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1 Introduction

A digraph D is a pair D = (V,A), where V is a finite set of vertices,
and A ⊆ V ×V is a set of ordered pairs of vertices, called arcs. For ease of
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notation, we write uv for the arc (u, v). Given a digraph D = (V,A), the
outdegree (resp. indegree) of v ∈ V , denoted by d+(v) (resp. d−(v)), is the
number of arcs leaving (resp. entering) v, and the minimum outdegree of D,
denoted by δ+(D), is the minimum min{d+(u) : u ∈ V (D)}. Simmilarly,
the minimum indegree of D is defined as δ−(D) = min{d−D(u) : u ∈ V (D)}.
A path is a digraph P that admits an ordering v0 · · · vℓ of its vertices for
which A(P ) = {vivi+1 : i = 0, . . . , ℓ − 1}. We write P = v0 · · · vℓ to
make this order explicit. The vertex v0 (resp. vℓ) is called the initial
vertex (resp. final vertex ) of P , and the remaining vertices of P are called
internal vertices. Given distinct vertices u, v of a digraph D, a uv-path is
a path P ⊆ D with initial vertex u and final vertex v; and a path P ⊆ D

is called a Hamiltonian path of D if V (P ) = V (D).
A cycle is a digraph C obtained from a path v0 · · · vℓ by adding the

arc vℓv0. Finally, a set of arcs F ⊆ A(D) is a feedback arc set1 of D if
D− F , the digraph obtained from D by removing the arcs in F , does not
contain cycles; and a feedback arc set F is minimal if there is no feedback
arc set F

′ such that F
′ ⊊ F . We remark that distinct minimal feedback

arc sets may have distinct sizes (see Figure 1). We observe that if F is a
minimal feedback arc set of a digraph D, then for every arc uv ∈ F , there
is a vu-path in D−F . Indeed, let uv ∈ F . By the minimality of F , the set
F ′ = F − uv is not a feedback arc set, and hence D − F ′ = (D − F ) + uv

contains a cycle C. Since F is a feedback arc set, C ̸⊆ D − F . Therefore,
uv ∈ A(C) and C − uv is a vu-path in D − F .

In the figures throughout the paper, we use light blue (resp. orange) to
highlight Hamiltonian paths (resp. minimal feedback arc sets). We refer
to Bang-Jensen and Gutin [1] for undefined terms.

In particular, minimal feedback arc sets have relations to the well-
known Cacceta-Häggkvist Conjecture [3] and other correlated problems,
as the following conjecture, posed by Hoáng and Reed [5].

Conjecture 1 (Hoáng – Reed, 1987). Every digraph D with δ+(D) ≥ k

contains k cycles C1, . . . , Ck such that Cj intersects ∪j−1
i=1V (Ci) in at most

1It is common to find in the literature the acronym FAS for feedback arc sets.
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Figure 1: Two minimal feedback arc sets in a digraph D highlighted
in orange. Drains are ilustrated by red vertices.

one vertex for 2 ≤ j ≤ k.

Thomassen [6] proved that every digraph with minimum outdegree at
least 2 has two cycles that intersect at a unique vertex, which settles the
case k = 2 of Conjecture 1. Welhan [7] verified Conjecture 1 in the case
k = 3 using a connectivity structure called nearest separators, and Havet,
Thomassé and Yeo [4] checked Conjecture 1 for tournaments, where a
tournament is a digraph obtained from a complete graph by orienting
its edges. In particular, one can show that every digraph D containing
a minimal feedback arc set F that has a path of length δ+(D) in D[F ]

satisfies Conjecture 1.
We are interested in the relation between minimal feedback arc sets

and Hamiltonian paths in tournaments. In 1988, Bar-Noy and Naor [2]
showed that in any tournament there is a bijection between its minimal
feedback arc sets and its Hamiltonian paths. In this paper we present a
short and elementary proof of this result. For that, given a digraph D,
we denote by PD (resp. FD) the set of Hamiltonian paths (resp. minimal
feedback arc sets) in D.

Theorem 2 (Bar-Noy – Naor, 1988). If D is a tournament, then

|PD| = |FD|

2 An alternative proof of Theorem 2

In this section, we present an alternative proof of Theorem 2. Let
P = v1 · · · vn be a Hamiltonian path in a tournament D. An arc vivj is
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Figure 2: A minimal feedback arc set obtained from the backward arcs.

called a backward arc (with respect to P ) if i > j. Otherwise, we say that
vivj a forward arc. Note that, if vivj is a backward arc, then P ∪ vivj

contains a cycle. Therefore, the set F of backwards arcs with respect to
P is a minimal feedback arc set in D (see Figure 2). In this case, we say
that P induces the minimal feedback arc set F . This gives us the following
result.

Proposition 3. Every Hamiltonian path in a tournament D induces a
minimal feedback arc set.

Denote by i the function i : PD → FD in which i(P) is the minimal
feedback arc set induced by P . Our proof is divided into two parts. In
Proposition 4 we show that i is injective, and in Theorem 7 we prove that
i is surjective.

Proposition 4. Let D be a tournament and P1, P2 be two Hamiltonian
paths in D. If i(P1) = i(P2), then P1 = P2.

Proof. Let P1 and P2 be distinct Hamiltonian paths in D, and put F1 =

i(P1) and F2 = i(P2). We prove that F1 ̸= F2. Let v be the first vertex
that differs the ordering of P1 from the ordering of P2, that is, if P1 =

v0 · · · vivi+1 · · · vj · · · vn and P2 = v0 · · · vivj · · · vl, then, v = vi+1. By the
definition of P1 and P2, we have vivi+1, vivj ∈ A(D). Now, suppose that
vi+1vj ∈ A(D). In this case, vi+1vj is a forward arc with respect to P1,
and a backward arc with respect to P2, which implies that vi+1vj /∈ F1

and vi+1vj ∈ F2, and hence F1 ̸= F2, as desired (see Figure 3). Thus, we
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may assume that vjvi+1 ∈ A(D). In this case, vjvi+1 is a backward arc
with respect to P1, and a forward arc with respect to P2, which implies
that vi+1vj ∈ F1 and vi+1vj /∈ F2, and hence F1 ̸= F2, as desired (see
Figure 3).

v0 vi+1 vj
P1

v0 vj vi+1 P2

v0 vi+1 vj
P1

v0 vj vi+1 P2

Figure 3: Left: the case vi+1vj ∈ A(D), in which vi+1vj ∈ F2 and vi+1vj /∈
F1. Right: the case vjvi+1 ∈ A(D), in which vjvi+1 ∈ F1 and vjvi+1 /∈ F2.

From now on, given a vertex v in a tournament D we denote by A+(v)

(resp. A−(v)) the set of arcs of D leaving (resp. entering) v. In the rest
of the paper we prove that i is surjective. For that, we need two auxiliary
results. The following proposition shows that for every minimal feedback
arc set F in a tournament there is a vertex v with the following property:
The set of arcs in F that are incident to v is precisely A−(v). Formally,
we say that a vertex v ∈ V (D) is a drain2 of F in D if F ∩ (A+(v) ∪
A−(v)) = A−(v) (see Figure 1).

Proposition 5. Let F be a minimal feedback arc set in a tournament D.
Then there is precisely one drain of F in D.

Proof. Let F and D be as in the statement, and let S = {v ∈ V (D) :

A−(v) ⊆ F}. First, we prove that if v ∈ S and vu ∈ A+(v), then vu /∈ F .
This implies that every vertex in S is a drain of F . Suppose vu ∈ F , and
let F ′ = F −vu. By the minimality of F , there is a cycle C in D−F ′, but

2The word “drain” was chosen to avoid confusions with the usual definition “sink”,
used for vertices with outdegree 0.
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then C must contain vu, otherwise F would not be a minimal feedback
arc set of D. Thus, D − F ′ contains an arc entering v, a contradiction
since A−(v) ⊆ F .

It remains to prove that |S| = 1. If S = ∅, then every vertex has an
incoming arc that does not belong to F , and hence δ−(D− F ) ≥ 1. Then
there is a cycle in D− F , a contradiction to the definition of feedback arc
set. Now, suppose that there are two distinct vertices in S, say v and u.
Suppose, without loss of generality, that vu ∈ A(D). Since u ∈ S, we have
vu ∈ F . On the other hand, as proved above, since v ∈ S and vu ∈ A+(v),
we have vu /∈ F , a contradiction.

The next proposition is an important step in our proof of Theorem 2.

Proposition 6. Let F be a minimal feedback arc set in a tournament D,
and let v be the drain of F . Then F induces a minimal feedback arc set on
D − v.

Proof. Let F , D, and v be as in the statement. Put D′ = D − v and let
F ′ = F ∩ A(D′). If F ′ is not a feedback arc set in D′, then there is a
cycle in D′ − F ′ ⊆ D − F , a contradiction to F being a feedback arc set.
Now, suppose that F ′ is not a minimal feedback arc set of D′. Then there
is an arc xy ∈ F ′ such that F ′ − xy is a feedback arc set of D′. By the
minimality of F , F − xy is not feedback arc set. Thus, there is a yx-path
P in D − F , while there is no yx-path in D′ − F ′. Therefore P must
contain v as an internal vertex, a contradiction because D−F has no arcs
in A−(v).

Recall that given a Hamiltonian path P in a tournament D, the set
of backward arcs of P , i(P), is the minimal feedback arc set induced by
P . The following result says that i is a surjective function, concluding our
proof of Theorem 2.

Theorem 7. Let F be a minimal feedback arc set in a tournament D.
Then there is a Hamiltonian path P in D whose starting vertex is the
drain of F , and such that i(P) = F.
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Proof. The proof follows by induction on the number n of vertices of D.
If n = 1 the result is trivial, so we assume n ≥ 2. By Proposition 5,
there is precisely one drain of F in D, say v0. Put D′ = D − v0 and
F ′ = F ∩ A(D′). By Proposition 6, F ′ is a minimal feedback arc set
of D′. Now, let v1 ∈ V (D′) be the drain of F ′, which (again) exists by
Proposition 5. By the induction hypothesis, there is a Hamiltonian path
P ′ in D′ whose starting vertex is v1 and, moreover, F ′ is the minimal
feedback arc set induced by P ′. We claim that v0v1 ∈ A(D). Indeed,
suppose that v0v1 /∈ A(D). Since D is a tournament, we have v1v0 ∈ A(D),
and, in particular, A−

D′(v1) = A−
D(v1). In this case, as A−(v0) ⊆ F and

v1v0 ∈ A−(v0), we have v1v0 ∈ F . By the minimality of F , there is a
v0v1-path in D − F , a contradiction because A−(v1) ⊆ F ′ ⊆ F . Now,
since P ′ is a Hamiltonian path in D′, P = v0P

′ is a Hamiltonian path
in D (see Figure 4). Moreover, since v0 is the starting vertex of P , every
arc in A−(v0) is a backward arc of P , and since F − A−(v0) = F ′, every
other arc in F is a backward arc of P ′, and hence is a backward arc of P .
Therefore, F is the minimal feedback arc set induced by P as desired.

3 Conclusion

In this paper we present an alternative and short proof of the bijection
between the minimal feedback arc sets and the Hamiltonian paths in a
tournament. This proof yields a polynomial time algorithm that, given
a feedback arc set F, returns a Hamiltonian path by repeatedly finding
and removing a drain. We wonder whether drains can be used to find
other interesting structures in tournaments as, for example, a minimal
feedback arc set that contains a sufficiently long path, which would yield
a strengthening of the result in [4].
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D

v0v0

F

(a)

v1 v1

F ′

D − v0

(b)

v1 v1

F ′

D − v0
P ′

(c)

v1 v0

D
P

(d)

Figure 4: The procedure described in the proof of Theorem 7 on a tourna-
ment D. Drains are depicted as red vertices. (a) A minimal feedback arc
set F and its drain v0; (b) A minimal feedback arc set F ′ in D − v0 and
its drain v1; (c) A Hamiltonian path P ′ in D− v0 whose starting vertex is
v1. (d) A Hamiltonian path P in D obtained form P ′ by adding v0v1.
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