Matemática
 Contemporânea

Vol. 55, 105-113

Characterisation and total colouring of bipartite graphs with at most three bicliques

Gustavo L. Montanheiro (iD) ${ }^{1}$, Leandro M. Zatesko (iD ${ }^{1}$ and Marina E. Groshaus (iD 1,2
${ }^{1}$ Federal University of Technology - Paraná (UTFPR), Brazil
${ }^{2}$ National Scientific and Technical Research Council (CONICET), Argentina

Dedicated to Professor Jayme Szwarcfiter on the occasion of his 80th birthday

Abstract

Determining the total chromatic number $\chi^{\prime \prime}(G)$ of a graph G is an NP-hard problem even for bipartite graphs. For graphs with a universal vertex, it was solved by Hilton in 1990. Using this result, in 2012, Campos et al. solved the problem for split-indifference graphs, all of which have at most three cliques. In 1991, Hilton also solved the problem for bipartite graphs with adjacent bi-universal vertices (a vertex is biuniversal if it is adjacent to all vertices in the other part of the bipartition). We conjecture that a bipartite graph G with at most three bicliques has: $\chi^{\prime \prime}(G)=\Delta(G)+2$ if G has a Δ-subgraph H with adjacent bi-universal vertices satisfying $\chi^{\prime \prime}(H)=\Delta(H)+2=\Delta(G)+2 ; \chi^{\prime \prime}(G)=\Delta(G)+1$ otherwise. If G has at most three bicliques, we prove that either G has adjacent bi-universal vertices (and our conjecture follows from Hilton's result), or the graph obtained after successively removing twins is a P_{5}. For the latter case, we give a condition under which our conjecture holds.

Keywords: graph total colouring, bicliques, bipartite graphs.
2020 Mathematics Subject Classification: 05C15, 05C69.
Partially supported by CNPq (grants 428941/2016-8 and 420079/2021-1). Email addresses: gmontanheiro@alunos.utfpr.edu.br, \{zatesko,marina\}@utfpr.edu.br

1 Introduction

All graphs ${ }^{1}$ considered are undirected, simple, and always connected. The vertex and edge sets of a graph G are denoted $V(G)$ and $E(G)$, respectively, and the maximum degree of G is denoted $\Delta(G)$, or Δ when free of ambiguity. The set of vertices adjacent to some $u \in V(G)$ is denoted $N(u)$. Two vertices u, v are twins if $N(u)=N(v)$. An independent set (matching) in G is a subset of vertices (edges) no two of which are adjacent in G. The cardinality of a maximum matching in G is denoted $\mu(G)$. A vertex u of G is universal if it is adjacent to all other vertices of G. The graph G is complete if $E(G)=\{u v: u, v \in V(G)\}$.

A graph G with $|V(G)|>1$ is bipartite if its vertex set can be (uniquely, since G is connected) partitioned into two independent sets A, B. The bipartition $\{A, B\}$ is said to be an equi-bipartition, in which case G is equibipartite, if $|A|=|B|$. A vertex u of a bipartite graph G is bi-universal if it is adjacent to all vertices in the other part. The bipartite complement of a bipartite graph G, denoted $\overline{\bar{G}}$, is the graph defined by $V(\overline{\bar{G}})=V(G)$ and $E(\overline{\bar{G}})=\{u v \notin E(G): u \in A, v \in B\}$, being $\{A, B\}$ the bipartition of G. The graph G is complete bipartite if $E(G)=\{u v: u \in A, v \in B\}$.

A graph H is a subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq$ $E(G)$. A Δ-subgraph of G is a subgraph H of G with $\Delta(H)=\Delta(G)$. For $U \subseteq V(G)$, the subgraph of G induced by U, denoted $G[U]$, is the graph defined by $V(G[U])=U$ and $E(G[U])=\{u v \in E(G): u, v \in U\}$. A clique in G is a maximal induced subgraph of G which is complete. A biclique in G is a maximal induced subgraph of G which is complete bipartite.

A k-total colouring of a graph G is a function $c: V(G) \cup E(G) \rightarrow C$, with $|C|=k$ such that, given adjacent $u, v \in V(G)$, adjacent $e_{1}, e_{2} \in$ $E(G)$, and an edge e incident to a vertex $w \in V(G)$, it holds that $c(u) \neq$ $c(v), c\left(e_{1}\right) \neq c\left(e_{2}\right)$, and $c(w) \neq c(e)$. The least k for which G admits a k total colouring is the total chromatic number of G, denoted $\chi^{\prime \prime}(G)$. Clearly, $\chi^{\prime \prime}(G) \geq \Delta+1$. The Total Colouring Conjecture (TCC) $[1,10]$ states that

[^0]$\chi^{\prime \prime}(G) \leq \Delta+2$ for every graph G. If $\chi^{\prime \prime}(G)=\Delta+1\left(\chi^{\prime \prime}(G)=\Delta+2\right)$, then G is said to be Type 1 (Type 2). The TCC was proved for some graph classes, such as complete and complete bipartite graphs [2].

The Total Colouring Problem consists of, given a graph G, determining $\chi^{\prime \prime}(G)$. This problem is NP-hard [9] even when restricted to regular bipartite graphs [8]. In 1990, the problem was solved (i.e. a polynomial-time algorithm for the problem was shown) by Hilton [6] for graphs with universal vertices. In 1991, Hilton [7] showed the analogous result for bipartite graphs with adjacent bi-universal vertices, as transcribed in Lemma 1.

Lemma 1 ([7]). A bipartite graph G with adjacent bi-universal vertices is: Type 2 if G is equi-bipartite and $|E(\overline{\bar{G}})|+\mu(\overline{\bar{G}}) \leq n-1$, being n the number of vertices in each part of the bipartition of G; Type 1 otherwise.

Observation 1 ([2]). If G is a bipartite graph whose vertices of degree Δ are all in the same part of the bipartition, then G is Type 1 and a $(\Delta+1)$-total colouring of G can be easily constructed.

In 2012, Campos et al. [3] solved the Total Colouring Problem for split-indifference graphs, proving that such a graph G is: Type 2 if it has some Type 2Δ-subgraph with universal vertices; Type 1 otherwise. Split-indifference graphs have at most three cliques. We conjecture below the analogous for bipartite graphs with at most three bicliques, relying on Hilton's result for bipartite graphs with adjacent bi-universal vertices.

Conjecture 1. A bipartite graph G with at most three bicliques is Type 2 if and only if it has a Type 2Δ-subgraph with adjacent bi-universal vertices.

In Sect. 2 we characterise the structure of bipartite graphs with at most three bicliques. In Sect. 3 we prove Conjecture 1 for a subclass of them.

2 Characterisation of the graphs in the class

We characterise the structure of the bipartite graphs G with at most three bicliques by exhausting all the possibilities, listed in Theorem 1, for the graph obtained from G after successively removing twins.

Theorem 1. Let G be a connected bipartite graph with at most three bicliques with no twins. Then G is isomorphic to one of the following graphs: K_{2}, P_{4}, A, P_{5} (Figs 2.1a, 2.1b, 2.1c, 2.1d, respectively).

(a) $K_{2}: 1$ biclique
(b) $P_{4}: 2$ bicliques

(c) $A: 3$ bicliques

(d) $P_{5}: 3$ bicliques

Figure 2.1: Graphs with at most three bicliques and no twins

Proof. First, observe that if two vertices belonging to the same set of bicliques of G are twins, then they are in the same part of the bipartition. Second, if U, V are the vertex sets of two bicliques such that some $u \in U \backslash V$ and some $v \in V \backslash U$ are not in any other biclique, then $u v \notin E(G)$, otherwise there would be another biclique containing both u and v.

We consider the cases in which G has 1 , 2 , or 3 bicliques separately.
Case G has exactly one biclique. In this case, G is complete bipartite. As G has no twins, each of the parts has a single vertex, thus $G \simeq K_{2}$.

Case G has exactly two bicliques: H and J. Since G is connected, $V(H) \cap$ $V(J) \neq \emptyset$. Let $H^{\prime}=G[V(H) \backslash V(J)]$ and $J^{\prime}=G[V(J) \backslash V(H)]$.
(i) Consider that $E(H) \cap E(J) \neq \emptyset$ (Fig. 2.2a).

(a) Subcase (i)

(b) Subcase (ii)

(c) Solution for (i)

(d) Contradiction in (ii)

Figure 2.2: Subcases when G has exactly two bicliques
We show that this subcase is possible. Let $x y \in E(H) \cap E(J)$. Clearly, H^{\prime} and J^{\prime} are nonempty. As per the opening remarks to this proof, and seeing that G has no twins, H^{\prime} and J^{\prime} contain a single
vertex each, not mutually adjacent, but each adjacent to exactly one of x, y. Without loss of generality, let $u \in V\left(H^{\prime}\right)$ be adjacent to x, and $v \in V\left(J^{\prime}\right)$ be adjacent to y. Therefore, $G \simeq P_{4}$ (see Fig. 2.2c).
(ii) Now, consider that $E(H) \cap E(J)=\emptyset$ (Fig. 2.2b).

We show that this subcase is not possible. Since G is connected, there must be $x \in V(H) \cup V(J)$ and $x u, x v \in E(G)$ with $v \in V\left(H^{\prime}\right)$ an $u \in V\left(J^{\prime}\right)$. However, the subgraph induced by $\{x, u, v\}$ is a complete bipartite graph that is neither a subgraph of H, nor of J, which is a contradiction (see Fig. 2.2d).

Case G has exactly three bicliques: H, J, K. There are only two subcases:
(iii) $V(H) \cap V(J) \cap V(K) \neq \emptyset, E(H) \cap E(J) \cap E(K)=\emptyset$;
(iv) $E(H) \cap E(J) \cap E(K) \neq \emptyset$.

All other subcases can be shown to be impossible, as they clearly lead to a complete bipartite graph that is not a subgraph of any of H, J, K.

Proof for (iiii). We show that this subcase is possible. As there are no edges in the total intersection of the bicliques and G has no twins, the total intersection contains only a single vertex v. Therefore, one of the three bicliques, say K, is equal to $G[\{v\} \cup N(v)]$. This implies that the vertices exclusive to bicliques H and J are in the same part as v. As per the opening remarks to this proof, we conclude that $V(H) \backslash V(K)$ and $V(J) \backslash V(K)$ contain a single vertex each. Let those vertices be h and j, respectively. Because the vertices belonging to the same set of bicliques are all twins, we conclude that there is a single vertex $x \in V(H) \cap V(K) \backslash V(J)$ that is adjacent to h, and symmetrically, there is a single vertex $y \in$ $V(J) \cap V(K) \backslash V(H)$ that is adjacent to j. Thus, the only possible graph that satisfies these conditions is isomorphic to P_{5} (see Fig. 2.3a).

Proof for (iv). We show that this subcase is possible. Let $x y$ be the edge in $E(H \cap J \cap K)$, and let V_{1} and V_{2} be the parts of G. We note that x and y are bi-universal in G, and thus $V_{1}=N(x), V_{2}=N(y)$, without loss of

(a) Solution for (iii): P_{5}

(b) Solution for (iii): graph A

Figure 2.3: Solutions for when G has exactly three bicliques
generality. Also, since $G[\{x\} \cup N(x)]$ and $G[\{y\} \cup N(y)]$ induce bipartite subgraphs included in some biclique, we assume that $G[\{x\} \cup N(x)]$ is a subgraph of H, and $G[\{y\} \cup N(y)]$ is a subgraph of J. This implies that there is no vertex in $V(K)$ that is not also in either $V(H)$ or $V(J)$. There cannot be any vertex in $V(H) \cap V(J) \backslash V(K)$, otherwise that vertex would be bi-universal in $G[V(H) \cup V(J)]$, thus bi-universal in G, and then a twin vertex of either x or y, contradicting the fact that G has no twins. Furthermore, both $(V(H) \cap V(K)) \backslash V(J)$ and $(V(J) \cap V(K)) \backslash V(H)$ are nonempty, otherwise K would be entirely contained in either H or J. Lastly, $V(H) \backslash(V(J) \cup V(K))$ and $V(J) \backslash(V(H) \cup V(K))$ must be both nonempty, because H and J are distinct from K. According to the opening remarks to this proof, and since all edges of G are contained either in H or in J, we obtain that G is isomorphic to the graph A (Fig. 2.3b).

3 Total colouring some graphs in the class

Let G be a bipartite graph with at most three bicliques and let G^{\prime} be the graph obtained from G after the successive removal of twins. Observe that each maximal set of twins in G corresponds to a single vertex in G^{\prime}. Amongst the graphs characterised in Theorem 1, P_{5} is the only one which does not have adjacent bi-universal vertices. Hence, if $G^{\prime} \not 千 P_{5}$, then the Total Colouring Problem is solved for G by Lemma 1. So, the only case remaining to prove Conjecture 1 is when $G^{\prime} \simeq P_{5}$.

Theorem 2. Let G^{\prime} be the graph obtained from a bipartite graph G after the successive removal of twins such that $G^{\prime} \simeq P_{5}$. Let A, B, C, D, E be the maximal sets of twins in G as in Fig. 3.1a, with cardinalities a, b, c, d, e, respectively. Without loss of generality, suppose $a \geq e$. Then:
(i) if $b+d \neq c+a$, then G is Type 1 .
(ii) if $b+d=c+a>a d+\min (a, d)$, then G has a Type 2 Δ-subgraph with adjacent bi-universal vertices (thus G is also Type 2).
(iii) if $b+d=c+a \leq a d+\min (a, d)$ and $a>\max (d, e)$, then G is Type 1.

Figure 3.1: Illustrations for Theorem 2

Proof. First, observe that the Δ-vertices of G may only occur in sets B, C, D, since the degree of vertices in C is $b+d$, which is strictly greater than the degree of vertices in $A(E)$, which is $b(d)$. We begin by proving (i). Since $a \geq e$, if $b+d \neq c+a$, then the Δ-vertices of G occur only in $B \cup D$, and the theorem follows from Observation 1 .

In (ii) and (iii), remark that $b+d=c+a=\Delta$, implying, since $a \geq e$, that Δ-vertices occur in B and C, occurring also in D if $a=e$. Let $H_{1}=$ $G[A \cup B \cup C \cup D]$ and $H_{2}=G[B \cup C \cup D \cup E]$ (see Fig. 3.1a). Note that H_{1} and H_{2} are Δ-subgraphs of G. Note further that H_{1} is equi-bipartite and has adjacent bi-universal vertices, with $E(\overline{\bar{G}})=a d$ and $\mu(\overline{\bar{G}})=\min (a, d)$.

Therefore, from Lemma 1, if $a d+\min (a, d)<\Delta\left(H_{1}\right)=\Delta(G)=\Delta$, then H_{1} is Type 2, and so is G, and this concludes the proof of (ii). By the way, remark that H_{2} can only be Type 2 if $a=e$, in which case we can swap the roles of A and E and of B and D, and then we are reduced to (ii).

It remains to prove (iii). In this case, as $b+d=c+a \leq a d+\min (a, d)$ holds, H_{1} is Type 1. Furthermore, because $a>d$, we have $a d+\min (a, d)=$ $a d+d$, and thus $a d \geq b$. It remains now to extend the $(\Delta+1)$-total colouring ϕ of H_{1} to a $(\Delta+1)$-total colouring of G. Let $X=G[D \cup E]$ (see Fig. 3.1b). For each $v \in D$, the set $\{\phi(u v): v \in D\} \cup\{\phi(v)\}$ is the set of the $c+1$ colours not available to colour the edges of X incident to v. We can colour the vertices in E by choosing an arbitrary colour used to colour some vertex in C and assigning it to all vertices in E. Now, for every vertex $v \in D$, we have a set $L(v)$ with at least $\Delta+1-(c+1)-1=a-1 \geq$ $\max (d, e)$ colours that may be used to colour the edges of X incident to v. Assigning the list $L(v)$ to all edges of X incident with v, each such list has $a-1 \geq \max (d, e)=\Delta(X)$ colours. Then, we obtain a colouring of all edges of X from Galvin's theorem on edge choosability [5].

References

[1] M. Behzad. Graphs and their chromatic numbers. PhD thesis, Michigan State University, 1965.
[2] M. Behzad, G. Chartrand, and J. K. Cooper Jr. The color numbers of complete graphs. J. London Math. Soc., 42:226-228, 1967.
[3] C. N. Campos, C. M. H. Figueiredo, R. Machado, and C. P. Mello. The total chromatic number of split-indifference graphs. Discrete Math., 312:2690-2693, 2012.
[4] R. Diestel. Graph Theory. Springer, 5 edition, 2017.
[5] F. Galvin. The list chromatic index of a bipartite multigraph. J. Comb. Theory B, 63:153-158, 1995.
[6] A. J. W. Hilton. A total-chromatic number analogue of Plantholt's theorem. Discrete Math., 79:169-175, 1990.
[7] A. J. W. Hilton. The total chromatic number of nearly complete bipartite graphs. J. Comb. Theory B, 52:9-19, 1991.
[8] C. J. H. McDiarmid and A. Sánchez-Arroyo. Total colouring regular bipartite graphs is NP-hard. Discrete Math., 124:155-162, 1994.
[9] A. Sánchez-Arroyo. Determining the total colouring number is NPhard. Discrete Math., 78:315-319, 1989.
[10] V. G. Vizing. Some unsolved problems in graph theory. Russian Math. Surveys, 23:125-141, 1968.

[^0]: ${ }^{1}$ The reader is referred to [4] for basic concepts on Graph Theory.

