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Abstract. Determining the total chromatic number χ′′(G) of a graph
G is an NP-hard problem even for bipartite graphs. For graphs with a
universal vertex, it was solved by Hilton in 1990. Using this result, in
2012, Campos et al. solved the problem for split-indifference graphs, all of
which have at most three cliques. In 1991, Hilton also solved the problem
for bipartite graphs with adjacent bi-universal vertices (a vertex is bi-
universal if it is adjacent to all vertices in the other part of the bipartition).
We conjecture that a bipartite graph G with at most three bicliques has:
χ′′(G) = ∆(G) + 2 if G has a ∆-subgraph H with adjacent bi-universal
vertices satisfying χ′′(H) = ∆(H) + 2 = ∆(G) + 2; χ′′(G) = ∆(G) + 1

otherwise. If G has at most three bicliques, we prove that either G has
adjacent bi-universal vertices (and our conjecture follows from Hilton’s
result), or the graph obtained after successively removing twins is a P5.
For the latter case, we give a condition under which our conjecture holds.
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1 Introduction

All graphs1 considered are undirected, simple, and always connected.
The vertex and edge sets of a graph G are denoted V (G) and E(G), re-
spectively, and the maximum degree of G is denoted ∆(G), or ∆ when free
of ambiguity. The set of vertices adjacent to some u ∈ V (G) is denoted
N(u). Two vertices u, v are twins if N(u) = N(v). An independent set
(matching) in G is a subset of vertices (edges) no two of which are adjacent
in G. The cardinality of a maximum matching in G is denoted µ(G). A
vertex u of G is universal if it is adjacent to all other vertices of G. The
graph G is complete if E(G) = {uv : u, v ∈ V (G)}.

A graph G with |V (G)| > 1 is bipartite if its vertex set can be (uniquely,
since G is connected) partitioned into two independent sets A,B. The
bipartition {A,B} is said to be an equi-bipartition, in which case G is equi-
bipartite, if |A| = |B|. A vertex u of a bipartite graph G is bi-universal if
it is adjacent to all vertices in the other part. The bipartite complement
of a bipartite graph G, denoted G, is the graph defined by V (G) = V (G)

and E(G) = {uv /∈ E(G) : u ∈ A, v ∈ B}, being {A,B} the bipartition of
G. The graph G is complete bipartite if E(G) = {uv : u ∈ A, v ∈ B}.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆
E(G). A ∆-subgraph of G is a subgraph H of G with ∆(H) = ∆(G). For
U ⊆ V (G), the subgraph of G induced by U , denoted G[U ], is the graph
defined by V (G[U ]) = U and E(G[U ]) = {uv ∈ E(G) : u, v ∈ U}. A clique
in G is a maximal induced subgraph of G which is complete. A biclique in
G is a maximal induced subgraph of G which is complete bipartite.

A k-total colouring of a graph G is a function c : V (G) ∪ E(G) → C,
with |C| = k such that, given adjacent u, v ∈ V (G), adjacent e1, e2 ∈
E(G), and an edge e incident to a vertex w ∈ V (G), it holds that c(u) ̸=
c(v), c(e1) ̸= c(e2), and c(w) ̸= c(e). The least k for which G admits a k-
total colouring is the total chromatic number of G, denoted χ′′(G). Clearly,
χ′′(G) ≥ ∆+1. The Total Colouring Conjecture (TCC) [1, 10] states that

1The reader is referred to [4] for basic concepts on Graph Theory.
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χ′′(G) ≤ ∆+2 for every graph G. If χ′′(G) = ∆+1 (χ′′(G) = ∆+2), then
G is said to be Type 1 (Type 2 ). The TCC was proved for some graph
classes, such as complete and complete bipartite graphs [2].

The Total Colouring Problem consists of, given a graph G, determining
χ′′(G). This problem is NP-hard [9] even when restricted to regular bi-
partite graphs [8]. In 1990, the problem was solved (i.e. a polynomial-time
algorithm for the problem was shown) by Hilton [6] for graphs with univer-
sal vertices. In 1991, Hilton [7] showed the analogous result for bipartite
graphs with adjacent bi-universal vertices, as transcribed in Lemma 1.

Lemma 1 ([7]). A bipartite graph G with adjacent bi-universal vertices is:
Type 2 if G is equi-bipartite and |E(G)|+µ(G) ≤ n−1, being n the number
of vertices in each part of the bipartition of G; Type 1 otherwise.

Observation 1 ([2]). If G is a bipartite graph whose vertices of degree
∆ are all in the same part of the bipartition, then G is Type 1 and a
(∆ + 1)-total colouring of G can be easily constructed.

In 2012, Campos et al. [3] solved the Total Colouring Problem for
split-indifference graphs, proving that such a graph G is: Type 2 if it
has some Type 2 ∆-subgraph with universal vertices; Type 1 otherwise.
Split-indifference graphs have at most three cliques. We conjecture below
the analogous for bipartite graphs with at most three bicliques, relying on
Hilton’s result for bipartite graphs with adjacent bi-universal vertices.

Conjecture 1. A bipartite graph G with at most three bicliques is Type 2 if
and only if it has a Type 2 ∆-subgraph with adjacent bi-universal vertices.

In Sect. 2 we characterise the structure of bipartite graphs with at most
three bicliques. In Sect. 3 we prove Conjecture 1 for a subclass of them.

2 Characterisation of the graphs in the class

We characterise the structure of the bipartite graphs G with at most
three bicliques by exhausting all the possibilities, listed in Theorem 1, for
the graph obtained from G after successively removing twins.
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Theorem 1. Let G be a connected bipartite graph with at most three
bicliques with no twins. Then G is isomorphic to one of the following
graphs: K2, P4, A, P5 (Figs 2.1a, 2.1b, 2.1c, 2.1d, respectively).

(a) K2: 1 biclique (b) P4: 2 bicliques (c) A: 3 bicliques (d) P5: 3 bicliques

Figure 2.1: Graphs with at most three bicliques and no twins

Proof. First, observe that if two vertices belonging to the same set of
bicliques of G are twins, then they are in the same part of the bipartition.
Second, if U, V are the vertex sets of two bicliques such that some u ∈ U \V
and some v ∈ V \ U are not in any other biclique, then uv /∈ E(G),
otherwise there would be another biclique containing both u and v.

We consider the cases in which G has 1, 2, or 3 bicliques separately.

Case G has exactly one biclique. In this case, G is complete bipartite. As
G has no twins, each of the parts has a single vertex, thus G ≃ K2.

Case G has exactly two bicliques: H and J . Since G is connected, V (H)∩
V (J) ̸= ∅. Let H ′ = G[V (H) \ V (J)] and J ′ = G[V (J) \ V (H)].

(i) Consider that E(H) ∩ E(J) ̸= ∅ (Fig. 2.2a).

H J

(a) Subcase (i)

H J

(b) Subcase (ii)
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vu
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(d) Contradiction in (ii)

Figure 2.2: Subcases when G has exactly two bicliques

We show that this subcase is possible. Let xy ∈ E(H) ∩ E(J).
Clearly, H ′ and J ′ are nonempty. As per the opening remarks to this
proof, and seeing that G has no twins, H ′ and J ′ contain a single
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vertex each, not mutually adjacent, but each adjacent to exactly one
of x, y. Without loss of generality, let u ∈ V (H ′) be adjacent to x,
and v ∈ V (J ′) be adjacent to y. Therefore, G ≃ P4 (see Fig. 2.2c).

(ii) Now, consider that E(H) ∩ E(J) = ∅ (Fig. 2.2b).

We show that this subcase is not possible. Since G is connected, there
must be x ∈ V (H) ∪ V (J) and xu, xv ∈ E(G) with v ∈ V (H ′) an
u ∈ V (J ′). However, the subgraph induced by {x, u, v} is a complete
bipartite graph that is neither a subgraph of H, nor of J , which is a
contradiction (see Fig. 2.2d).

Case G has exactly three bicliques: H,J,K. There are only two subcases:

(iii) V (H) ∩ V (J) ∩ V (K) ̸= ∅, E(H) ∩ E(J) ∩ E(K) = ∅;

(iv) E(H) ∩ E(J) ∩ E(K) ̸= ∅.

All other subcases can be shown to be impossible, as they clearly lead to
a complete bipartite graph that is not a subgraph of any of H,J,K.

Proof for (iii). We show that this subcase is possible. As there are no
edges in the total intersection of the bicliques and G has no twins, the
total intersection contains only a single vertex v. Therefore, one of the
three bicliques, say K, is equal to G[{v} ∪ N(v)]. This implies that the
vertices exclusive to bicliques H and J are in the same part as v. As per
the opening remarks to this proof, we conclude that V (H) \ V (K) and
V (J) \ V (K) contain a single vertex each. Let those vertices be h and j,
respectively. Because the vertices belonging to the same set of bicliques are
all twins, we conclude that there is a single vertex x ∈ V (H)∩V (K)\V (J)

that is adjacent to h, and symmetrically, there is a single vertex y ∈
V (J) ∩ V (K) \ V (H) that is adjacent to j. Thus, the only possible graph
that satisfies these conditions is isomorphic to P5 (see Fig. 2.3a).

Proof for (iv). We show that this subcase is possible. Let xy be the edge
in E(H ∩J ∩K), and let V1 and V2 be the parts of G. We note that x and
y are bi-universal in G, and thus V1 = N(x), V2 = N(y), without loss of
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(b) Solution for (iii): graph A

Figure 2.3: Solutions for when G has exactly three bicliques

generality. Also, since G[{x} ∪N(x)] and G[{y} ∪N(y)] induce bipartite
subgraphs included in some biclique, we assume that G[{x} ∪ N(x)] is a
subgraph of H, and G[{y} ∪N(y)] is a subgraph of J . This implies that
there is no vertex in V (K) that is not also in either V (H) or V (J). There
cannot be any vertex in V (H)∩V (J)\V (K), otherwise that vertex would
be bi-universal in G[V (H) ∪ V (J)], thus bi-universal in G, and then a
twin vertex of either x or y, contradicting the fact that G has no twins.
Furthermore, both (V (H) ∩ V (K)) \ V (J) and (V (J) ∩ V (K)) \ V (H)

are nonempty, otherwise K would be entirely contained in either H or J .
Lastly, V (H) \ (V (J) ∪ V (K)) and V (J) \ (V (H) ∪ V (K)) must be both
nonempty, because H and J are distinct from K. According to the opening
remarks to this proof, and since all edges of G are contained either in H

or in J , we obtain that G is isomorphic to the graph A (Fig. 2.3b).

3 Total colouring some graphs in the class

Let G be a bipartite graph with at most three bicliques and let G′ be
the graph obtained from G after the successive removal of twins. Observe
that each maximal set of twins in G corresponds to a single vertex in G′.
Amongst the graphs characterised in Theorem 1, P5 is the only one which
does not have adjacent bi-universal vertices. Hence, if G′ ̸≃ P5, then the
Total Colouring Problem is solved for G by Lemma 1. So, the only case
remaining to prove Conjecture 1 is when G′ ≃ P5.
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Theorem 2. Let G′ be the graph obtained from a bipartite graph G after
the successive removal of twins such that G′ ≃ P5. Let A,B,C,D,E be the
maximal sets of twins in G as in Fig. 3.1a, with cardinalities a, b, c, d, e,
respectively. Without loss of generality, suppose a ≥ e. Then:

(i) if b+ d ̸= c+ a, then G is Type 1.

(ii) if b + d = c + a > ad +min(a, d), then G has a Type 2 ∆-subgraph
with adjacent bi-universal vertices (thus G is also Type 2).

(iii) if b + d = c + a ≤ ad + min(a, d) and a > max(d, e), then G is
Type 1.
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H1 H2

∆
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D
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∆
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X

(a) (b)

Figure 3.1: Illustrations for Theorem 2

Proof. First, observe that the ∆-vertices of G may only occur in sets
B,C,D, since the degree of vertices in C is b+ d, which is strictly greater
than the degree of vertices in A (E), which is b (d). We begin by prov-
ing (i). Since a ≥ e, if b+ d ̸= c+ a, then the ∆-vertices of G occur only
in B ∪D, and the theorem follows from Observation 1.

In (ii) and (iii), remark that b+ d = c+ a = ∆, implying, since a ≥ e,
that ∆-vertices occur in B and C, occurring also in D if a = e. Let H1 =

G[A∪B∪C∪D] and H2 = G[B∪C∪D∪E] (see Fig. 3.1a). Note that H1

and H2 are ∆-subgraphs of G. Note further that H1 is equi-bipartite and
has adjacent bi-universal vertices, with E(G) = ad and µ(G) = min(a, d).
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Therefore, from Lemma 1, if ad+min(a, d) < ∆(H1) = ∆(G) = ∆, then
H1 is Type 2, and so is G, and this concludes the proof of (ii). By the way,
remark that H2 can only be Type 2 if a = e, in which case we can swap
the roles of A and E and of B and D, and then we are reduced to (ii).

It remains to prove (iii). In this case, as b+d = c+a ≤ ad+min(a, d)

holds, H1 is Type 1. Furthermore, because a > d, we have ad+min(a, d) =

ad + d, and thus ad ≥ b. It remains now to extend the (∆ + 1)-total
colouring ϕ of H1 to a (∆ + 1)-total colouring of G. Let X = G[D ∪ E]

(see Fig. 3.1b). For each v ∈ D, the set {ϕ(uv) : v ∈ D}∪{ϕ(v)} is the set
of the c+1 colours not available to colour the edges of X incident to v. We
can colour the vertices in E by choosing an arbitrary colour used to colour
some vertex in C and assigning it to all vertices in E. Now, for every
vertex v ∈ D, we have a set L(v) with at least ∆+1−(c+1)−1 = a−1 ≥
max(d, e) colours that may be used to colour the edges of X incident to
v. Assigning the list L(v) to all edges of X incident with v, each such list
has a− 1 ≥ max(d, e) = ∆(X) colours. Then, we obtain a colouring of all
edges of X from Galvin’s theorem on edge choosability [5].
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