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Abstract. We consider the problem of finding a graph which is a
square root of girth at least k of a graph G with n vertices and m
edges, for k € {6,7}. The best-known solutions for these problems
are an O(§(G) - n*) algorithm for k¥ = 6 and an O(m - n?) algorithm
for £ = 7. We show that it is possible to solve these problems in time
O(8(G) - n?) for k=6 and O(n?) for k =17.
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1 Introduction

The square of a graph H is the graph H? obtained by adding to H

edges joining all vertices at distance 2. We say that H is a square root of
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G if G = H?. Not every graph has a square root. On the other hand, a
graph can have several square roots.

The problem of deciding if a given graph has a square root is N7P-
complete [5]. The problem of computing a square root of a given graph is,
therefore, N'P-hard.

Given a graph class C, a related and relevant problem is, given a graph
G, computing a square root of G belonging to C. This problem is called
the C-square root problem.

Let Gy denote the class of graphs of girth at least k. An interesting
dichotomy exists with respect to the Gi-square root problems, namely, the
Gr-square root problem is polynomially solvable if k¥ > 6 and is N'P-hard
otherwise [3-5].

Also, if there is a square root in Gg, it is unique up to isomorphism [1].

That Gg-square root is polynomially solvable for & > 6 was proved in [3].
In doing so, the authors introduce an O(§(G) - n*) algorithm for Gg-square
root (where §(G) denotes the minimum degree in G) and an O(m - n?)
algorithm for Gz-square root. Here we improve these algorithms showing
that Gg-square root can be solved in time O(3(G) - n?) and that Gr-square
root can be solved in time O(n?).

The text is organized as follows. Section 1.1 introduces some definitions
and the notation used. Section 2 discusses the algorithm of [3] for Gs-
square root. Section 3 explains the modification proposed to the algorithm
described in Section 2 and performs the correspondent analysis. Section 4

discusses our O(n?) time algorithm for the Gr-square root problem.

1.1 Definitions and notation

A (simple) graph is a pair G = (V(G), E(G)) where V(G) is a finite
set and E(G) C (V(QG)). Their elements are called vertices and edges
of G, respectively. We follow the standard definitions for graph related
concepts. As usual, we denote an edge {u,v} by uv whenever possible. If
v is a vertex of G, we denote its neighborhood in G by N¢(v) and its closed
neighborhood in G (that is Ng(v) U {v}) by Ng[v]. The distance between
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vertices v and v in G is denoted dg(u,v). The minimum degree of G is
denoted §(G). Cycles of length n are denoted by C,,. The square of a graph
G is the graph G? where V(G?) = V(G) and E(G?) = {uwv: dg(u,v) < 2}.
A square root of GG is a graph whose square is G.

As in Section 1, for each k > 3 we denote the class of graphs of girth at
least k by Gj, and define the Gi-square root problem as the problem of, given
a graph G, compute a square root of G belonging to G or determining

that no such root exists.

2 Square roots with girth at least 6

Farzad et al. [3| show that it is possible to find a square root of girth
at least 6 of a given graph or to determine that no such root exists in poly-
nomial time. Their algorithm corresponds to the G¢-Sqrt(G) procedure.

G¢-Sart(G)

Input: a connected graph G with at least 3 vertices

Output: a square root of G with girth at least 6, if it exists; "DoEs NoT
CoMPUTE", otherwise
v <— a minimum degree vertex of G
For each v € Ng(v)
H + Gg-SqrtEdge(G, uv)
If H# "Does Not CoMPUTE"
Return H

Return "DoEs NoT COMPUTE"

Algorithm Gg-Sqrt(G) and the following discussion assume that G is
connected and has at least 3 vertices. The square of a graph is the union
of the squares of its connected components, and every connected graph
with less than 3 vertices is a square root of itself.

We refer the reader to [3] for a full discussion of the correctness of
algorithm Gg-Sqrt and limit ourselves to state the propositions upon which

said correctness is based plus some brief comments.

Proposition 2.1 (Lemma 3.1 in [3]). Let H be a connected {Cs, Cs5}-free
graph and let G = H?. For allv € V(H) and all u € Ny (v),
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Np(u) = Na(u) 0 (Nglv] = Nu(v)).

Proposition 2.2 (Lemma 3.3 in [3]). Let H be a graph of girth at least
6, let uwv € E(H) and let G = H?. The graph G[Ng(u) N Ng(v)] has at
most 2 connected components. Moreover, if A and B are the vertex sets of
these components (one of them may be empty), then (i) A = Ng(u) —{v}
and B = Ng(v) — {u}, or (ii)) B= Ng(u) — {v} and A = Ng(v) — {u}.

G6-SqrtEdge(G, uv)
Input: a connected graph G with at least 3 vertices and an edge uv of G
Output: a square root H of G with girth at least 6 such that
uv € E(H), if it exists; "DoEs NoT CoMPUTE", otherwise
K « G[Ng(u) M Ng(’l})]

If K has one or two components

A <+ the vertex set of a (non-empty) component of K
H < Gg-SqrtNgbh(G, v, AU {u})
If H+# "DoEs NoT CoMPUTE"

Return H

Return Gg-SqrtNgbh(G,u, AU {v})
Return "Does NoT COMPUTE"

Suppose H is a square root of G with girth at least 6. Proposition 2.2
tells us that if uv € E(H) and A is the vertex set of a component of
G[Ng(u) N Ng(v)], then® either (i) Ny(u) = AU {v} or (ii) Ny(v) =
AU{u}. Besides, if the neighborhood in H of a vertex x € V(&) is known,
Proposition 2.1 tells us how to compute the neighborhood in H of every
vertex in Ny (z). Besides, if the neighborhood in H of a vertex = € V(Q)
is known, Proposition 2.1 tells us how to compute the neighborhood in H
of every vertex in Ny (z).

Algorithm Gg-Sqrt(G) chooses a minimum degree vertex v € V(G)
and, for each u € Ng(v), calls Gg-SqrtEdge(G, uv) trying to find a root of
girth at least 6 of G containing this edge. Algorithm Gg-SqrtEdge(G, uv)

uses Proposition 2.2 to determine the possible neighborhood of » and v in

!The algorithm in [3] also considers the possibilities that (i) Ng(v) = B U {u} or
(ii) Nu(u) = BU{u}. Note however that, by symmetry, we can consider either pair of
conditions without loss of generality.
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this root, and calls G-SqrtNgbh for both cases. Gg-SqrtNgbh(G, v, U) uses
a BFS-like procedure that computes H if Ny (v) = U. As Ng(v) # U may
be the case, we need to check if the {C5, C5}-free output by the algorithm
is indeed a root of G. Also, to guarantee it has girth at least 6, we need
to check if it is Cy-free. Algorithm Check(G, H) tests these conditions: as
H is {C3, Cs}-free, if it is also Cy-free and H? = G, then it is a solution.

G6-SqrtNgbh(G, v, U)

Input: a connected graph G with at least 3 vertices, a vertex v of G and

a nonempty set U C Ng(v)
Output: a square root H of G with girth at least 6 such that
Ny (v) = U, if it exists; "DoEs NoT CoMPUTE", otherwise
Q@ + empty queue
H <+ empty graph
For each v € V(G)
u.parent <— NULL
For each u € U
add uwv to H
add u to @
u.parent <— v
While @ is not empty
remove a vertex u from @
X + Ng[u.parent] — Ny (u.parent)
W+ Ng(u)NnX
For each w € W
add uw to H
If w.parent= NULL
add w to Q
w.parent < u
Return Check(G, H)

The analysis in [3] concludes that if n = |V (G)|, then algorithm Gg-
Sqrt(G) runs in time O(6(G) - n*), where the O(n*) term comes from the
time needed for testing if H has a Cj in algorithm Check(G, H). Moreover,
their analysis considers that testing if H? = G has the time complexity of
multiplying two n x n matrices (O(n?37) as of today [2]).



138 C. Carcereri, A. Rocha and R. Carmo

We show in Section 3 that it is possible to combine the test if a n-vertex
graph is Cy-free and the test if H? = G in a single-time O(n?) algorithm.
The next result of these improvements is that computing a square root of
girth at least 6 of an n-vertex graph G can be done in O(3(G) - n?) time.

Check(G, H)
Input: a graph G and a {C3, Cs}-free graph H
Output: H, if H is Cy-free and a square root of G; "DoeEs NoT

CoMPUTE", otherwise

If H has a Cy

Return "DoEs NoT COMPUTE"
If H2 £ G

Return "DoeEs NoT COMPUTE"
Return H

3 Checking a solution

The following algorithm decides if a given n-vertex graph is Cy-free in
time O(n?).

Cy-free(H)
Input: a graph H

Output: yes, if H is Cy-free; no, otherwise

M <+ a O-initialized matrix indexed by V(H) x V(H)
For each v € V(H)
For each uw € (V1)
If Mu,w]=1
Return no
Mu,w] < M[w,u] + 1

Return yes

Algorithm Cy-free(H) is a sort of “folklore algorithm” (see, for exam-
ple, [6]). Its idea is very simple: Mu,v] counts the number of common
neighbors of vertices v and v. If the count exceeds 1, then there is a Cy
formed by u, v and the common neighbors and the algorithm returns no.

On the other hand, if the algorithm returns yes and H is also C3-
free, then the matrix M computed by algorithm Cy-free(H) is such that
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MJu,v] =1 if and only if dg(u,v) = 2. In this case, the sum of M with
the adjacency matrix H results in the adjacency matrix of H?2.
We can substitute algorithm Check(G, H) by the following algorithm.

ImprovedCheck(G, H)
Input: a graph G and a {Cs, C5}-free graph H
Output: H, if H is Cy-free and a square root of G; "DoEs NoT

CoMPUTE", otherwise
M < adjacency matrix of H
For each v € V(G)
For each uw € (NHQ(”))
If Mu,w]=1
Return "Does NoT CoMPUTE"
Mu,w] < Mw,u] + 1
If M is the adjacency matriz of G
Return H
Return "Does Not CoMPUTE"

4 Square roots with girth at least 7

In this section we introduce an O(n?) algorithm for the Gr-square root

problem. The algorithm is based on the following statement.

Proposition 4.1. Let H be a graph of girth at least 7 and let G = H?. If
wv € E(Q) but uwv ¢ E(H), then u and v have only one common neighbor
w in H and Ng[u] N Nglv] = Nglw].

Proof. Let H, G, u and v be as above. As wv € E(G) — E(H), there
must be a neighbor w common to w and v in H. Besides, no other such
common neighbor can exist or H would have a C4 and its girth would
not be 7. Every vertex in Npy[w] has distance at most 2 from w and v
in H, thus Ng[w] C Ng[u] N Ng[v]. If there was a vertex a in (Ng[u] N
Ng[v]) = Ng[w], there would be a cycle of length I < dg(u,v)+dg(v,a)+
di(a,u) = 6 in H. Hence, Ng[u] N Ng[v] € Ny[w] and, consequently,
Nglu] N Nglv] = Nglw]. O
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Corollary 4.2. Let H be a graph of girth at least 7 so that G = H? is
not complete, let v be a verter with mazimum degree in G and let u be
a neighbor of v in G but not in H and let w be their common neighbor.
Then, for every x in Nglw] — {v}, we have that Ng[v] N Ng|x] # Npg|w]
if and only if © = w.

Proof. Every vertex in Ny (w) —{v} is a neighbor of v in G but not in H.
Thus, by Proposition 4.1 we have that Ng[v] N Ng[z] = Ng[w], for any
x € Ny(w)—{v}. The vertex w is not the only element in N (v), otherwise
we would have that Ng[v] = Ny[w] and, as v has maximum degree in G,
the graph G would be complete. Let a be a vertex in Ny (v) — {w}. We
have that a ¢ Ny [w], otherwise H would have a Cs3. However, a € Ng[w],
thus Ng[v] N Ng[w] # Ng|w]. O

If a non-complete n-vertex graph has a square root H of girth at least 7,
it is possible, based on Corollary 4.2, to determine one edge of H in time
O(n?). The following algorithm uses this fact, executing algorithm G-
SqrtEdge at most twice. If G is complete, a solution is a star graph with the
same vertices as G, and will be found on the first execution of Gg-SqrtEdge.
As the square root with girth at least 6 is unique up to isomorphism, if

graph with girth 6 is returned, there is no solution.

G7-5qrt(G)

Input: a connected graph G with at least 3 vertices

Output: a square root of G with girth at least 7, if it exists;
v <~ a maximum degree vertex of G
u < a neighbor of v
H + Gg-SqrtEdge(G, uv)
If H= "DoeEs Not CoMPUTE"
C < N¢[v] N Ngu]
For each w € C —{v}
If Ng[v} N Ng[w] +C
H + Gg-SqrtEdge(G, vw)
If H # "DoeEs Not CompPuTE" and H is Cg-free
Return H
Return "DoeEs Not COMPUTE"




Graph square roots with girth at least six 141

Theorem 4.3. [t is possible to decide if an n-vertex graph has a square

root of girth at least seven and to compute this root in time O(n?).

Proof. The algorithm G7-Sqrt(G) solves Gz-square root. In this algorithm,

the procedure Gg-SqrtEdge(G,vw), that is O(n?), is executed at most

twice. Every other step is O(n) and is executed at most n times. O
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