# Matemática <br> Contemporânea 

# Faster computing of graph square roots with girth at least six 

Cristopher Carcereri (D), Aleffer Rocha (iD and Renato Carmo (iD

Federal University of Paraná, R. Coronel Francisco Heráclito dos Santos 100, 81531-980, Curitiba, PR, Brazil

## Dedicated to Professor Jayme Szwarcfiter on the occasion of his 80th birthday


#### Abstract

We consider the problem of finding a graph which is a square root of girth at least $k$ of a graph $G$ with $n$ vertices and $m$ edges, for $k \in\{6,7\}$. The best-known solutions for these problems are an $\mathcal{O}\left(\delta(G) \cdot n^{4}\right)$ algorithm for $k=6$ and an $\mathcal{O}\left(m \cdot n^{2}\right)$ algorithm for $k=7$. We show that it is possible to solve these problems in time $\mathcal{O}\left(\delta(G) \cdot n^{2}\right)$ for $k=6$ and $\mathcal{O}\left(n^{2}\right)$ for $k=7$.


Keywords: graph square roots, cycle detection, algorithm complexity

2020 Mathematics Subject Classification: 05C76, 68R10, 68W40.

## 1 Introduction

The square of a graph $H$ is the graph $H^{2}$ obtained by adding to $H$ edges joining all vertices at distance 2 . We say that $H$ is a square root of
$G$ if $G=H^{2}$. Not every graph has a square root. On the other hand, a graph can have several square roots.

The problem of deciding if a given graph has a square root is $\mathcal{N} \mathcal{P}$ complete [5]. The problem of computing a square root of a given graph is, therefore, $\mathcal{N} \mathcal{P}$-hard.

Given a graph class $\mathcal{C}$, a related and relevant problem is, given a graph $G$, computing a square root of $G$ belonging to $\mathcal{C}$. This problem is called the $\mathcal{C}$-square root problem.

Let $\mathcal{G}_{k}$ denote the class of graphs of girth at least $k$. An interesting dichotomy exists with respect to the $\mathcal{G}_{k}$-square root problems, namely, the $\mathcal{G}_{k}$-square root problem is polynomially solvable if $k \geq 6$ and is $\mathcal{N} \mathcal{P}$-hard otherwise [3-5].

Also, if there is a square root in $\mathcal{G}_{6}$, it is unique up to isomorphism [1].
That $\mathcal{G}_{k}$-square root is polynomially solvable for $k \geq 6$ was proved in [3]. In doing so, the authors introduce an $\mathcal{O}\left(\delta(G) \cdot n^{4}\right)$ algorithm for $\mathcal{G}_{6}$-square root (where $\delta(G)$ denotes the minimum degree in $G$ ) and an $\mathcal{O}\left(m \cdot n^{2}\right)$ algorithm for $\mathcal{G}_{7}$-square root. Here we improve these algorithms showing that $\mathcal{G}_{6}$-square root can be solved in time $\mathcal{O}\left(\delta(G) \cdot n^{2}\right)$ and that $\mathcal{G}_{7}$-square root can be solved in time $\mathcal{O}\left(n^{2}\right)$.

The text is organized as follows. Section 1.1 introduces some definitions and the notation used. Section 2 discusses the algorithm of [3] for $\mathcal{G}_{6^{-}}$ square root. Section 3 explains the modification proposed to the algorithm described in Section 2 and performs the correspondent analysis. Section 4 discusses our $\mathcal{O}\left(n^{2}\right)$ time algorithm for the $\mathcal{G}_{7}$-square root problem.

### 1.1 Definitions and notation

A (simple) graph is a pair $G=(V(G), E(G))$ where $V(G)$ is a finite set and $E(G) \subseteq\binom{V(G)}{2}$. Their elements are called vertices and edges of $G$, respectively. We follow the standard definitions for graph related concepts. As usual, we denote an edge $\{u, v\}$ by $u v$ whenever possible. If $v$ is a vertex of $G$, we denote its neighborhood in $G$ by $N_{G}(v)$ and its closed neighborhood in $G$ (that is $N_{G}(v) \cup\{v\}$ ) by $N_{G}[v]$. The distance between
vertices $u$ and $v$ in $G$ is denoted $d_{G}(u, v)$. The minimum degree of $G$ is denoted $\delta(G)$. Cycles of length $n$ are denoted by $C_{n}$. The square of a graph $G$ is the graph $G^{2}$ where $V\left(G^{2}\right)=V(G)$ and $E\left(G^{2}\right)=\left\{u v: d_{G}(u, v) \leq 2\right\}$. A square root of $G$ is a graph whose square is $G$.

As in Section 1, for each $k \geq 3$ we denote the class of graphs of girth at least $k$ by $\mathcal{G}_{k}$ and define the $\mathcal{G}_{k}$-square root problem as the problem of, given a graph $G$, compute a square root of $G$ belonging to $\mathcal{G}_{k}$ or determining that no such root exists.

## 2 Square roots with girth at least 6

Farzad et al. [3] show that it is possible to find a square root of girth at least 6 of a given graph or to determine that no such root exists in polynomial time. Their algorithm corresponds to the $G_{6}-\mathrm{Sqrt}(G)$ procedure.

```
G6-Sqrt(G)
    Input: a connected graph G with at least 3 vertices
    Output: a square root of G with girth at least 6, if it exists; "Does Not
        Compute", otherwise
    v \leftarrow \text { a minimum degree vertex of } G
    For each u\inNNG
        H}\leftarrow\mp@subsup{G}{6}{}\mathrm{ -SqrtEdge(G,uv)
        If H\not= "Does Not Compute"
            Return H
    Return "Does Not Compute"
```

Algorithm $G_{6}-\operatorname{Sqrt}(G)$ and the following discussion assume that $G$ is connected and has at least 3 vertices. The square of a graph is the union of the squares of its connected components, and every connected graph with less than 3 vertices is a square root of itself.

We refer the reader to [3] for a full discussion of the correctness of algorithm $G_{6}$-Sqrt and limit ourselves to state the propositions upon which said correctness is based plus some brief comments.

Proposition 2.1 (Lemma 3.1 in [3]). Let $H$ be a connected $\left\{C_{3}, C_{5}\right\}$-free graph and let $G=H^{2}$. For all $v \in V(H)$ and all $u \in N_{H}(v)$,

$$
N_{H}(u)=N_{G}(u) \cap\left(N_{G}[v]-N_{H}(v)\right) .
$$

Proposition 2.2 (Lemma 3.3 in [3]). Let $H$ be a graph of girth at least 6 , let $u v \in E(H)$ and let $G=H^{2}$. The graph $G\left[N_{G}(u) \cap N_{G}(v)\right]$ has at most 2 connected components. Moreover, if $A$ and $B$ are the vertex sets of these components (one of them may be empty), then (i) $A=N_{H}(u)-\{v\}$ and $B=N_{H}(v)-\{u\}$, or (ii) $B=N_{H}(u)-\{v\}$ and $A=N_{H}(v)-\{u\}$.

```
\(G_{6}\)-SqrtEdge \((G, u v)\)
    Input: a connected graph \(G\) with at least 3 vertices and an edge \(u v\) of \(G\)
    Output: a square root \(H\) of \(G\) with girth at least 6 such that
            \(u v \in E(H)\), if it exists; "Does Not Compute", otherwise
    \(K \leftarrow G\left[N_{G}(u) \cap N_{G}(v)\right]\)
    If \(K\) has one or two components
        \(A \leftarrow\) the vertex set of a (non-empty) component of \(K\)
        \(H \leftarrow G_{6}-\operatorname{SqrtNgbh}(G, v, A \cup\{u\})\)
        If \(H \neq\) "Does Not Compute"
            Return \(H\)
        Return \(G_{6}-\operatorname{SqrtNgbh}(G, u, A \cup\{v\})\)
    Return "Does Not Compute"
```

Suppose $H$ is a square root of $G$ with girth at least 6 . Proposition 2.2 tells us that if $u v \in E(H)$ and $A$ is the vertex set of a component of $G\left[N_{G}(u) \cap N_{G}(v)\right]$, then ${ }^{1}$ either (i) $N_{H}(u)=A \cup\{v\}$ or (ii) $N_{H}(v)=$ $A \cup\{u\}$. Besides, if the neighborhood in $H$ of a vertex $x \in V(G)$ is known, Proposition 2.1 tells us how to compute the neighborhood in $H$ of every vertex in $N_{H}(x)$. Besides, if the neighborhood in $H$ of a vertex $x \in V(G)$ is known, Proposition 2.1 tells us how to compute the neighborhood in $H$ of every vertex in $N_{H}(x)$.

Algorithm $G_{6}$ - $\operatorname{Sqrt}(G)$ chooses a minimum degree vertex $v \in V(G)$ and, for each $u \in N_{G}(v)$, calls $G_{6}$-SqrtEdge $(G, u v)$ trying to find a root of girth at least 6 of $G$ containing this edge. Algorithm $G_{6}$-SqrtEdge ( $G, u v$ ) uses Proposition 2.2 to determine the possible neighborhood of $u$ and $v$ in

[^0]this root, and calls $G_{6}$-SqrtNgbh for both cases. $G_{6}$-SqrtNgbh $(G, v, U)$ uses a BFS-like procedure that computes $H$ if $N_{H}(v)=U$. As $N_{H}(v) \neq U$ may be the case, we need to check if the $\left\{C_{3}, C_{5}\right\}$-free output by the algorithm is indeed a root of $G$. Also, to guarantee it has girth at least 6 , we need to check if it is $C_{4}$-free. Algorithm $\operatorname{Check}(G, H)$ tests these conditions: as $H$ is $\left\{C_{3}, C_{5}\right\}$-free, if it is also $C_{4}$-free and $H^{2}=G$, then it is a solution.

```
\(G_{6}\)-SqrtNgbh \((G, v, U)\)
    Input: a connected graph \(G\) with at least 3 vertices, a vertex \(v\) of \(G\) and
        a nonempty set \(U \subseteq N_{G}(v)\)
    Output: a square root \(H\) of \(G\) with girth at least 6 such that
            \(N_{H}(v)=U\), if it exists; "Does Not Compute", otherwise
    \(Q \leftarrow\) empty queue
    \(H \leftarrow\) empty graph
    For each \(u \in V(G)\)
        \(u\).parent \(\leftarrow\) NULL
    For each \(u \in U\)
        add \(u v\) to \(H\)
        add \(u\) to \(Q\)
        \(u\).parent \(\leftarrow v\)
    While \(Q\) is not empty
        remove a vertex \(u\) from \(Q\)
        \(X \leftarrow N_{G}[u\).parent \(]-N_{H}(u\).parent \()\)
        \(W \leftarrow N_{G}(u) \cap X\)
        For each \(w \in W\)
            add \(u w\) to \(H\)
            If \(w\).parent \(=\) NULL
                add \(w\) to \(Q\)
                \(w\).parent \(\leftarrow u\)
    Return \(\operatorname{Check}(G, H)\)
```

The analysis in [3] concludes that if $n=|V(G)|$, then algorithm $G_{6^{-}}$ Sqrt $(G)$ runs in time $\mathcal{O}\left(\delta(G) \cdot n^{4}\right)$, where the $\mathcal{O}\left(n^{4}\right)$ term comes from the time needed for testing if $H$ has a $C_{4}$ in algorithm Check $(G, H)$. Moreover, their analysis considers that testing if $H^{2}=G$ has the time complexity of multiplying two $n \times n$ matrices $\left(\mathcal{O}\left(n^{2.373}\right)\right.$ as of today [2]).

We show in Section 3 that it is possible to combine the test if a $n$-vertex graph is $C_{4}$-free and the test if $H^{2}=G$ in a single-time $\mathcal{O}\left(n^{2}\right)$ algorithm. The next result of these improvements is that computing a square root of girth at least 6 of an $n$-vertex graph $G$ can be done in $\mathcal{O}\left(\delta(G) \cdot n^{2}\right)$ time.

## Check $(G, H)$

Input: a graph $G$ and a $\left\{C_{3}, C_{5}\right\}$-free graph $H$
Output: $H$, if $H$ is $C_{4}$-free and a square root of $G$; "Does Not Compute", otherwise
If $H$ has a $C_{4}$
Return "Does not Compute"
If $H^{2} \neq G$
Return "Does Not Compute"
Return $H$

## 3 Checking a solution

The following algorithm decides if a given $n$-vertex graph is $C_{4}$-free in time $\mathcal{O}\left(n^{2}\right)$.

```
\(C_{4}\)-free( \(H\) )
    Input: a graph \(H\)
    Output: yes, if \(H\) is \(C_{4}\)-free; no, otherwise
    \(M \leftarrow\) a 0 -initialized matrix indexed by \(V(H) \times V(H)\)
    For each \(v \in V(H)\)
        For each \(u w \in\binom{N_{H}(v)}{2}\)
            If \(M[u, w]=1\)
            Return no
        \(M[u, w] \leftarrow M[w, u] \leftarrow 1\)
```

    Return yes
    Algorithm $C_{4}$-free $(H)$ is a sort of "folklore algorithm" (see, for example, [6]). Its idea is very simple: $M[u, v]$ counts the number of common neighbors of vertices $u$ and $v$. If the count exceeds 1 , then there is a $C_{4}$ formed by $u, v$ and the common neighbors and the algorithm returns no.

On the other hand, if the algorithm returns yes and $H$ is also $C_{3^{-}}$ free, then the matrix $M$ computed by algorithm $C_{4}$-free $(H)$ is such that
$M[u, v]=1$ if and only if $d_{H}(u, v)=2$. In this case, the sum of $M$ with the adjacency matrix $H$ results in the adjacency matrix of $H^{2}$.

We can substitute algorithm $\operatorname{Check}(G, H)$ by the following algorithm.

```
ImprovedCheck( \(G, H\) )
    Input: a graph \(G\) and a \(\left\{C_{3}, C_{5}\right\}\)-free graph \(H\)
    Output: \(H\), if \(H\) is \(C_{4}\)-free and a square root of \(G\); "Does Not
        Compute", otherwise
    \(M \leftarrow\) adjacency matrix of \(H\)
    For each \(v \in V(G)\)
        For each \(u w \in\binom{N_{H}(v)}{2}\)
        If \(M[u, w]=1\)
            Return "Does Not Compute"
        \(M[u, w] \leftarrow M[w, u] \leftarrow 1\)
    If \(M\) is the adjacency matrix of \(G\)
        Return \(H\)
    Return "Does Not Compute"
```


## 4 Square roots with girth at least 7

In this section we introduce an $\mathcal{O}\left(n^{2}\right)$ algorithm for the $\mathcal{G}_{7}$-square root problem. The algorithm is based on the following statement.

Proposition 4.1. Let $H$ be a graph of girth at least 7 and let $G=H^{2}$. If $u v \in E(G)$ but $u v \notin E(H)$, then $u$ and $v$ have only one common neighbor $w$ in $H$ and $N_{G}[u] \cap N_{G}[v]=N_{H}[w]$.
Proof. Let $H, G, u$ and $v$ be as above. As $u v \in E(G)-E(H)$, there must be a neighbor $w$ common to $u$ and $v$ in $H$. Besides, no other such common neighbor can exist or $H$ would have a $C_{4}$ and its girth would not be 7. Every vertex in $N_{H}[w]$ has distance at most 2 from $u$ and $v$ in $H$, thus $N_{H}[w] \subseteq N_{G}[u] \cap N_{G}[v]$. If there was a vertex $a$ in $\left(N_{G}[u] \cap\right.$ $\left.N_{G}[v]\right)-N_{H}[w]$, there would be a cycle of length $l \leq d_{H}(u, v)+d_{H}(v, a)+$ $d_{H}(a, u)=6$ in $H$. Hence, $N_{G}[u] \cap N_{G}[v] \subseteq N_{H}[w]$ and, consequently, $N_{G}[u] \cap N_{G}[v]=N_{H}[w]$.

Corollary 4.2. Let $H$ be a graph of girth at least 7 so that $G=H^{2}$ is not complete, let $v$ be a vertex with maximum degree in $G$ and let $u$ be a neighbor of $v$ in $G$ but not in $H$ and let $w$ be their common neighbor. Then, for every $x$ in $N_{H}[w]-\{v\}$, we have that $N_{G}[v] \cap N_{G}[x] \neq N_{H}[w]$ if and only if $x=w$.
Proof. Every vertex in $N_{H}(w)-\{v\}$ is a neighbor of $v$ in $G$ but not in $H$. Thus, by Proposition 4.1 we have that $N_{G}[v] \cap N_{G}[x]=N_{H}[w]$, for any $x \in N_{H}(w)-\{v\}$. The vertex $w$ is not the only element in $N_{H}(v)$, otherwise we would have that $N_{G}[v]=N_{H}[w]$ and, as $v$ has maximum degree in $G$, the graph $G$ would be complete. Let $a$ be a vertex in $N_{H}(v)-\{w\}$. We have that $a \notin N_{H}[w]$, otherwise $H$ would have a $C_{3}$. However, $a \in N_{G}[w]$, thus $N_{G}[v] \cap N_{G}[w] \neq N_{H}[w]$.

If a non-complete $n$-vertex graph has a square root $H$ of girth at least 7, it is possible, based on Corollary 4.2, to determine one edge of $H$ in time $\mathcal{O}\left(n^{2}\right)$. The following algorithm uses this fact, executing algorithm $G_{6}{ }^{-}$ SqrtEdge at most twice. If $G$ is complete, a solution is a star graph with the same vertices as $G$, and will be found on the first execution of $G_{6}$-SqrtEdge. As the square root with girth at least 6 is unique up to isomorphism, if graph with girth 6 is returned, there is no solution.

```
G}\mp@subsup{G}{7}{}\mathrm{ -Sqrt(G)
    Input: a connected graph G with at least 3 vertices
    Output: a square root of G with girth at least 7, if it exists;
    v}\leftarrow\mathrm{ a maximum degree vertex of }
    u\leftarrow a neighbor of v
    H}\leftarrow\mp@subsup{G}{6}{}\mathrm{ -SqrtEdge(G,uv)
    If H= "Does Not Compute"
        C}\leftarrow\mp@subsup{N}{G}{[v]\cap N
        For each w\inC-{v}
            If N}\mp@subsup{N}{G}{}[v]\cap\mp@subsup{N}{G}{}[w]\not=
                H}\leftarrow\mp@subsup{G}{6}{}\mathrm{ -SqrtEdge(G,vw)
    If H}=\mathrm{ "Does Not Compute" and H is C6}\mp@subsup{C}{6}{}\mathrm{ -free
        Return H
    Return "Does Not Compute"
```

Theorem 4.3. It is possible to decide if an n-vertex graph has a square root of girth at least seven and to compute this root in time $\mathcal{O}\left(n^{2}\right)$.

Proof. The algorithm $G_{7}-\operatorname{Sqrt}(\mathrm{G})$ solves $\mathcal{G}_{7}$-square root. In this algorithm, the procedure $G_{6}$-SqrtEdge $(G, v w)$, that is $\mathcal{O}\left(n^{2}\right)$, is executed at most twice. Every other step is $\mathcal{O}(n)$ and is executed at most $n$ times.

## Acknowledgements

This work was partially supported by CNPq (Proc. 420079/2021-1).

## References

[1] Anna Adamaszek and Michał Adamaszek. Uniqueness of graph square roots of girth six. The Electronic Journal of Combinatorics [electronic only|, 18(1):Research Paper P139, 5 p., electronic only-Research Paper P139, 5 p., electronic only, 2011.
[2] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In Proceedings of the 2021 ACMSIAM Symposium on Discrete Algorithms (SODA), pages 522-539. SIAM, 2021.
[3] Babak Farzad, Lap Chi Lau, Van Bang Le, and Nguyen Ngoc Tuy. Complexity of finding graph roots with girth conditions. Algorithmica, 62(1-2):38-53, February 2012.
[4] Majid Karimi. Square root finding in graphs. Master of science, Faculty of Mathematics and Science, Brock University, St. Catharines, Ontario, 2013.
[5] Rajeev Motwani and Madhu Sudan. Computing roots of graphs is hard. Discrete Applied Mathematics, 54(1):81-88, 1994.
[6] Raphael Yuster and Uri Zwick. Finding even cycles even faster. SIAM Journal on Discrete Mathematics, 10(2):209-222, 1997.


[^0]:    ${ }^{1}$ The algorithm in [3] also considers the possibilities that (i) $N_{H}(v)=B \cup\{u\}$ or (ii) $N_{H}(u)=B \cup\{u\}$. Note however that, by symmetry, we can consider either pair of conditions without loss of generality.

