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Abstract. In this short note, we consider the problem of nonpara-
metric estimation of the trend in a type of stochastic differential
equation with small noise given by a general Gaussian noise. We
consider the case of continuos and discrete time observations.
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1 Introduction

The problem of parameter estimation in stochastic differential equa-
tions (SDEs) driven by long memory processes is a relatively new and
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interesting topic of research. There has been an increasingly interest in
this type of problem. For example, we can mention [3, 4, 5] among others.
In there, the authors studied the problem of parameter estimation in a
SDE driven by fractional Brownian motion in different contexts. Also, we
can mention the works [1, 2]. In here, the authors consider the problem
of drift parameter estimation in a linear SDE driven by general Gaussian
process.

In this short note, motivated by the works, [1], [2] [6] and [9] we deal
with the problem of nonparametric estimation in a non-linear SDE driven
by small general Gaussian process. First, based on continuous time obser-
vations, we prove that our nonparametric estimator is uniformly consistent.
Then, by means of an Euler type approximation of the solution of the SDE
we provide a new discrete time estimator. This estimator converges, un-
der some additional conditions on the mesh of the partitions related to the
Euler scheme, to the true value of the parameter.

This paper is organized as follows. In Section 2 we give a brief intro-
duction to the general Gaussian noise, its main properties and stochastic
integration. In Section 3, we establish the main results of this paper, i.e.
the consistency and the rate of convergence of the proposed estimator is
shown. Finally, in Section 4 we study the convergence of the discrete
version of the proposed estimator.

2 Preliminaries

We briefly recall some relevant aspects related to the noise of the equa-
tion, its main properties and stochastic integration.

2.1 General Gaussian noise

In a complete probability space (Ω,F ,P) we introduce the process G =

(Gt, t ∈ [0, T ]) as a continuous centered Gaussian process with a continuos
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covariance function R given by

E(GtGs) = R(s, t), t, s ∈ [0, T ].

In the rest of the manuscript we will assume that the covariance of the
Gaussian process G satisfies the following Hypothesis:

(H): For β ∈ (1/2, 1), the covariance function E(GtGs) = R(s, t) for
any t ̸= s ∈ [0,∞) satisfies

∂2

∂t∂s
R(t, s) = Cβ|t− s|2β−2 +Ψ(t, s),

with

|Ψ(t, s)| ≤ C∗
β|ts|β−1,

where the constants Cβ > 0, C∗
β ≥ 0 do not depend on T . Moreover, for

any t ≥ 0, R(0, t) = 0.

Remark 2.1. Some of the Gaussian processes that fulfill the previous hy-
pothesis, for H > 1/2, are fractional Brownian motion, sub-fractional
Brownian motion, bi-fractional Brownian motion and generalized sub-
fractional Brownian motion (see [10, 8] for details).

An important consequence of the previous hypothesis on R is the fol-
lowing lemma (see [2] for the proof)

Lemma 2.2. There exits Cβ > 0 a constant independent of T , such that
for all s, t ≥ 0,

E[(Gt −Gs)
2] ≤ Cβ|t− s|2β

and when s = 0, we can obtain E[(Gt)
2] ≤ C∗

βt
2β.

Let E denote the space of all real step function on [0,T] and H is defined
as the closure of E endowed with the inner product

⟨1[a,b), 1[c,d)⟩H = E[(Gb −Ga)(Gc −Gd)].
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G = {G(h), h ∈ H} is an isonormal Gaussian process, indexed by the
elements in the Hilbert space H, i.e., the Gaussian family G of random
variables fulfill

E(G(g)G(h)) = ⟨g, h⟩H, ∀g, h ∈ H.

Now, we present a usefull result presented in [1], that we will need in the
following

Proposition 2.3. Let us denote ν[0,T ] as the set of bounded variation
functions on [0, T ]. Then, ν[0,T ] is dense in H and we have

⟨f, g⟩H =

∫
[0,T ]2

R(t, s)νf (dt)νg(ds), ∀f, g ∈ ν[0,T ],

where νg is the Lebesgue - Stieljes signed measure associated with g0 defined
as

g0(x) =

{
g(x) if x ∈ [0, T ]

0 otherwise.

Furthermore, for the property of R(t, s), we have

⟨f, g⟩H =

∫
[0,T ]2

f(t)g(s)
∂2

∂t∂s
R(t, s)dtds, ∀f, g ∈ ν[0,T ].

2.2 The model

Let us consider the following stochastic differential equation

dXt = b(Xt)dt+ εdGt, X0 = x0, 0 ≤ t ≤ T, (2.1)

where b(·) is suppose to be unknown. Also, let us assume that x is the
solution of the ordinary differential equation given by

dxt
dt

= b(xt), xt0 = x0, 0 ≤ t ≤ T. (2.2)

Here, we need to estimate the function bt = b(xt) based on observations
of {Xt, 0 ≤ t ≤ T}. To do this we will assume the following condition

(H1) |b(x)− b(y)| ≤ L|x− y|, x, y ∈ R,
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where L > 0. Furthermore, by assumption (H1) we can obtain |b(x)| ≤
M(1 + |x|) with M = max{b(0), L}). Also, let assume that b is bounded
above by a non random positive constant C, then

|b(xt)−b(xs)| ≤ L|xt−xs| ≤ L|
∫ t

s
b(xr)dr| ≤ CL|t−s|, t, s ∈ R, (2.3)

where, we have used that x satisfies equation (2.2).

Now, we introduce the following lemma that will be needed throughout
the paper.

Lemma 2.4. Let Xt and xt be given by (2.1) and (2.2), respectively. Addi-
tionally, assume that b(·) satisfies condition (H1) and G satisfies hypothesis
(H). Then,

|Xt − xt| ≤ eLT ε|Gt|

and

sup
0≤t≤T

E|Xt − xt|2 ≤ e2LTC∗
βε

2T 2β,

where β ∈ (1/2, 1) and C∗
β is a finite constant.

Proof. Let us defined ft := |Xt − xt|, then by (2.1) and (2.2), we have

ft ≤
∫ t

0
|b(Xr)− b(xt)|dr + ε|Gt| ≤ eLtε|Gt|,

where the last inequality comes from the Gronwall’s lemma. Continuing,
we use the previous result and Lemma 2.2 to obtain that

sup
0≤t≤T

E|Xt − xt|2 ≤ e2LT ε2 sup
0≤t≤T

E|Gt|2 ≤ e2LTC∗
βε

2T 2β.

The last inequality is due to Lemma 2.2. Precisely, using that E[(Gt)
2] ≤

C∗
βt

2β , t ∈ [0, T ] and the fact that β > 0.
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3 Consistency of the estimator

Let us define by Θ0(L) as the class of all functions b, such that the
condition (H1) is fulfill and b is uniformly bounded by a constant C. In
a similar way, we define Θk(L) as the class of all functions b which are
k-differentiable (b(k), means k-derivative of b) with

|b(k)(x)− b(k)(y)| ≤ L|x− y|, x, y ∈ R,

as before, we also assume that b is uniformly bounded by C.
To construct our estimator of b we need to define a bounded function K(u)

with finite support given by [a, b] satisfying the following condition

(H2) K(u) = 0 for u /∈ [a, b] and
∫ b

a
K(u)du = 1.

Additionally, suppose that the function K satisfies the following conditions
(through all the work from now on)

i
∫
RK(u)2du < ∞;

ii
∫
R u2(k+1)K(u)2du < ∞;

iii
∫
R |u|β−1K(u)du < ∞, with β ∈ (1/2, 1).

Remark 3.1. Some of the kernels that fulfill conditions i to iii are the
Epanechnikov, quartic and triangle kernel (see [11] for details).

Motivated by the works Mishra and Prakasa Rao [6] and Prakasa Rao
[9] we define the following kernel type estimator for the function bt = b(xt)

by

b̂t =
1

hε

∫ T

0
K

(
u− t

hε

)
dXu, (3.1)

where hε → 0 with ε2h−1
ε → 0 as ε → 0. Also, we write Eb for the expected

value when b(·) is the trend function.
We are ready to state the main result of this section.
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Theorem 3.2. Let us assume that b(x) belongs to Θ0(L) and that hε → 0

with ε2h2β−2
ε → 0 as ε → 0. Also, assume that (H), (H1) and (H2) hold.

Then, for any 0 ≤ c ≤ d ≤ T , the estimator b̂t given by (3.1) is uniformly
consistent, i.e.

lim
ε→0

sup
b(x)∈Θ0(L)

sup
c≤t≤d

Eb(|b̂t − b(xt)|2) = 0.

Proof. By the definition of Xt and b̂t, we can obtain

Eb[(b̂t − b(xt))
2] = Eb

[(
1

hε

∫ T

0
K

(
u− t

hε

)
(b(Xu)− b(xu))du

+
1

hε

∫ T

0
K

(
u− t

hε

)
b(xu)du− b(xt)

+ Eb
ε

hε

∫ T

0
K

(
u− t

hε

)
dGu

)2
]

≤ 3Eb

[(
1

hε

∫ T

0
K

(
u− t

hε

)
(b(Xu)− b(xu))du

)2
]

+ 3Eb

[(
1

hε

∫ T

0
K

(
u− t

hε

)
b(xu)du− b(xt)

)2
]

+
3ε2

h2ε
Eb

[(∫ T

0
K

(
u− t

hε

)
dGu

)2
]
=

3∑
j=1

Ij .

First, for I1, we have

I1 = 3Eb

[(
1

hε

∫ T

0
K

(
u− t

hε

)
(b(Xu)− b(xu))du

)2
]

= 3Eb

[(∫
R
K (z) (b(Xzhε+t)− b(xzhε+t))dz

)2
]

≤ C

∫
R
K2 (z) sup

0≤zhε+t≤T
E(Xzhε+t − xzhε+t)

2dz ≤ Ck,L,β,T ε
2,

here, we have used the change of variable z = (u− t)/hε, (H1) and Lemma
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2.4. Now, for I2

I2 = 3Eb

[(
1

hε

∫ T

0
K

(
u− t

hε

)
b(xu)du− b(xt)

)2
]

= 3L2Eb

[(∫
R
K (z) (b(xzhε+t)− b(xt))dz

)2
]

≤ C

(∫
R
K (z) zhεdz

)2

≤ Ch2ε,

where, we have used the same change of variables as before, inequality
(2.3) and the assumptions over K. Finally, for I3 we use Proposition 2.3,
Lemma 2.2 and, again, the assumptions over K

I3 =
3ε2

h2ε
Eb

[(∫ T

0
K

(
u− t

hε

)
dGu

)2
]

= Cβ
3ε2

h2ε

∫ T

0

∫ T

0
K

(
u− t

hε

)
K

(
v − t

hε

)
|u− v|2β−2dvdu

+ C∗
β

3ε2

h2ε

∫ T

0

∫ T

0
K

(
u− t

hε

)
K

(
v − t

hε

)
|uv|β−1dvdu

= I3.1 + I3.2.

First, for I3.1

I3.1 ≤ 3Cβε
2h2β−2

ε

∫
R

∫
R
K(u)K(v)|u− v|2β−2dvdu

Now, for I3.2 using the change of variable ũ = (u−t)/hε and ṽ = (v−t)/hε

I3.2 ≤ 3C∗
βε

2h2β−2
ε

∫
R

∫
R
K(u)K(v)|uv|β−1dvdu

+ Cε2hε

(∫
R
K(u)|u|β−1du+ 1

)
.

Consequently, inequalities for I1 to I3 allow us to obtain the result.

Now, we consider the rate of convergence of b̂ in the following theorem
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Theorem 3.3. Let us assume that b(x) belongs to Θk(L) and that hε =

ε
1

k−β+2 . Also, assume that (H) and (H2) hold, and

(H3)

∫
R
ujK(u)du = 0, for j = 1, 2, . . . k and

∫
R
uk+1K(u)du < ∞.

Then, for any 0 ≤ c ≤ d ≤ T , we have

lim sup
ε→0

sup
b(x)∈Θk+1(L)

sup
c≤t≤d

Eb(|b̂t − b(xt)|2)ε
−2(k+1)
k−β+2 < ∞.

Proof. To prove the result, we need to refine some of the computations in
the previous theorem. Precisely, the computation of the upper bound for
I2. To do this, we will use the Taylor’s formula, i.e.

b(y) = b(x) +

k∑
j=1

b(j)(x)
(y − x)j

j!
+
[
b(k)(z)− b(k)(x)

] (y − x)k

k!
,

where x ∈ R with |z−x| ≤ |y−x|. Using Taylor’s formula, the expression
for x and the upper bound in the previous theorem for I2 , we have

I2 ≤ C

[(∫
R
K (z) (b(xzhε+t)− b(xt))dz

)2
]

= C

 k∑
j=1

b(j)(xt)

(∫
R
K(u)ujdu

)
hjε(j!)

−1

+

(∫
R
K(u)uk(b(k)(zu)− b(k)(xt))du

)
hkε(k!)

−1

]2
,

for zu such that |xt − zu| ≤ |xt+hεu − xt| ≤ C|hεu|. Therefore,

I2 ≤ C

[(∫
R
|K(u)uk+1|hk+1

ε (k!)2du

)2
]

≤ Ch2(k+1)
ε

∫
R
K2(u)u2(k+1)du ≤ Ch2(k+1)

ε .

This and the estimates in the previous proof (upper bounds for I1 and I3)
allow us to obtain

sup
c≤t≤d

Eb(|b̂t − b(xt)|2) ≤ C
(
ε2 + h2(k+1)

ε + ε2h2β−2
ε

)
.
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Now, taking hε = ε1/(k−β+2), we get

lim sup
ε→0

sup
b(x)∈Θk+1(L)

sup
c≤t≤d

ε−2(k+1)/(k−β+2)Eb(|b̂t − b(xt)|2) < ∞.

Remark 3.4. Clearly, in order to obtain the previous result Theorem 3.3
we need to assume more regularity for the function b. If we take ε1/(2−β)

and only assume that b ∈ Θ0(L). Then,

lim sup
ε→0

sup
b(x)∈Θ0(L)

sup
c≤t≤d

ε−2/(2−β)Eb(|b̂t − b(xt)|2) < ∞.

Remark 3.5. For the case of fractional Brownian motion (β = H) we can
see that the rate of convergence is faster as H goes to one.

4 Discrete time version of the estimator

In this section, we present a discrete time version of the non parametric
estimator given by (3.1). To do this, we construct an Euler type numer-
ical approximation to the unique solution of (2.1). In fact, we define the
method as follows

Zti+1 = Zti + b(Zti)
T

m
+ ε∆Gti , Zt0 = Z0 = x0,

where ti = iT/m, ∆Gti = Gti+1 − Gti , using cm(s) = ⌊ms⌋/m, we can
write

Zt = x0 +

∫ t

0
b(Zcm(s))ds+ εGt, t ∈ [0, T ].

Under the assumptions on b the convergence of the Euler scheme follows
by some standard arguments (see [7] among others).

Now, using the Euler approximation we can construct a discrete type
counterpart to the estimator b̂. We have the following discrete time esti-
mator for b

b̃m =
1

hε

m∑
i=1

K

(
ui − t

hε

)
∆Zui (4.1)
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We obtain the following result concerning the convergence of b̃m to b.

Theorem 4.1. Let b̃m be given by (4.1). Assume conditions of Theorem
1, b bounded and that K is a γ-Holder continuos function with 0 < γ ≤ 1.
Then,

b̃m → b (in L2)

as h−2−2γ
ε ∆2γ

m → 0 as m → ∞ and ε → 0.

Proof. To prove the convergence of (4.1) to b, we will decompose b̂m − b

as

b̃m − b(xt) = b̃m − b̂t + b̂t − b(xt),

now

E[(b̃m − b(xt))
2] ≤ 2E[(b̃m − b̂t)

2] + 2E[(b̂t − b(xt))
2]

= J1 + J2.

The convergence to zero of J2 is ensure by Theorem 1. Therefore, we will
concentrate in the study of the term J1

J1 = 2E[(b̃m − b̂t)
2]

≤ 4E

( 1

hε

1

m

m−1∑
i=0

K

(
ui − t

hε

)
∆Zui −

1

hε

1

m

m−1∑
i=0

K

(
ui − t

hε

)
∆Xui

)2


+ 4E

( 1

hε

1

m

m−1∑
i=0

K

(
ui − t

hε

)
∆Xui −

1

hε

∫ T

0
K

(
u− t

hε

)
dXu

)2


= J1.1 + J1.2.

The convergence of J1.1 follows by the continuous mapping theorem and
the fact the Euler scheme converges. For J1.2, w.l.o.g, let assume that
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T = 1

1

hε

m−1∑
i=0

K

(
ui − t

hε

)
∆Xui =

1

hε

m−1∑
i=0

∫ ui+1

ui

K

(
ui − t

hε

)
dXu

=
1

hε

m−1∑
i=0

∫ ui+1

ui

K

(
ui − t

hε

)
dXu

=
1

hε

∫ 1

0
K

(
[mu]
m − t

hε

)
dXu.

This implies,

J1.2 = 4E

( 1

hε

∫ 1

0
K

(
[mu]
m − t

hε

)
dXu − 1

hε

∫ 1

0
K

(
u− t

hε

)
dXu

)2


= 4E

( 1

hε

∫ 1

0

[
K

(
[mu]
m − t

hε

)
−K

(
u− t

hε

)]
dXu

)2


= J1.2.1 + J1.2.2,

where

J1.2.1 = 4E

( 1

hε

∫ 1

0

[
K

(
[mu]
m − t

hε

)
−K

(
u− t

hε

)]
b(Xu)du

)2
 ,

assuming b is bounded and since K is γ-Holder continuos function with
0 < γ ≤ 1, we get

J1.2.1 ≤ C

h2+2γ
ε

(
[mu]

m
− u

)2γ

≤ C

h2+2γ
ε

∆2γ
m .

For J1.2.2, we get

J1.2.2 = 4
ε2

h2ε
E

(∫ 1

0

[
K

(
[mu]
m − t

hε

)
−K

(
u− t

hε

)]
dGu

)2


≤ 4
ε2

h2ε

∫ 1

0

∫ 1

0

∣∣∣∣∣K
(

[mu]
m − t

hε

)
−K

(
u− t

hε

)∣∣∣∣∣
∣∣∣∣∣K
(

[mv]
m − t

hε

)
−K

(
v − t

hε

)∣∣∣∣∣
×
∣∣∣∣ ∂2

∂u∂v
R(u, v)

∣∣∣∣ dudv,
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the Holder continuity of K implies

J1.2.2 ≤ 4
ε2

h2+2γ
ε

∆2γ
m

∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂u∂v
R(u, v)

∣∣∣∣ dudv ≤ C
ε2

h2+2γ
ε

∆2γ
m .

Taking into account the previous computations, we can get

J1.2 ≤ C
1

h2+2γ
ε

∆2γ
m .

Clearly, under the assumption of Theorem 4.1 we have that J2 converges
to zero as m → ∞ and ε → 0. Therefore, the result is achieved.
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