorithm G_6 -Sqrt(G) runs in time $\mathcal{O}(\delta(G) \cdot n^4)$, where the $\mathcal{O}(n^4)$ term comes from the time needed for testing if H has a C_4 in algorithm $\mathsf{Check}(G, H)$. Moreover, their analysis considers that testing if $H^2 = G$ has the time complexity of multiplying two $n \times n$ matrices ($\mathcal{O}(n^{2.373})$) as of today [2]).

We show in Section 3 that it is possible to combine the test if a *n*-vertex graph is C_4 -free and the test if $H^2 = G$ in a single-time $\mathcal{O}(n^2)$ algorithm. The next result of these improvements is that computing a square root of girth at least 6 of an *n*-vertex graph G can be done in $\mathcal{O}(\delta(G) \cdot n^2)$ time.

Check(G,H)
Input: a graph G and a $\{C_3, C_5\}$ -free graph H
Output: H , if H is C_4 -free and a square root of G ; "Does Not
Compute", otherwise
If H has a C_4 Return "Does Not Compute"
If $H^2 \neq G$ Return "Does Not Compute"
Return H

3 Checking a solution

The following algorithm decides if a given *n*-vertex graph is C_4 -free in time $\mathcal{O}(n^2)$.

 $\begin{array}{c} \hline C_4 \text{-free}(H) \\ \hline \text{Input: a graph } H \\ \text{Output: yes, if } H \text{ is } C_4 \text{-free; no, otherwise} \\ M \leftarrow \text{a 0-initialized matrix indexed by } V(H) \times V(H) \\ \hline \text{For } each \; v \in V(H) \\ \hline \text{For } each \; uw \in \binom{N_H(v)}{2} \\ \text{If } M[u,w] = 1 \\ \hline \text{Return } no \\ M[u,w] \leftarrow M[w,u] \leftarrow 1 \\ \hline \text{Return } yes \end{array}$

Algorithm C_4 -free(H) is a sort of "folklore algorithm" (see, for example, [6]). Its idea is very simple: M[u, v] counts the number of common neighbors of vertices u and v. If the count exceeds 1, then there is a C_4 formed by u, v and the common neighbors and the algorithm returns **no**.

On the other hand, if the algorithm returns **yes** and H is also C_3 -free, then the matrix M computed by algorithm C_4 -free(H) is such that

M[u, v] = 1 if and only if $d_H(u, v) = 2$. In this case, the sum of M with the adjacency matrix H results in the adjacency matrix of H^2 .

We can substitute algorithm $\mathsf{Check}(G, H)$ by the following algorithm.

ImprovedCheck(G,H)
Input: a graph G and a $\{C_3, C_5\}$ -free graph H
Output: H , if H is C_4 -free and a square root of G ; "Does Not
Compute", otherwise
$M \leftarrow adjacency matrix of H$
For each $v \in V(G)$
For each $uw \in \binom{N_H(v)}{2}$
If $M[u,w]=1$
Return "Does Not Compute"
$M[u,w] \leftarrow M[w,u] \leftarrow 1$
If M is the adjacency matrix of G
Return H
Return "Does Not Compute"

4 Square roots with girth at least 7

In this section we introduce an $\mathcal{O}(n^2)$ algorithm for the \mathcal{G}_7 -square root problem. The algorithm is based on the following statement.

Proposition 4.1. Let H be a graph of girth at least 7 and let $G = H^2$. If $uv \in E(G)$ but $uv \notin E(H)$, then u and v have only one common neighbor w in H and $N_G[u] \cap N_G[v] = N_H[w]$.

Proof. Let H, G, u and v be as above. As $uv \in E(G) - E(H)$, there must be a neighbor w common to u and v in H. Besides, no other such common neighbor can exist or H would have a C_4 and its girth would not be 7. Every vertex in $N_H[w]$ has distance at most 2 from u and vin H, thus $N_H[w] \subseteq N_G[u] \cap N_G[v]$. If there was a vertex a in $(N_G[u] \cap$ $N_G[v]) - N_H[w]$, there would be a cycle of length $l \leq d_H(u, v) + d_H(v, a) +$ $d_H(a, u) = 6$ in H. Hence, $N_G[u] \cap N_G[v] \subseteq N_H[w]$ and, consequently, $N_G[u] \cap N_G[v] = N_H[w]$. **Corollary 4.2.** Let H be a graph of girth at least 7 so that $G = H^2$ is not complete, let v be a vertex with maximum degree in G and let u be a neighbor of v in G but not in H and let w be their common neighbor. Then, for every x in $N_H[w] - \{v\}$, we have that $N_G[v] \cap N_G[x] \neq N_H[w]$ if and only if x = w.

Proof. Every vertex in $N_H(w) - \{v\}$ is a neighbor of v in G but not in H. Thus, by Proposition 4.1 we have that $N_G[v] \cap N_G[x] = N_H[w]$, for any $x \in N_H(w) - \{v\}$. The vertex w is not the only element in $N_H(v)$, otherwise we would have that $N_G[v] = N_H[w]$ and, as v has maximum degree in G, the graph G would be complete. Let a be a vertex in $N_H(v) - \{w\}$. We have that $a \notin N_H[w]$, otherwise H would have a C_3 . However, $a \in N_G[w]$, thus $N_G[v] \cap N_G[w] \neq N_H[w]$.

If a non-complete *n*-vertex graph has a square root H of girth at least 7, it is possible, based on Corollary 4.2, to determine one edge of H in time $\mathcal{O}(n^2)$. The following algorithm uses this fact, executing algorithm G_6 -SqrtEdge at most twice. If G is complete, a solution is a star graph with the same vertices as G, and will be found on the first execution of G_6 -SqrtEdge. As the square root with girth at least 6 is unique up to isomorphism, if graph with girth 6 is returned, there is no solution.

 G_7 -Sqrt(G)

Input: a connected graph G with at least 3 vertices Output: a square root of G with girth at least 7, if it exists; $v \leftarrow$ a maximum degree vertex of G $u \leftarrow$ a neighbor of v $H \leftarrow G_6$ -SqrtEdge(G, uv)If H = "DOES NOT COMPUTE" $C \leftarrow N_G[v] \cap N_G[u]$ For each $w \in C - \{v\}$ If $N_G[v] \cap N_G[w] \neq C$ $H \leftarrow G_6$ -SqrtEdge(G, vw)If $H \neq$ "DOES NOT COMPUTE" and H is C_6 -free Return HReturn "DOES NOT COMPUTE" **Theorem 4.3.** It is possible to decide if an n-vertex graph has a square root of girth at least seven and to compute this root in time $\mathcal{O}(n^2)$.

Proof. The algorithm G_7 -Sqrt(G) solves \mathcal{G}_7 -square root. In this algorithm, the procedure G_6 -SqrtEdge(G, vw), that is $\mathcal{O}(n^2)$, is executed at most twice. Every other step is $\mathcal{O}(n)$ and is executed at most n times.

Acknowledgements

This work was partially supported by CNPq (Proc. 420079/2021-1).

References

- Anna Adamaszek and Michał Adamaszek. Uniqueness of graph square roots of girth six. *The Electronic Journal of Combinatorics [electronic* only], 18(1):Research Paper P139, 5 p., electronic only–Research Paper P139, 5 p., electronic only, 2011.
- [2] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 522–539. SIAM, 2021.
- [3] Babak Farzad, Lap Chi Lau, Van Bang Le, and Nguyen Ngoc Tuy. Complexity of finding graph roots with girth conditions. *Algorithmica*, 62(1-2):38–53, February 2012.
- [4] Majid Karimi. Square root finding in graphs. Master of science, Faculty of Mathematics and Science, Brock University, St. Catharines, Ontario, 2013.
- [5] Rajeev Motwani and Madhu Sudan. Computing roots of graphs is hard. Discrete Applied Mathematics, 54(1):81–88, 1994.
- [6] Raphael Yuster and Uri Zwick. Finding even cycles even faster. SIAM Journal on Discrete Mathematics, 10(2):209–222, 1997.