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Abstract. These lecture notes are intended as reader’s digest of re-
cent work on a diagram-free approach to the renormalized centered
model in Hairer’s regularity structures. More precisely, it is about the
stochastic estimates of the centered model, based on Malliavin calcu-
lus and a spectral gap assumption. We focus on a specific parabolic
partial differential equation in quasi-linear form driven by noise.

We follow a natural renormalization strategy based on preserving
symmetries, and carefully introduce Hairer’s notion of a centered
model, which provides the coefficients in a formal series expansion
of a general solution. We explain how the Malliavin derivative in
conjunction with Hairer’s re-expansion map allows to reformulate
this definition in a way that is stable under removing the small-scale
regularization.

A few exemplary proofs are provided, both of analytic and of
algebraic character. The working horse of the analytic arguments
is an “annealed” Schauder estimate and related Liouville principle,
which is provided. The algebra of formal power series, in variables
that play the role of coordinates of the solution manifold, and its
algebra morphisms are the key algebraic objects.
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The theory of regularity structures by Hairer provides a systematic way to
treat the small-scale divergences in singular semi-linear stochastic PDEs.
Quintessential models of mathematical physics like the dynamical ϕ43 model
or the KPZ equation have been treated. Inspired by Lyon’s theory of rough
paths, this theory separates probabilistic and analytical aspects:

• Centered model. In a first probabilistic step, the coefficients of a
local formal power series representation of a general solution of the
renormalized PDE are constructed and estimated; the coefficients
are indexed by (decorated) trees, and their stochastic estimate fol-
lows the diagrammatic approach to renormalization of quantum field
theories.

• Modelled distribution. In a second analytical step, inspired by Gu-
binelli’s controlled rough path, the solution of a specific initial value
problem is found as a fixed point based on modulating and truncat-
ing the formal power series. This step is purely deterministic.

This automated two-pronged approach relies on an understanding of the
algebraic nature of the re-expansion maps that allow to pass from one
base-point to another in the local power series representation, in form of
the “structure group”. The main progress of regularity structures over
the term-by-term treatment in the mathematical physics literature is that
thanks to centering and re-expansion, the second step yields a rigorous
(small data) well-posedness result. As an introductory text to the theory
of regularity structures we recommend [14, 8, 4].

In [23], motivated by the extension to a quasi-linear setting featuring a
general non-linearity a(u), an alternative realization of Hairer’s regularity
structures was proposed; it replaces trees with a more greedy index set.
This index set of multi-indices naturally comes up when writing a general
solution u as a functional of a, or rather as a function of the coefficients of
a in its power series expansion. In [23] it was established that any solution
of the renormalized PDE can be locally approximated by a modelled dis-
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tribution. This a-priori estimate was obtained under the assumption that
the natural stochastic estimates on the centered model are available.

In [21] this program was continued: Based on scaling and other symme-
tries, a canonical renormalization of the PDE and its centered model was
proposed, and the centered model was stochastically constructed and esti-
mated. These notes present selected aspects of [21], providing additional
motivation. For a simpler setting where no renormalization and thus only
purely deterministic estimates are needed, we recommend to also have a
look at1 [19]. Let us mention that the stochastic estimates obtained in
[21] are analogous to the one of [7] in the tree-based setting, however the
assumption on the noise and the method of proof differ radically. The
method presented here, based on Malliavin calculus and a spectral gap as-
sumption, has been picked up in [16] and implemented in a general context
in the tree-based setting. Also [3] used similar ideas to obtain stochastic
estimates for the generalized KPZ equation, by iteratively applying the
spectral gap inequality.

The algebraic aspects of the multi-index based regularity structures are
worked out in [20], where in line with Hairer’s postulates the underlying
Hopf-algebraic nature of the structure group was uncovered. In fact, the
Hopf algebra arises from a Lie algebra generated by natural actions on
the space of non-linearities a and solutions u. As an introduction to the
algebraic aspects in the theory of regularity structures we recommend [9].

Other approaches to singular SPDEs include the theory of paracontrolled
distributions by Gubinelli, Imkeller, and Perkowski, we recommend [13] for
a first reading, and the renormalization group flow approach introduced
by Kupiainen and generalized by Duch; we recommend [18] and [11] for
an introduction. The para-controlled calculus provides an alternative to
the separation into model and modelled distribution, replacing localization
in physical space-time by localization on the Fourier side; it is (typically)

1however, the setting in [19] is different in the sense that it imposes an artificial space-
time periodicity: on the one hand, this allows to separate construction from estimation,
on the other hand, it obfuscates the quintessential scaling
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also indexed by trees. The flow approach blends the stochastic and the
deterministic step of regularity structures, and has an index set closer to
multi-indices. While these alternative approaches might be more efficient
in specific situations, they presumably lack the full flexibility of the two-
pronged approach of regularity structures with its conceptual clarity.

1 A singular quasi-linear SPDE

We are interested in nonlinear elliptic or parabolic equations with a ran-
dom and thus typically rough right hand side ξ. Our approach is guided
by moving beyond the well-studied semi-linear case. We consider a mildly
quasi-linear case where the coefficients of the leading-order derivatives de-
pend on the solution u itself. To fix ideas, we focus on the parabolic case
in a single space dimension; since we treat the parabolic equation in the
whole space-time like an anisotropic elliptic equation, we denote by x1 the
space-like and by x2 the time-like variable. Hence we propose to consider

(∂2 − ∂21)u = a(u)∂21u+ ξ, (1.1)

where we think of the values of a(u) to be such that the equation is
parabolic. We are interested in laws / ensembles of ξ where the solutions
v to the linear equation

(∂2 − ∂21)v = ξ (1.2)

are (almost surely) Hölder continuous, where it will turn out to be conve-
nient to express this in the “annealed” form2 of

sup
x ̸=y

1

|y − x|α
E

1
2 |v(y)− v(x)|2 <∞ (1.3)

2Think of Brownian motion which satisfies E
1
2 (B(s) − B(t))2 = |s − t|

1
2 while

not being Hölder continuous of exponent 1
2

almost surely. Following the jargon an-
nealed/quenched from statistical mechanics models (which itself is borrowed from met-
allurgy), we speak of annealed norms when the inner norm is an Lp-norm w. r. t. prob-
ability E and the outer norm is a space-time one.
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for some exponent α ∈ (0, 1). In view of the anisotropic nature of ∂2 − ∂21
and its invariance under the rescaling x1 = sx̂1 and x2 = s2x̂2, Hölder
continuity in (1.3) is measured w. r. t. the Carnot-Carathéodory distance

“|y − x|” := 4
√

(y1 − x1)4 + (y2 − x2)2 ∼ |y1 − x1|+ |y2 − x2|
1
2 . (1.4)

By Schauder theory for ∂2−∂21 , on which we shall expand on in Subsection
2, this is the case for white noise ξ with α = 1

2 . The rationale is that white
noise has order of regularity −D

2 , where D is the effective dimension, which
in case of (1.2) is D = 1+2 = 3 since in view of (1.4) the time-like variable
x2 counts twice, and that (∂2 − ∂21)

−1 increases regularity by two, leading
to −D

2 + 2 = 1
2 .

In the range of α ∈ (0, 1), the SPDE (1.1) is what is called “singular”:
We cannot expect that the order of regularity of u and thus a(u) is better
than the one of v, which is α, and hence the order of regularity of ∂21u is
no better than α−2. Since α+(α−2) < 0 for α < 1, the product a(u)∂21u
cannot be classically/deterministically defined3. As discussed at the end
of Section 2, a renormalization is needed4.

The same feature occurs for the (semi-linear) multiplicative heat equa-
tion (∂2 − ∂21)u = a(u)ξ; in fact, our approach also applies to this semi-
linear case, which already has been treated by (standard) regularity struc-
tures in [15]. A singular product is already present in the case when the
x1-dependence is suppressed, so that the above semi-linear equation turns
into the SDE du

dx2
= a(u)ξ with white noise ξ in the time-like variable x2.

In this case, the analogue of v from (1.2) is Brownian motion, which is
characterized by E(v(y2) − v(x2))

2 = |y2 − x2| and thus annealed Hölder
exponent 1

2 in x2, which in view of (1.4) corresponds to the border-line
setting α = 1. Ito’s integral and, more recently, Lyons’ rough paths [22]
and Gubinelli’s controlled rough paths [12] have been devised to tackle the
issue in this SDE setting.

3It is a classical result that the multiplication extends naturally from Cα ×Cβ into
D′ if and only if α+ β > 0, see [1, Section 2.6].

4The range α > 1, while still subtle for α < 2, does not require a renormalization,
see [19].
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2 Annealed Schauder theory

This section provides the main (linear) PDE ingredient for our result. At
the same time, it will allow us to discuss (1.2).

In view of (1.2), we are interested in the fundamental solution of the
differential operator A := ∂2 − ∂21 . It turns out to be convenient to
use the more symmetric5 fundamental solution of the non-negative A∗A

= (−∂2 − ∂21)(∂2 − ∂21) = ∂41 − ∂22 . Moreover, it will be more transpar-
ent to “disintegrate” the latter fundamental solution, by which we mean
writing it as

´∞
0 dtψt(z), where {ψt}t>0 are the kernels of the semi-group

exp(−tA∗A). Clearly, the Fourier transform is given by

Fψt(q) = exp(−t(q41 + q22))
(1.4)
= exp(−t|q|4). (2.1)

In particular, ψt is a Schwartz function. For a Schwartz distribution f

like realizations of white noise, we thus define ft(y) as the pairing of f
with ψt(y − ·); ft is a smooth function. On the level of these kernels, the
semi-group property translates into

ψs ∗ ψt = ψs+t and
ˆ
ψt = 1. (2.2)

By construction, {ψt}t satisfies the PDE

∂tψt + (∂41 − ∂22)ψt = 0. (2.3)

By scale invariance of (2.3) under x1 = sx̂1, x2 = s2x̂2, and t = s4t̂, we
have

ψt(x1, x2) =
1

( 4
√
t)D=3

ψ1(
x1
4
√
t
,
x2

( 4
√
t)2

). (2.4)

Lemma 2.1. Let 0 < α ≤ η < ∞ with η ̸∈ Z, p < ∞, and x ∈ R2 be
given. For a random Schwartz distribution f with

E
1
p |ft(y)|p ≤ (

4
√
t)α−2(

4
√
t+ |y − x|)η−α for all t > 0, y ∈ R2, (2.5)

5It is symmetric under reflection not just in space but also in time
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there exists a unique random function u of the class

sup
y∈R2

1

|y − x|η
E

1
p |u(y)|p <∞ (2.6)

satisfying (distributionally in R2)

(∂2 − ∂21)u = f (mod polynomial of degree ≤ η − 2). (2.7)

This unique solution u actually satisfies (∂2 − ∂21)u = f . Moreover, the
l. h. s. of (2.6) is bounded by a constant only depending on α and η.

Now white noise ξ is an example of such a random Schwartz distribu-
tion: Since ξt(y) is a centered Gaussian, we have E

1
p |ξt(y)|p ≲p E

1
2 (ξt(y))

2.
By using the characterizing property of white noise in terms of its pairing
with a test function ζ

E(ξ, ζ)2 =
ˆ
ζ2, (2.8)

we have E
1
2 (ξt(y))

2 =
( ´

ψ2
t (y − ·)

) 1
2 , which by scaling (2.4) is equal to

( 4
√
t)−

D
2 (
´
ψ2
1)

1
2 ∼ ( 4

√
t)−

D
2 . This specifies the sense in which white noise

ξ has order of regularity −D
2 .

Fixing a “base point” x, Lemma 2.1 thus constructs the solution of
(1.2) distinguished by v(x) = 0. Note that the output (2.6) takes the form
of E

1
p |v(y)− v(x)|p ≲p |y− x|

1
2 , which extends (1.3) from p = 2 to general

p. Hence Lemma 2.1 provides an annealed version of a Schauder estimate,
alongside a Liouville-type uniqueness result.

Proof of Lemma 2.1. By construction,
´∞
0 dt(−∂2 − ∂21)ψt is the funda-

mental solution of ∂2 − ∂21 , so that we take the convolution of it with f .
However, in order to obtain a convergent expression for t ↑ ∞, we need to
pass to a Taylor remainder:

u =

ˆ ∞

0
dt(id− Tη

x)(−∂2 − ∂21)ft, (2.9)

where Tη
x is the operation of taking the Taylor polynomial of order ≤ η; as

we shall argue the additional Taylor polynomial does not affect the PDE.



Lecture notes on tree-free regularity structures 157

We claim that (2.9) is well-defined and estimated as

E
1
p |u(y)|p ≲ |y − x|η.

To this purpose, we first note that

E
1
p |∂nft(y)|p ≲ (

4
√
t)α−2−|n|(

4
√
t+ |y − x|)η−α, (2.10)

where

∂nf := ∂n1
1 ∂n2

2 f and |n| = n1 + 2n2. (2.11)

Indeed, by the semi-group property (2.2) we may write ∂nft(y) =
´
dz

∂nψ t
2
(y − z) f t

2
(z), so that E

1
p |∂nft(y)|p ≤

´
dz|∂nψ t

2
(y − z)|E

1
p |f t

2
(z)|p.

Hence by (2.5), (2.10) follows from the kernel bound
´
dz |∂nψ t

2
(y − z)|

( 4
√
t+ |y−x|)η−α ≲ ( 4

√
t)−|n|( 4

√
t+ |y−x|)η−α, which itself is a consequence

of the scaling (2.4) and the fact that ψ 1
2

is a Schwartz function.
Equipped with (2.10), we now derive two estimates for the integrand

of (2.9), namely for 4
√
t ≥ |y − x| (“far field”) and for 4

√
t ≤ |y − x|

(“near field”). We write the Taylor remainder (id − Tη
x)(∂2 + ∂21)ft(y)

as a linear combination of6 (y − x)n∂n(∂2 + ∂21)ft(z) with |n| > η and
at some point z intermediate to y and x. By (2.10) such a term is esti-
mated by |y − x||n|( 4

√
t)α−4−|n|( 4

√
t + |y − x|)η−α, which in the far field is

∼ |y − x||n|( 4
√
t)η−4−|n|. Since the exponent on t is < −1, we obtain as

desired

E
1
p |
ˆ ∞

|y−x|4
dt(id− Tη

x)(∂2 + ∂21)ft(y)|p ≲ |y − x|η.

For the near-field term, i. e. for 4
√
t ≤ |y − x|, we proceed as follows:

E
1
p |(id− Tη

x)(∂2 + ∂21)ft(y)|p

≤ E
1
p |(∂2 + ∂21)ft(y)|p +

∑
|n|≤η

|y − x||n|E
1
p |∂n(∂2 + ∂21)ft(x)|p

(2.10)
≲ (

4
√
t)α−4|y − x|η−α +

∑
|n|≤η

|y − x||n|( 4
√
t)η−4−|n|.

6where xn := xn1
1 xn2

2
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Since η is not an integer, the sum restricts to |n| < η, so that all exponents
on t are > −1. Hence we obtain as desired

E
1
p |
ˆ |y−x|4

0
dt(id− Tη

x)(∂2 + ∂21)ft(y)|p ≲ |y − x|η.

It can be easily checked that (2.9) is indeed a solution of (2.7), even without
a polynomial. For a detailed proof we refer to [21, Proposition 4.3].

We turn to the uniqueness of u in the class (2.6) satisfying (2.7). Given
two such solutions u1, u2, we observe that ū := u1 − u2 satisfies (2.6) and
(2.7) with f = 0. In particular ∂n(∂2 − ∂21)ū = 0 for |n| > η − 2, and
thus from (2.3) we obtain ∂t∂nūt = 0 provided |n| > η − 4. Thus, ∂nūt is
independent of t > 0. Moreover, (2.6) implies that E|∂nūt| → 0 as t→ ∞
for |n| > η. Hence we learn from t → 0 that ∂nū = 0 for |n| > η, i.e.
ū is a polynomial of degree ≤ η. Since η ̸∈ Z this strengthens to ū is a
polynomial of degree < η, and by (2.6) it vanishes at x to order η which
yields the desired ū = 0.

We return to the discussion of the singular product a(u)∂21u, in its
simplest form of

v∂21v = ∂21
1

2
v2 − (∂1v)

2.

While in view of Lemma 2.1 the first r. h. s. term is well-defined as a ran-
dom Schwartz distribution, we now argue that the second term diverges.
Indeed, applying ∂1 to the representation formula (2.9), so that the con-
stant Taylor term drops out, we have

∂1v =

ˆ ∞

0
dt∂1(−∂2 − ∂21)ξt. (2.12)
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Hence for space-time white noise

E(∂1v(x))2

(2.12)
=

ˆ ∞

0
dt

ˆ ∞

0
dsE

(
∂1(−∂2 − ∂21)ξt(x)∂1(−∂2 − ∂21)ξs(x)

)
(2.8)
=

ˆ ∞

0
dt

ˆ ∞

0
ds

ˆ
R2

dy ∂1(−∂2 − ∂21)ψt(x− y)∂1(−∂2 − ∂21)ψs(x− y)

(2.2)
=

ˆ ∞

0
dt

ˆ ∞

0
ds ∂21(∂

2
2 − ∂41)ψs+t(0)

(2.4)∼
ˆ ∞

0
dt

ˆ ∞

0
ds 4

√
t+ s

−D−6
.

Note that since 1
4(−D − 6) < −2 for D = 3, the double integral diverges.

This divergence arises from t ↓ 0 and s ↓ 0, that is, from small space-time
scales, and thus is called an ultra-violet (UV) divergence. A quick fix is
to introduce an UV cut-off, which for instance can be implemented by
mollifying ξ. Using the semi-group convolution ξτ specifies the UV cut-off
scale to be of the order of 4

√
τ . It is easy to check that in this case

E(∂1v(x))2 ∼
ˆ ∞

τ
dt

ˆ ∞

τ
ds 4

√
t+ s

−D−6 ∼ ( 4
√
τ)−1.

The goal is to modify the equation (1.1) by “counter terms” such that

• the solution manifold stays under control as the ultra-violet cut-off
τ ↓ 0,

• invariances of the solution manifold are preserved i.e. the solution
manifold keeps as many symmetries as possible.

In view of the above discussion, we expect the coefficients of the counter
terms to diverge as the cut-off tends to zero.

3 Symmetry-motivated postulates on the form of
the counter terms

In view of α ∈ (0, 1), u is a function while we think of all derivatives ∂nu
as being only Schwartz distributions. Hence it is natural to start from the
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very general Ansatz that the counter term is a polynomial in {∂nu}n̸=0

with coefficients that are general (local) functions in u:

(∂2 − ∂21)u+
∑
β

hβ(u)
∏
n̸=0

(
1

n!
∂nu)β(n) = a(u)∂21u+ ξ, (3.1)

where β runs over all multi-indices7 in n ̸= 0 and n! := (n1!)(n2!). For
simplicity of this heuristic discussion, we drop the regularization on ξ and
don’t index the counter term with τ .

Only counter terms that have an order strictly below the order of the
leading ∂2 − ∂21 are desirable, so that one postulates that the sum in (3.1)
restricts to those multi-indices for which

|β|p :=
∑
n̸=0

|n|β(n) < 2 where |n| := n1 + 2n2. (3.2)

This leaves only β = 0 and β = e(1,0), where the latter means β(n) = δ
(1,0)
n ,

so that (3.1) collapses to

(∂2 − ∂21)u+ h(u) + h′(u)∂1u = a(u)∂21u+ ξ. (3.3)

One also postulates that h and h′ depend on the noise ξ only through its
law / distribution / ensemble, hence are deterministic. Since we assume
that the law is invariant under space-time translation, i. e. is stationary,
it was natural to postulate that h and h′ do not explicitly depend on x,
hence are homogeneous.

Reflection symmetry. Let us now assume that the law of ξ is invariant
under

space-time translation y 7→ y + x,

space reflection y 7→ (−y1, y2).
(3.4)

We now argue that under this assumption, it is natural to postulate that
the term h′(u)∂1u in (3.3) is not present, so that we are left with

(∂2 − ∂21)u+ h(u) = a(u)∂21u+ ξ. (3.5)

7which associate to every index n a β(n) ∈ N0 such that β(n) vanishes for all but
finitely many n’s
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To this purpose, let x ∈ R2 be arbitrary yet fixed, and consider the re-
flection at the line {y1 = x1} given by Ry = (2x1 − y1, y2), which by pull
back acts on functions as ũ(y) := u(Ry). Since (1.1) features no explicit
y-dependence, and only involves even powers of ∂1, which like ∂2 commute
with R, we have

(u, ξ) satisfies (1.1) =⇒ (u(R·), ξ(R·)) satisfies (1.1). (3.6)

Since we postulated that h and h′ depend on ξ only via its law, and since
in view of the assumption (3.4), ξ̃ = ξ(R·) has the same law as ξ, it is
natural to postulate that the symmetry (3.6) extends from (1.1) to (3.3).
Spelled out, this means that (3.3) implies

(∂2 − ∂21)ũ+ h(ũ) + h′(ũ)∂1ũ = a(ũ)∂21 ũ+ ξ̃.

Evaluating both identities at y = x, and taking the difference, we get for
any solution of (3.3) that h′(u(x))∂1u(x) = h′(u(x))(−∂1u(x)), and thus
h′(u(x))∂1u(x) = 0, as desired.

Covariance under u-shift. We now come to our most crucial postu-
late, which restricts how the nonlinearity h depends on the nonlinearity /
constitutive law a. Hence we no longer think of a single nonlinearity a, but
consider all non-linearities at once, in the spirit of rough paths. This point
of view reveals another invariance of (1.1), namely for any shift v ∈ R

(u, a) satisfies (1.1) =⇒ (u− v, a(·+ v)) satisfies (1.1). (3.7)

A priori, h is a function of the u-variable that has a functional dependence
on a, as denoted by h = h[a](u). We postulate that the symmetry (3.7)
extends from (1.1) to (3.5). This is the case provided we have the following
shift-covariance property

h[a](u+ v) = h[a(·+ v)](u) for all u ∈ R. (3.8)

This property can also be paraphrased as: Whatever algorithm one uses
to construct h from a, it should not depend on the choice of origin in what
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is just an affine space R ∋ u. Property (3.8) implies that the counter term
is determined by a functional c = c[a] on the space of nonlinearities a:

h[a](v) = c[a(·+ v)]. (3.9)

Renormalization now amounts to choosing c such that the solution mani-
fold stays under control as the UV regularization of ξ fades away.

4 Algebrizing the counter term

In this section, we algebrize the relationship between a and the counter
term h given by a functional c as in (3.9). To this purpose, we introduce the
following coordinates8 on the space of analytic functions a of the variable
u:

zk[a] :=
1

k!

dka

duk
(0) for k ≥ 0. (4.1)

These are made such that by Taylor’s theorem

a(u) =
∑
k≥0

ukzk[a] for a ∈ R[u], (4.2)

where R[u] denotes the algebra of polynomials in the single variable u with
coefficients in R.

We momentarily specify to functionals c on the space of analytic a’s
that can be represented as polynomials in the (infinitely many) variables
{zk}k≥0. This leads us to consider the algebra R[zk] of polynomials in the
variables zk with coefficients in R. The monomials

zβ :=
∏
k≥0

z
β(k)
k (4.3)

form a basis of this (infinite dimensional) linear space, where β runs over
all multi-indices9. Hence as a linear space, R[zk] can be seen as the direct

8where here and in the sequel k ≥ 0 stands short for k ∈ N0
9which means they associate a frequency β(k) ∈ N0 to every k ≥ 0 such that all but

finitely many β(k)’s vanish
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sum over the index set given by all multi-indices β, and we think of c as
being of the form

c[a] =
∑
β

cβz
β[a] for c ∈ R[zk]. (4.4)

Infinitesimal u-shift. Given a shift v ∈ R, for ũ := u − v and ã :=

a(· + v) we have ã(ũ) = a(u). This leads us to study the mapping a 7→
a(· + v) which provides an action/representation of the group R ∋ v on
the set R[u] ∋ a. Note that for c ∈ R[zk] and a ∈ R[u], the function
R ∋ v 7→ c[a(·+ v)] =

∑
β cβ

∏
k≥0(

1
k!

dka
du (v))β(k) is polynomial. Thus

(D(0)c)[a] =
d

dv |v=0
c[a(·+ v)] (4.5)

is well-defined, linear in c and even a derivation10, meaning that Leibniz’
rule holds

(D(0)cc′) = (D(0)c)c′ + c(D(0)c′). (4.6)

The latter implies that D(0) is determined by its value on the coordinates
zk, which by definitions (4.1) and (4.5) is given by D(0)zk = (k + 1)zk+1.
Hence D(0) has to agree with the following derivation on the algebra R[zk]

D(0) =
∑
k≥0

(k + 1)zk+1∂zk , (4.7)

which is well defined since the sum is effectively finite when applied to a
monomial.

Representation of counter term. Iterating (4.5) we obtain by in-
duction in l ≥ 0 for c ∈ R[zk] and a ∈ R[u]

dl

dvl |v=0
c[a(·+ v)] = ((D(0))lc)[a]

10the index (0) is not necessary for these lecture notes, since we do not appeal to the
other derivations {D(n)}n ̸=0 from [20, 21], we keep it here for consistency with these
papers
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and thus by Taylor’s theorem (recall that v 7→ c[a(·+ v)] is polynomial)

c[a(·+ v)] =
(∑

l≥0

1

l!
vl(D(0))lc

)
[a]. (4.8)

We combine (4.8) with (3.9) to obtain the representation

h[a](v) =
(∑

l≥0

1

l!
vl(D(0))lc

)
[a]. (4.9)

Hence our goal is to determine the coefficients {cβ}β in (4.4), which typi-
cally will blow up as τ ↓ 0.

5 Algebrizing the solution manifold:
The centered model

The purpose of this section is to motivate the notion of a centered model;
the motivation will be in parts informal.

Parameterization of the solution manifold. If a ≡ 0 it follows
from (3.8) that h is a (deterministic) constant. We learned from the discus-
sion after Lemma 2.1 that – given a base point x – there is a distinguished
solution v (with v(x) = 0). Hence we may canonically parameterize a gen-
eral solution u of (3.5) for a ≡ 0 via u = v + p, by space-time functions p
with (∂2 − ∂21)p = 0. Such p are necessarily analytic. Having realized this,
it is convenient11 to free oneself from the constraint (∂2 − ∂21)p = 0, which
can be done at the expense of relaxing (3.5) to

(∂2 − ∂21)v = ξ (mod analytic space-time functions). (5.1)

Since we think of ξ as being rough while analytic functions are infinitely
smooth, this relaxation is still constraining v.

11otherwise, the coordinates z(2,0) and z(0,1) defined in (5.4) would be redundant on
p-space



Lecture notes on tree-free regularity structures 165

The implicit function theorem suggests that this parameterization (lo-
cally) persists in the presence of a sufficiently small analytic nonlinearity
a: The nonlinear manifold of all space-time functions u that satisfy

(∂2 − ∂21)u+ h(u) = a(u)∂21u+ ξ (mod analytic space-time functions)
(5.2)

is still parameterized by space-time analytic functions p. We now return
to the point of view of Section 3 of considering all nonlinearities a at
once, meaning that we consider the (still nonlinear) space of all space-time
functions that satisfy (5.2) for some analytic nonlinearity a. We want to
capitalize on the symmetry (3.7), which extends from (1.1) to (3.5) and to
(5.2). We do so by considering the above space of u’s modulo constants,
which we implement by focusing on increments u−u(x). Summing up, it is
reasonable to expect that the space of all space-time functions u, modulo
space-time constants, that satisfy (5.2) for some analytic nonlinearity a

(but at fixed ξ), is parameterized by pairs (a, p) with p(x) = 0.

Formal series representation. In line with the term-by-term ap-
proach from physics, we write the increment u(y) − u(x) as a (typically
divergent) power series

u(y)− u(x)

=
∑
β

Πxβ(y)
∏
k≥0

( 1
k!

dka

duk
(u(x))

)β(k) ∏
n̸=0

( 1

n!
∂np(x)

)β(n)
, (5.3)

where β runs over all multi-indices in k ≥ 0 and n ̸= 0. Introducing
coordinates on the space of analytic space-time functions p with p(0) = 0

via12

zn[p] =
1

n!
∂np(0) for n ̸= 0, (5.4)

(5.3) can be more compactly written as

u(y) = u(x) +
∑
β

Πxβ(y)z
β[a(·+ u(x)), p(·+ x)− p(x)]. (5.5)

12where here and in the sequel n ̸= 0 stands short for n ∈ N2
0 − {(0, 0)}
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This is reminiscent of Butcher series in the analysis of ODE discretizations.
Recall from above that for a ≡ 0 we have the explicit parameterization

u[a = 0, p]− u[a = 0, p](x) = v + p (5.6)

with the distinguished solution v of the linear equation. Hence from setting
a ≡ 0 and p ≡ 0 in (5.3), we learn

v
(5.6)
= u[a = 0, p = 0]− u[a = 0, p = 0](x)

(5.3)
=

∑
β

Πxβ

∏
k≥0

0β(k)
∏
n̸=0

0β(n)

and thus13 v = Πx0. Similarly, from keeping a ≡ 0 but letting p vary, we
obtain

v+p
(5.6)
= u[a=0, p]−u[a=0, p](x)

(5.3)
=

∑
β

Πxβ

∏
k≥0

0β(k)
∏
n̸=0

(
1
n!∂

np(x)
)β(n)

,

hence we deduce that for all multi-indices β ̸= 0 which satisfy β(k) = 0

for all k ≥ 0 we must have14

Πxβ(y) =

{
(y − x)n provided β = en

0 else

}
. (5.7)

Hierarchy of linear equations. The collection {Πxβ(y)}β of coeffi-
cients from (5.5) is an element of the direct product with the same index
set as the direct sum R[zk, zn]. Hence the direct product inherits the mul-
tiplication of the polynomial algebra

(ππ′)β̄ =
∑

β+β′=β̄

πβπ
′
β′ , (5.8)

and is denoted as the (well-defined) algebra R[[zk, zn]] of formal power
series; we denote by 1 its unit element. We claim that in terms of (5.5),
(5.2) assumes the form of

(∂2 − ∂21)Πx = Π−
x (mod analytic space-time functions) (5.9)

13we use the convention that 00 = 1
14where we recall that β = en denotes the multi-index with β(m) = δnm next to

β(k) = 0 for all k
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where

Π−
x :=

∑
k≥0

zkΠ
k
x∂

2
1Πx −

∑
l≥0

1

l!
Πl

x(D
(0))lc+ ξτ1, (5.10)

as an identity in formal power series in zk, zn with coefficients that are
continuous space-time functions. We shall argue below that (5.10) is effec-
tively, i. e. componentwise, well-defined despite the two infinite sums, and
despite extending from c ∈ R[zk] to c ∈ R[[zk]]. Moreover, as will become
clear by (6.7), the β-component of (5.10) contains on the r. h. s. only terms
Πxβ′ for “preceding” multi-indices β′ – hence (5.9) describes a hierarchy of
equations.

Here comes the informal argument for (5.10), relating {∂2, ∂21}u, a(u)
and h(u) to {∂2, ∂21}Πx[ã, p̃], (

∑
k zkΠ

k
x)[ã, p̃] and (

∑
l
1
l!Π

l
x(D

(0))lc)[ã, p̃],
respectively. Here we have set for abbreviation ã = a(· + u(x)) and p̃

= p(· + x) − p(x). It is based on (5.5), which can be compactly written
as u(y) = u(x) + Πx[ã, p̃](y). Hence the statement on {∂2, ∂21}u follows
immediately. Together with a(u(y)) = ã(u(y)−u(x)), this also implies by
(4.2) the desired

a(u(y)) =
(∑
k≥0

zkΠ
k
x(y)

)
[ã, p̃].

Likewise by (3.8), we have h[a](u(y)) = h[ã](u(y)−u(x)), so that by (4.9),
we obtain the desired

h[a](u(y)) =
(∑

l≥0

1

l!
Πl

x(y)(D
(0))lc

)
[ã, p̃].

Finiteness properties. The next lemma collects crucial algebraic prop-
erties.

Lemma 5.1. The derivation D(0) extends from R[zk] to R[[zk]]. Moreover,
for π, π′ ∈ R[[zk, zn]], c ∈ R[[zk]], and ξ ∈ R,

π− :=
∑
k≥0

zkπ
kπ′ −

∑
l≥0

1

l!
πl(D(0))lc+ ξ1 ∈ R[[zk, zn]] (5.11)
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is well-defined, in the sense that the two sums are componentwise finite.
Finally, for

[β] :=
∑
k≥0

kβ(k)−
∑
n̸=0

β(n) (5.12)

we have the implication

πβ = π′β = 0 unless [β] ≥ 0 or β = en for some n ̸= 0

=⇒

π−β = 0 unless


[β] ≥ 0 or
β = ek + en1 + · · ·+ enk+1

for some k ≥ 1 and n1, . . . ,nk+1 ̸= 0.

 . (5.13)

We note that for β as in the second alternative on the r. h. s. of (5.13),
it follows from (5.7) that Π−

xβ is a polynomial. Hence in view of the modulo
in (5.9), we learn from (5.13) that we may assume

Πxβ ≡ 0 unless [β] ≥ 0 or β = en for some n ̸= 0. (5.14)

Proof of Lemma 5.1. We first address the extension of D(0) and note that
from (4.7) we may read off the matrix representation of D(0) ∈ End(R[zk])
w. r. t. (4.3) given by

(D(0))γβ = (D(0)zγ)β
(4.7)
=

∑
k≥0

(k + 1)
(
zk+1∂zkz

γ
)
β

(4.3)
=

∑
k≥0

(k + 1)γ(k)

{
1 provided γ + ek+1 = β + ek

0 otherwise

}
. (5.15)

From this we read off that {γ|(D(0))γβ ̸= 0} is finite for every β, which
implies that D(0) naturally extends from R[zk] to R[[zk]]. With help of
(5.8) the derivation property (4.6) can be expressed coordinate-wise, and
thus extends to R[[zk]].
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We now turn to (5.11), which component-wise reads

π−β =
∑
k≥0

∑
ek+β1+···+βk+1=β

πβ1 · · ·πβk
π′βk+1

−
∑
l≥0

1

l!

∑
β1+···+βl+1=β

πβ1 · · ·πβl
((D(0))lc)βl+1

+ ξδ0β, (5.16)

and claim that the two sums are effectively finite. For the first term of the
r. h. s. this is obvious since thanks to the presence of15 ek in ek + β1 +

· · · + βk+1 = β, for fixed β there are only finitely many k ≥ 0 for which
this relation can be satisfied.

In preparation for the second r. h. s. term of (5.16) we now establish
that

((D(0))l)γβ = 0 unless [β]0 = [γ]0 + l, (5.17)

where we introduced the scaled length [γ]0 :=
∑

k≥0 kγ(k) ∈ N0. The
argument for (5.17) proceeds by induction in l ≥ 0. It is tautological for
the base case l = 0. In order to pass from l to l+1 we write ((D(0))l+1)γβ =∑

β′((D(0))l)β
′

β (D(0))γβ′ ; by induction hypothesis, the first factor vanishes
unless [β]0 = [β′]0 + l. We read off (5.15) that the second factor vanishes
unless [β′]0 = [γ]0 + 1, so that the product vanishes unless [β]0 = [γ]0 +

(l + 1), as desired.
Equipped with (5.17) we now turn to the second r. h. s. term of (5.16)

and note that ((D(0))lc)βk+1
vanishes unless l ≤ [βk+1]0 ≤ [β]0, which

shows that also here, only finitely many l ≥ 0 contribute for fixed β.
We turn to the proof of (5.13). We use (5.16) and give the proof for

every summand separately. For the first term on the r. h. s. of (5.16) we
obtain by additivity of [·] that [β] = k + [β1] + · · · + [βk+1]. Note that
πβi

is only non vanishing if [βi] ≥ −1. If at least one of the β1, . . . , βk+1

satisfies [βi] ≥ 0, we obtain therefore [β] ≥ k − k = 0. For the second
r. h. s. term in (5.16) we appeal to (5.17): Since D(0) doesn’t affect the zn

components, (5.17) extends from [·]0 to [·]. Together with c ∈ R[[zk]] this
15γ = ek denotes the multi-index with γ(l) = δkl next to γ(n) = 0
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yields [βl+1] ≥ l. Hence as above [β] = [β1] + · · ·+ [βl+1] ≥ −l + [βl+1] ≥
0.

Homogeneity. We return to a heuristic discussion. Provided we include,
like for (3.7), a into our considerations, the original equation (1.1) has a
scaling symmetry: Considering for s ∈ (0,∞) the parabolic space-time
rescaling Sy = (sy1, s

2y2), we have for any exponent α

(u, ξ, a) satisfies (1.1)

=⇒
(
s−αu(S·), s2−αξ(S·), a(sα·)

)
=: (ũ, ξ̃, ã) satisfies (1.1). (5.18)

Suppose the scaling transformation ξ 7→ ξ̃ preserves the law, which for
white noise is the case with α−2 = −D

2 , i. e. α = 1
2 . Since in view of Section

3, the counter term only depends on the law, it is natural to postulate,
in line with that section, that the solution manifold of the renormalized
problem inherits this invariance16.

It is also natural to postulate that the parameterization by the p’s
(given a base point x) is consistent with (5.18) in the sense that p trans-
forms as u, i. e. we have invariance under

(u, ξ, a, x, p) 7→ (ũ, ξ̃, ã, x̃ := S−1x, p̃ := s−αp(S·)).

We now appeal to the series expansion (5.3), both as it stands and with
(x, y, u, ξ, a, p) replaced by (x̃, ỹ := S−1y, ũ, ξ̃, ã, p̃). Because of u(y)−u(x)
= sα(ũ(ỹ)− ũ(x̃)), we obtain a relation between the two right-hand sides.
It is natural to postulate that the coefficients {Π·,β}β are individually
consistent with this invariance, leading to

ΠSxβ[ξ](Sy) = s|β|Πxβ[s
2−αξ(S·)](y), (5.19)

where the “homogeneity” |β| of the multi-index β is given by

|β| := α(1 + [β]) + |β|p, (5.20)

16since this scale invariance in law is not consistent with the mollification ξτ this
discussion pertains to the limiting solution manifold
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cf. (3.2) and (5.12). We note that

|en| = |n| (5.21)

so that (5.20) is consistent with (5.7).
Appealing once more to the invariance in law of ξ under (5.18), we

obtain from (5.19) that the law of s−|β|ΠSxβ(Sy) coincides with the law
of Πxβ(y), in particular

the law of s−|β|ΠSxβ(Sy) does not depend on s ∈ (0,∞). (5.22)

By the invariance of the (original) solution manifold under (u, ξ) 7→ (ũ :=

u(·+ z), ξ̃ := ξ(·+ z)), which by our assumption (3.4) is passed on to the
renormalized solution manifold, it is natural to impose that the parame-
terization is invariant under (u, ξ, x, p) 7→ (ũ, ξ̃, x + z, p(· + z)), and that
the coefficients in (5.5) are individually consistent with this invariance, so
that we likewise have

the law of Πx+z β(y + z) does not depend on z ∈ R2. (5.23)

Specifying to x = 0, the invariance (5.22) implies that E
1
p |Π0β(y)|p depends

on y only through y
|y| . From the invariance (5.23) we thus learn that

E
1
p |Πxβ(y)|p depends on x, y only through y−x

|y−x| . Since y−x
|y−x| has compact

range, this suggest that

E
1
p |Πxβ(y)|p ≲ |y − x||β|,

which is our main result, see (6.3) in the next section.
The scaling invariance (5.18) also connects to the notion of “subcriti-

cality” which is often referred to in the realm of singular SPDEs. Loosely
speaking, it means that by zooming in on small scales, the nonlinear term
becomes negligible. Indeed, as can be seen from (5.18), the rescaled non-
linearity ã converges to the constant a(0) in the limit s ↓ 0, i. e. the
SPDE (1.1) turns into a linear one. This is true iff α > 0, and provides the
reason for restricting to α > 0 in the assumption of Theorem 6.1, which is
the sub-critical regime for (1.1).
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6 The main result: A stochastic estimate of the
centered model

The main result in [21] states that the objects introduced in an informal
way in the previous subsection indeed can be rigorously defined, provided
the noise ξ is replaced by its mollified version ξτ as discussed at the end
of Section 2. Moreover, the constants cβ can be chosen in such a (τ -
dependent) way, that the centered model Πx satisfies stochastic estimates
that are uniform in the mollification scale τ > 0.

Theorem 6.1. Suppose the law of ξ is invariant under (3.4); suppose that
it satisfies a spectral gap inequality (7.22) with exponent α ∈ (max{0, 1−
D
4 }, 1) \Q.

Then given τ > 0, there exists a deterministic c ∈ R[[zk]], and for every
x ∈ R2, a random17 Πx ∈ C2[[zk, zn]], and a random Π−

x ∈ C0[[zk, zn]] that
are related by (5.10) and

(∂2 − ∂21)Πxβ = Π−
xβ (mod polynomial of degree ≤ |β| − 2), (6.1)

and that satisfy (5.7), the population condition (5.14) and

cβ = 0 unless |β| < 2. (6.2)

Moreover, we have for p <∞, x, y ∈ R2 and t > 0 the estimates

E
1
p |Πxβ(y)|p ≲β,p |y − x||β|, (6.3)

E
1
p |Π−

xβt(y)|
p ≲β,p (

4
√
t)α−2(

4
√
t+ |y − x|)|β|−α. (6.4)

The important feature is that the constants in (6.3) and (6.4) are uni-
form in τ ↓ 0.

We remark that we may pass from (6.4) to (6.3) by Lemma 2.1. Indeed,
because of (5.14) we may restrict to β with [β] ≥ 0. In this case, by our

17by this we mean a formal power series in zk, zn with values in the twice continuously
differentiable space-time functions
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assumption α ̸∈ Q,

[β] ≥ 0
(5.20)
=⇒ |β| ̸∈ Z, (6.5)

next to |β| ≥ α. Hence we may indeed apply Lemma 2.1 with η = |β| and
(6.4) as input. The output yields a Πxβ satisfying (6.1) and (6.3).

Uniqueness and (implicit) BPHZ renormalization. The construc-
tion of Πx in [21] proceeds by an inductive algorithm in β. The ordering18

on the multi-indices is provided by

|β|≺ := |β|+ λβ(0) for fixed λ ∈ (0, α), (6.6)

and we will write γ ≺ β for |γ|≺ < |β|≺. As opposed to the ordering
provided by the homogeneity, ≺ is coercive: For fixed β there are only
finitely many γ with γ ≺ β, see (8.11), which is important for the estimates.
Moreover, (6.6), as opposed to the ordering by homogeneity, allows for the
triangular structure:

Π−
xβ − cβ depends on (Πxγ , cγ) only through γ with γ ≺ β. (6.7)

Indeed, by the component-wise (5.16), we have to check that for k ≥ 0 and
ek + β1 + · · ·+ βk+1 = β we have β1, . . . , βk+1 ≺ β, and that for l ≥ 1 and
β1 + · · · + βl+1 = β with ((D(0))l)γβl+1

we have β1, . . . , βl, γ ≺ β. In the
former case, and for k ≥ 1, we obtain from (5.20) that |β1|+ · · ·+ |βk+1| =
|β|, and thus by | · | ≥ α > 0 that |β1|, . . . , |βk+1| < |β|. We conclude
together with β1(0), . . . , βk+1(0) ≤ β(0). In the case k = 0, again by
(5.20), we have |β1| = |β|, and we conclude by 1 + β1(0) = β(0). In the
latter case, we use (5.17) and (5.20) to see |β1|+ · · ·+ |βl|+ |γ| = |β|, which
by l ≥ 1 implies as above |β1|, . . . , |βl|, |γ| < |β|. From (5.15) we also read
off that γ(0) ≤ βl+1(0), and we thus conclude by β1(0), . . . , βl+1(0) ≤ β(0).

We now argue that within this induction, (c,Πx,Π
−
x ) is determined.

Indeed, the uniqueness statement of Lemma 2.1 implies that for given β,
18this ordering coincides with the one chosen in [19] but it slightly differs from the

one in [21], which is imposed by the restricted triangularity of dΓ∗ in Section 7; for
simplicity we stick to (6.6)
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Πxβ is determined by Π−
xβ . According to (6.7), Π−

xβ − cβ is determined by
the previous steps. Finally, we note that provided |β| < 2, we have

|EΠ−
xβt(x)| ≤ E|Π−

xβt(x)|
(6.4)
≲ (

4
√
t)|β|−2 t↑∞→ 0, (6.8)

so that cβ , because it is deterministic19 may be recovered from cβ =

− limt↑∞ E(Π−
xβ−cβ)t(x). Hence also cβ is determined. Fixing the counter

term by making an expectation20 vanish like in (6.8) corresponds to what
Hairer assimilates to a BPHZ renormalization. See [6, Theorem 6.18] for
the form BPHZ renormalization takes within regularity structures.

Mission accomplished. Returning to the end of Section 2, we may
claim “mission accomplished”:

• On the one hand, the form of the counter terms preserve a number
of symmetries of the original solution manifold: shift in x, reflection
in x1, shift in u, and to some extent are guided by scaling in x.

• On the other hand, in a term-by-term sense as encoded by (5.3), the
solution manifold of the renormalized equation stays under control
as τ ↓ 0, cf. (6.3) and (6.4).

Moreover, the constants cβ = cτβ that determine the counter term via (4.9)
are (canonically) determined by the large-scale part of the estimate (6.4).

As discussed in the introduction, the connection between this term-
by-term approach to the solution manifold and the solution of an actual
initial/boundary value problem is provided by the second part of regularity
structures. This second part, a fixed point argument based on a truncation
of (5.3) to a finite sum21, is not addressed in these lecture notes.

19and independent of the base point x
20in our case it is a space-time next to an ensemble average
21by restricting to homogeneities |β| < 2; in our quasi-linear case, the sum stays

infinite w. r. t. the z0-variable, but one has analyticity in that variable since 1+z0 plays
the role of a constant elliptic coefficient
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7 Malliavin derivative and Spectral gap (SG)

In view of the discussion at the end of the statement of Theorem 6.1, the
main issue is the estimate (6.4) of Π−

xβ . Indeed, its definition of (5.10) still
contains the singular product Πk

x∂
2
1Πx and the collection of deterministic

constants c that diverge as the UV regularization fades away. Hence we
seek a relation between Π−

x and Πx that is more stable than (5.10); in
fact, it will be a relation between the families {Π−

x }x and {Πx}x based on
symmetries under a change of the base point x. This relation is formulated
on the level of the derivative w. r. t. the noise ξ, also known as the Malliavin
derivative. We start by motivating this approach.

Heuristic discussion of a stable relation {Πx}x 7→ {Π−
x }x. Let

δ denote the operation of taking the derivative of an object like Πxβ(y),
which is a functional of ξ, in direction of an infinitesimal variation δξ of
the latter22. Clearly, since cβ is deterministic, we have δcβ = 0. However,
applying δ to (a component of) (5.10) does not eliminate c because of
the specific way c enters (5.10), which is dictated by the fundamental
symmetry (3.9). However, when evaluating (5.10) at the base point x
itself and appealing to the built-in

Πx(x) = 0, (7.1)

see (5.3) or (6.3), it collapses to

Π−
x (x) = z0∂

2
1Πx(x)− c+ ξτ (x)1. (7.2)

This isolates c so that it can be eliminated by applying δ:

δΠ−
x (x) = z0∂

2
1δΠx(x) + δξτ (x)1. (7.3)

Clearly, (7.3) is impoverished in the sense that the active point coincides
with the base point.

Instead of attempting to modify the active point, the idea is to modify
the base point from x to y. Such a change of base point, which will be

22in the Gaussian case, this would be an element of the Cameron-Martin space
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rigorously introduced in Section 8, amounts to a change of coordinates in
the heuristic representation (5.5):

u =

{
u(x) +

∑
β Πxβz

β[a(·+ u(x)), px],

u(y) +
∑

β Πyβz
β[a(·+ u(y)), py],

(7.4)

for some polynomials px, py vanishing at the origin. The form in which
the u-shift appears in (7.4) suggests that this change of coordinates can
be algebrized by an algebra endomorphism23 Γ∗

yx of R[[zk, zn]] with the
properties

Πy = Γ∗
yxΠx +Πy(x) and Γ∗

yx =
∑
l≥0

1

l!
Πl

y(x)(D
(0))l on R[[zk]], (7.5)

see the discussion of finite u-shifts around (4.9). Recall that an algebra
endomorphism Γ∗

yx is a linear map from R[[zk, zn]] to R[[zk, zn]] satisfying

Γ∗
yxππ

′ = (Γ∗
yxπ)(Γ

∗
yxπ

′) for π, π′ ∈ R[[zk, zn]]. (7.6)

We claim that (7.5) implies

Π−
y = Γ∗

yxΠ
−
x . (7.7)

Indeed, applying Γ∗
yx to definition (5.10) we obtain by (7.6)

Γ∗
yxΠ

−
x =∑

k≥0

(Γ∗
yxzk)(Γ

∗
yxΠx)

k∂21Γ
∗
yxΠx −

∑
l≥0

1
l!(Γ

∗
yxΠx)

lΓ∗
yx(D

(0))lc+ ξτ1.

We substitute Γ∗
yxΠx according to the first item in (7.5), substitute Γ∗

yxzk =∑
l≥0

(
k+l
k

)
Πl

y(x)zk+l and Γ∗
yx(D

(0))lc according to the second item in (7.5)
and definition (4.7), and finally appeal to the binomial formula in both
ensuing double sums to obtain (5.10) with x replaced by y, establishing
(7.7).

23in a first reading, the star should be seen as mere notation; Γ∗
yx is actually the

algebraic dual of a linear endomorphism Γyx on the pre-dual space, see Lemma 8.1; it
is Γyx that can be assimilated to the object denoted by the same symbol in regularity
structures; for a concise reference see [20, Section 5.3]
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In view of the scaling (5.22) and the transformation (7.5) we expect
that the laws of s|β|−|γ|(Γ∗

yx)
γ
β and of (Γ∗

SySx)
γ
β to be identical. On the

other hand, we expect (Γ∗
SySx)

γ
β to converge to (Γ∗

00)
γ
β as s ↓ 0, and we

expect Γ∗
00 to be the identity. This suggests strict triangularity:

(Γ∗
yx − id)γβ = 0 unless |γ| < |β|. (7.8)

We claim that applying Γ∗
yx to (7.3), we obtain24

δΠ−
y (x)− (δΓ∗

yx)Π
−
x (x)

=
∑
k≥0

zkΠ
k
y(x)∂

2
1

(
δΠy − δΠy(x)− (δΓ∗

yx)Πx

)
(x) + δξτ (x)1. (7.9)

Since by (7.8), δΓ∗
yx is strictly triangular, (7.9) provides an inductive way

of determining {Π−
x }x (up to expectation) in terms of {Πx}x. Here comes

the argument for (7.9): Applying Γ∗
yx to the l. h. s. of (7.3) and using (7.7)

in conjunction with Leibniz’ rule w. r. t. δ, we obtain the l. h. s. of (7.9).
For the r. h. s. we first use the multiplicativity of Γ∗

yx; according to the
second item in (7.5) and (4.7) we have

Γ∗
yxz0 =

∑
l≥0

Πl
y(x)zl. (7.10)

To rewrite Γ∗
yxδΠx, we apply δ to the first identity in (7.5). This establishes

(7.9).
We now argue that from an analytical point of view, (7.9) is not quite

adequate. Clearly, the r. h. s. of (7.9) still contains a potentially singular
product of Πk

y and ∂21(δΠy − δΠy(x) −(δΓ∗
yx)Πx). Here, it is crucial that

applying δ to Πy, which is a multi-linear expression in ξ, means replacing
one of the instances of ξ by δξ. Now as we shall explain in the next
subsection, δξ gains25 D

2 orders of regularity over ξ. However, since the
other instances of ξ remain, the regularity of δΠy is not at face value better
by D

2 orders over Πy, which is just Hölder continuous with exponent α.

24of course, the r. h. s. term δΠy(x) is effectively absent due to the derivative ∂2
1

25however on an L2 instead of a uniform scale
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Hence we can only expect that δΠy is locally, i. e. near a base point x,
described – “modelled” in the jargon of regularity structures – to order
D
2 +α in terms of Πx. The Taylor-remainder-like expression δΠy − δΠy(x)

−(δΓ∗
yx)Πx has the potential of expressing this modeledness. Hence the

product of Πk
y and ∂21(δΠy−δΠy(x) −(δΓ∗

yx)Πx) has a chance of being well-
defined provided α+ (D2 +α− 2) > 0, which gives rise to the lower bound
assumption α > 1− D

4 in Theorem 6.1, which reduces to26 α > 1
4 for our

D = 3. Since D
2 +α > 1, this only has a chance of working provided every

β-component of (δΓ∗
yx)Πx involves the affine function Πxe(1,0) = (· − x)1.

However, this contradicts the (strict) triangularity (7.8) for |β| ≤ 1. Hence
δΓ∗

yx is not rich enough to describe all components of δΠy to the desired
order near x.

In view of the preceding discussion, we are forced to loosen the popula-
tion constraint (7.8). To this purpose, we replace the directional Malliavin
derivative δΓ∗

yx by some dΓ∗
yx ∈ End(R[[zk, zn]]) in order to achieve

δΠy − δΠy(x)− dΓ∗
yxΠx = O(| · −x|

D
2
+α). (7.11)

In order to preserve the identity (7.9) in form of

δΠ−
y (x)− dΓ∗

yxΠ
−
x (x)

=
∑
k≥0

zkΠ
k
y(x)∂

2
1

(
δΠy − δΠy(x)− dΓ∗

yxΠx

)
(x) + δξτ (x)1, (7.12)

we need dΓ∗
yx to inherit the algebraic properties of δΓ∗

yx. More precisely,
we impose that dΓ∗

yx agrees with δΓ∗
yx on the sub-algebra R[[zk]],

dΓ∗
yx = δΓ∗

yx on R[[zk]], (7.13)

and that dΓ∗
yx is in the tangent space to the manifold of algebra morphisms

26This is the analogy of rough path construction of fractional Brownian motion.
For the case of fractional Brownian motion with Hurst parameter H, a rough path
construction can be only implemented for any H > 1

4
by increasing the number of

iterated integrals. However, the stochastic analysis to construct the iterated integrals
fails for fractional Brownian motion of Hurst parameter H ≤ 1

4
. See [10, Theorem 2].
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in Γ∗
yx, which means that for all π, π′ ∈ R[[zk, zn]]

dΓ∗
yxππ

′ = (dΓ∗
yxπ)(Γ

∗
yxπ

′) + (Γ∗
yxπ)(dΓ

∗
yxπ

′). (7.14)

Here is the argument on how to pass from (7.13) & (7.14) to (7.12). On
the one hand, we apply δ to (5.10) to the effect of

δΠ−
y (x) =

∑
k≥0

zkδ
(
Πk

y(x)
)
∂21Πy(x) +

∑
k≥0

zkΠ
k
y(x)∂

2
1δΠy(x)

−
∑
l≥0

1

l!
δ
(
Πl

y(x)
)
(D(0))lc+ δξτ (x)1. (7.15)

On the other hand, we apply dΓ∗
yx to (7.2) to obtain by27 (7.14)

dΓ∗
yxΠ

−
x (x)

= (dΓ∗
yxz0)∂

2
1Γ

∗
yxΠx(x) + (Γ∗

yxz0)∂
2
1dΓ

∗
yxΠx(x)− dΓ∗

yxc. (7.16)

We now argue that the first r. h. s. term of (7.15) is identical to the one
in (7.16); indeed, by the first item in (7.5) we have ∂21Γ∗

yxΠx = ∂21Πy. On
the other hand, by (7.13) and the second item in (7.5) we have

dΓ∗
yx =

∑
l≥0

1

l!
δ
(
Πl

y(x)
)
(D(0))l on R[[zk]]. (7.17)

so that by (4.7) dΓ∗
yxz0 =

∑
k≥0 δ(Π

k
y(x))zk. Identity (7.17) also implies

that the third r. h. s. terms of (7.15) and (7.16) are identical. The second
r. h. s. terms of (7.15) and (7.16) combine as desired by (7.10). This
establishes (7.12). In order to use (7.12) inductively to define – or rather
estimate – {Π−

x }x, [21] had to come up with an ordering on multi-indices β
with respect to which dΓ∗

yx is strictly triangular, leading to a modification
of (6.6).

Incidentally, the point of view adopted in [5] allows for a more geo-
metric interpretation of dΓ∗

yx: The linear combination δΠy(x) + dΓ∗
yxΠx

is actually an element of the tangent space of the solution manifold of
27which also implies dΓ∗

yx1 = 0
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(3.5); The Malliavin derivative δΠy lies approximately in the aforemen-
tioned tangent space, which is expressed by (7.11). For more details we
invite the reader to have a look at [5].

Definition of the Malliavin derivative and SG. We have seen that
the Malliavin derivative, which we now shall rigorously define, allows to
give a more robust relation between Πx and Π−

x . Via the SG inequality,
which will be introduced here, the control of the Malliavin derivative of
a random variable F yields control of the variance of F . Consider the
Hilbert norm on (a subspace of) the space of Schwartz distributions28

∥δξ∥2 =
ˆ
R2

dx
(
(∂41 − ∂22)

1
4
(α− 1

2
)δξ

)2
=

ˆ
R2

dq
∣∣|q|(α− 1

2
)Fδξ

∣∣2. (7.18)

Note that we encounter again A∗A = (−∂2 − ∂21)(∂2 − ∂21) with Fourier
symbol |q|4 = q41+q

2
2, see (1.4). Hence this is one of the equivalent ways of

defining the homogeneous L2(R2)-based Sobolev norm of fractional order
α− 1

2 , however of parabolic scaling, which we nevertheless still denote by
H := Ḣα− 1

2 (R2).
We now consider “cylindrical” (nonlinear) functionals F on the space

S ′(R2) of Schwartz distributions, by which one means that for someN ∈ N,
F is of the form

F [ξ] = f
(
(ξ, ζ1), · · · , (ξ, ζN )

)
with

f ∈ C∞(RN ) and ζ1, · · · , ζN ∈ S(R2), (7.19)

where we recall that (ξ, ζn) denotes the natural pairing between ξ ∈ S ′(R2)

and a Schwartz function ζn ∈ S(R2). Clearly, those function(al)s F are
Fréchet differentiable with

dF [ξ].δξ = lim
s↓0

1

s
(F [ξ + sδξ]− F [ξ])

=

N∑
n=1

∂nf
(
(ξ, ζ1), · · · , (ξ, ζN )

)
(δξ, ζn) = (δξ,

∂F

∂ξ
[ξ]), (7.20)

28we denote the argument by δξ since we think of it as an infinitesimal perturbation.
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where ∂F
∂ξ [ξ] ∈ S(R2) is defined through

∂F

∂ξ
[ξ] =

N∑
n=1

∂nf
(
(ξ, ζ1), · · · , (ξ, ζN )

)
ζn.

We will monitor the dual norm

∥∂F
∂ξ

[ξ]∥∗ := sup
δξ

(δξ, ∂F∂ξ [ξ])

∥δξ∥
= ∥∂F

∂ξ
[ξ]∥

Ḣ
1
2−α(R2)

. (7.21)

Definition 7.1. An ensemble E of Schwartz distributions29 is said to
satisfy a SG inequality provided for all cylindrical F with E|F | <∞

E(F − EF )2 ≤ E∥∂F
∂ξ

∥2∗. (7.22)

Note that the l. h. s. of (7.22) is the variance of F . Inequality (7.22)
amounts to an L2-based Poincaré inequality with mean value zero on the
(infinite-dimensional) space of all ξ’s. By a (parabolic) rescaling of x, we
may w. l. o. g. assume that the constant in (7.22) is unity. Implicitly, we
also include closability of the linear operator

cylindrical function F 7→ ∂F

∂ξ
∈ {cylindrical functions} ⊗ S(R2). (7.23)

This means that the closure of the graph of (7.23) w. r. t. the topology of
L2 and L2(H∗) is still a graph. This allows to extend the Fréchet derivative
(7.23) to the Malliavin derivative

L2 ⊃ D(
∂

∂ξ
) ∋ F 7→ ∂F

∂ξ
∈ L2(H∗).

By the chain rule, we may post-process (7.22) to its Lp-version

E
1
p |F − EF |p ≲p E

1
p ∥∂F
∂ξ

∥p∗, (7.24)

which is the form we use it in. A concise proof how to obtain (7.24) from
(7.22) can be found in [17, Step 2 in the proof of Lemma 3.1].

29It does not have to be a Gaussian ensemble.
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The obvious examples are Gaussian ensembles of Schwartz distribu-
tions with

∥ · ∥ ≤ Cameron-Martin norm, (7.25)

where the norm ∥ · ∥ means the Hilbert norm defined in (7.18), e. g.

white noise −D
2 = α− 2 =⇒ α = 1

2 ,

free field 1− D
2 = α− 2 =⇒ α = 3

2 .

In other words, the SG inequality (7.22) holds with Gaussian ensembles
satisfying (7.25), see [2, Theorem 5.5.11].

For the reader’s convenience, we sketch the simplest application of SG
from [21, Section 4.3], namely (6.4) for β = 0. To this aim we apply (7.24)
to F := (ξ, ψt(y − ·)) = Π−

x0t(y), which is of the form of (7.19), so that
according to (7.20) its Malliavin derivative is given by ∂F

∂ξ = ψt(y − ·).
In view of (7.21), and then appealing to (2.4) in conjunction with the
translation invariance and scaling of the Sobolev norm we have

∥∂F
∂ξ

∥∗ = ∥ψt(y − ·)∥
Ḣ

1
2−α(R2)

= (
4
√
t)−

D
2
− 1

2
+α∥ψt=1∥

Ḣ
1
2−α(R2)

.

Noting that the exponent is α − 2 and that ψt=1 is a (deterministic)
Schwartz function we obtain from (7.24)

E
1
p |Π−

x0t(y)|
p ≲ (

4
√
t)α−2.

In view of |0| = α, this amounts to the desired (6.4) for β = 0.
We also remark that SG naturally complements the BPHZ-choice of

renormalization, see Section 6:

• The choice of cβ takes care of the mean EΠ−
xβt(y), while

• SG takes care of the variance of Π−
xβt(y).

Hence the main task in [21] is the estimate of E
1
p ∥∂F

∂ξ ∥
p
∗, where F :=

Π−
xβt(y), which we tackle by duality through estimating the directional
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derivative

δF := (δξ,
∂F

∂ξ
) given control of E

1
q ∥δξ∥q.

The inductive estimate is based on (7.12).
Philosophically speaking, our approach is analytic rather than combi-

natorial:

analytic combinatorial
index set: derivatives w.r.t. a and p Picard iteration

; multi-indices on k ≥ 0, n ̸= 0 ; trees with decorations
Ass. on ξ: spectral gap inequality cumulant bounds

Malliavin derivatives w.r.t. ξ trees with paired nodes
; estimates on E∥ ∂

∂ξΠ
−
xβ t(y)∥2∗ ; Feynman diagrams

For us, all combinatorics are contained in Leibniz’ rule. We also point out
that our approach may be called “top-down" rather than bottom-up in
the sense that we postulate the conditions (space-time translation, spatial
reflection, shift-covariance, etc) on the counter term h from the beginning.

A closing remark for experts in QFT: The absence of c in (7.12) means
that our approach does not suffer from the well-known difficulty of “over-
lapping sub-divergences” in Quantum Field Theory, which is also an issue
in [7]. Our inductive approach has similarities with the one of Epstein-
Glaser, see [24, Section 3.1].

8 The structure group and the re-expansion map

In this section we construct the endomorphism Γ∗
yx of the algebra R[[zk, zn]]

that satisfies (7.5) for given Πx and Πy. In [21], the constructions (and
estimates) of Γ∗

yx and Πx are actually intertwined, however the proof of
Lemma 8.4 has the same elements as [21, Section 5.3]. In line with regular-
ity structures it is convenient to adopt a more abstract point of view: We
start by introducing what can be assimilated to Hairer’s structure group
G, which here is a subgroup of the automorphism group of the linear space
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R[zk, zn], where R[zk, zn] now plays the role of the30 (algebraic) pre-dual of
R[[zk, zn]]; Γ∗

yx will be the transpose of a Γyx ∈ G. The elements Γ ∈ G are
parameterized by {π(n)}n ⊂ R[[zk, zn]], see Lemma 8.1; the group prop-
erty will be established in Lemma 8.2. In Lemma 8.4 we inductively choose
{π(n)yx }n such that the associated Γyx satisfies (7.5). For a discussion of the
Hopf- and Lie-algebraic structure underlying G we refer to [20]. As op-
posed to [20] and [19], we will capitalize on α < 1, which simplifies several
arguments.

Lemma 8.1. Given31 {π(n)}n ⊂ R[[zk, zn]] satisfying

π
(n)
β = 0 unless |n| < |β|, (8.1)

there exists a unique linear endomorphism Γ of R[zk, zn] such that Γ∗ is
an algebra endomorphism32 of R[[zk, zn]] that satisfies

Γ∗zk =
∑
l≥0

1

l!
(π(0))l(D(0))lzk

(4.7)
=

∑
l≥0

(
k+l
k

)
(π(0))lzk+l, (8.2)

Γ∗zn = zn + π(n). (8.3)

In addition33,

(Γ∗ − id)γβ = 0 unless |γ| < |β| and γ ≺ β. (8.4)

We remark that the algebra endomorphism property, the mapping
property (8.2), and the first triangularity in (8.4) mimic desired properties
of Γ∗

yx, namely (7.6), the second item of (7.5), and (7.8), respectively.

Proof of Lemma 8.1. We recall that the matrix representation {Γβ
γ}β,γ of

a linear endomorphism Γ of R[zk, zn] w. r. t. the monomial basis {zβ}β is
given by

Γzβ =
∑
γ

Γβ
γz

γ . (8.5)

30canonical w. r. t. the monomial basis
31which here as opposed to earlier includes the additional (dummy) index n = 0 we

first encountered in (4.5)
32i. e. Γ∗ππ′ = (Γ∗π)(Γ∗π′) and Γ∗1 = 1 hold
33we recall that ≺ is defined in (6.6)
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The algebraic dual Γ∗, as a linear endomorphism of R[[zk, zn]], is given
by34

(Γ∗π)β =
∑
γ

(Γ∗)γβπγ where (Γ∗)γβ := (Γ∗zγ)β = Γβ
γ .

Such a Γ∗ is an algebra endomorphism if and only if

(Γ∗)γβ =
∑

β1+···+βk=β

(Γ∗)γ1β1
· · · (Γ∗)γkβk

for γ = γ1 + · · ·+ γk. (8.6)

This includes Γ∗1 = 1 in form of

(Γ∗)0β = δ0β (8.7)

Since any multi-index γ ̸= 0 can be written as the sum of γj ’s of length
one, we learn that an endomorphism Γ of R[zk, zn] with multiplicative Γ∗

is determined by how Γ∗ acts on the coordinates {zk}k≥0 and {zn}n̸=0.
This establishes the uniqueness statement.

For the existence, we need to establish that the numbers {(Γ∗)γβ}β,γ
defined through (8.2) & (8.3) in form of

(Γ∗)ekβ − δekβ =
∑
l≥1

(
k+l
k

) ∑
ek+l+β1+···+βl=β

π
(0)
β1

· · ·π(0)βl
, (8.8)

(Γ∗)enβ − δenβ = π
(n)
β (8.9)

and extended by (8.6) & (8.7) to all γ satisfy (for fixed β)

#{γ | (Γ∗)γβ ̸= 0} <∞. (8.10)

Indeed, this finiteness condition allows to define Γ via (8.5) with Γβ
γ :=

(Γ∗)γβ . Since thanks to (8.13) below in conjunction with 0 < λ,α < 1 the
ordering ≺ is coercive, by which we mean

#{γ | γ ≺ β} <∞, (8.11)

34note that the sum is effectively finite, since there are only finitely many γ such that
Γβ
γ ̸= 0 since the monomial basis is an algebraic basis
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(8.10) follows once we establish the second strict triangularity in (8.4).
Hence, it remains to establish (8.4) in form of

(Γ∗)γβ − δγβ = 0 unless |γ|≺ < |β|≺ and |γ| < |β| (8.12)

for the numbers {(Γ∗)γβ}β,γ defined through (8.8) & (8.9) and then ex-
tended by (8.6). For this purpose, we note that by definition (5.20) in
form of

|β| − α = α
∑
k≥0

kβ(k) +
∑
n̸=0

(|n| − α)β(n) (8.13)

and since α ≤ 1 ≤ |n|,

| · | − α ≥ 0 is additive
(6.6)
=⇒ same for | · |≺ − α. (8.14)

We first restrict to γ’s of length one in (8.12), and distinguish the cases
γ = en and γ = ek. Since by (5.20) and (6.6) we have |en|≺ = |en| = |n|
and |β| ≤ |β|≺, the former case follows directly via (8.9) from assumption
(8.1). We now turn to the latter case of γ = ek and to (8.8). There is
a contribution to the r. h. s. sum only when there exists an l ≥ 1 and a
decomposition β = ek+l + β1 + · · ·+ βl; this implies

|β| ≥ |ek+l|
(5.20)
= |ek|+ αl ≥ |ek|+ α

(6.6)
=⇒ |β|≺ ≥ |ek|≺ + (α− λ),

which yields the desired (8.12) because of α > λ, 0.
Finally, we need to upgrade (8.12) from γ’s of length one to those of

arbitrary length, which we do by induction in the length. The base case
of zero length, i. e. of γ = 0, is dealt with in (8.7). We carry out the
induction step with help of (8.6), writing a multi-index γ = γ′ + γ′′ with
γ′, γ′′ of smaller length:

(Γ∗)γβ =
∑

β′+β′′=β

(Γ∗)γ
′

β′(Γ
∗)γ

′′

β′′ . (8.15)

We learn from the induction-hypothesis version of (8.12) that the summand
vanishes unless

|γ′|+ |γ′′| < |β′|+ |β′′| and |γ′|≺ + |γ′′|≺ < |β′|≺ + |β′′|≺
or γ′ = β′ and γ′′ = β′′;
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in the latter case the summand is equal to 1. By (8.14), the first alternative
implies |γ| < |β| and |γ|≺ < |β|≺. The second alternative implies γ = β

and then holds for exactly one summand to the desired effect of (Γ∗)γβ =

1.

The two triangular properties (8.4) from Lemma 8.1 allow us to estab-
lish the group property. Furthermore, a triangular dependence (8.16) of
Γ∗ on π(n) will play a crucial role when inductively constructing π(n)yx in
Lemma 8.4.

Lemma 8.2. The set G of all Γ as in Lemma 8.1 defines a subgroup of
the automorphism group of R[zk, zn]. Moreover,

for [γ] ≥ 0, (Γ∗)γβ is independent of π(n)β′ unless β′ ≺ β. (8.16)

Remark 8.3. The group G is larger than the one constructed in [20], since
1) we do not require that π(n)β = 0 unless β satisfies (5.14), and 2) we do
not specify the space-time shift structure of the (β = em)-components of
π
(n)
β as in [20, Proposition 5.1]. Both conditions however are satisfied for

our construction of π(n)yxβ , see (8.23) and (8.25).

Proof of Lemma 8.2. We first argue that for Γ,Γ′ ∈ G we have Γ′Γ ∈
G. More precisely, if Γ and Γ′ are associated to {π(n)}n and {π′(n)}n by
Lemma 8.1, respectively, we consider

π̃(n) := π(n) + Γ∗π′(n). (8.17)

We note that by triangularity (8.4) of Γ∗ w. r. t. | · |, the population
property (8.1) propagates from π(n), π′(n) to π̃(n). Let Γ̃ ∈ G be associated
to {π̃(n)}n; we claim that Γ′Γ = Γ̃.

To this purpose, we note that (Γ′Γ)∗ = Γ∗Γ′∗ is an algebra morphism,
like Γ̃∗ is. Hence by the uniqueness statement of Lemma 8.1, it is sufficient
to check that Γ∗Γ′∗ and Γ̃∗ agree on the two sets of coordinates {zk}k and
{zn}n. On the latter this is easy:

Γ̃∗zn
(8.3)
= zn + π̃(n)

(8.17)
= zn + π(n) + Γ∗π′(n)

(8.3)
= Γ∗(zn + π′(n))

(8.3)
= Γ∗Γ′∗zn.
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We now turn to the zk’s, showing that the algebra endomorphisms Γ∗Γ′∗

and Γ̃∗ agree on the sub-algebra R[zk] ⊂ R[[zk, zn]]; by multiplicativity of
Γ∗ we have according to (8.2) for Γ′

Γ∗Γ′∗ =
∑
l′≥0

1

l′!
(Γ∗π′

(0)
)l

′
Γ∗(D(0))l

′
on R[zk].

Since D(0) preserves R[zk], we may apply (8.2) for Γ and obtain by the
binomial formula:

Γ∗Γ′∗ =
∑
l′≥0

1

l′!
(Γ∗π′

(0)
)l

′ ∑
l≥0

1

l!
(π(0))l(D(0))l

′+l

(8.17)
=

∑
l̃≥0

1

l̃!
(π̃(0))l̃(D(0))l̃ on R[zk],

which according to (8.2) agrees with Γ̃∗.
We come to the inverse of a Γ ∈ G associated to {π(n)}n. By the

strict triangularity (8.4) w. r. t. the coercive ≺, cf. (8.11), there exists
π̃(n) ∈ R[[zk, zn]] such that

Γ∗π̃(n) = −π(n). (8.18)

We now argue by induction in β w. r. t. ≺ that π̃(n) satisfies (8.1). For
this, we spell (8.18) out as

π̃
(n)
β +

∑
γ

(Γ∗ − id)γβπ̃
(n)
γ = −π(n)β .

If |β| ≤ |n|, the r. h. s. vanishes by (8.1), and by (8.4) the sum over γ
restricts to |γ| ≤ |β| ≤ |n|, and to γ ≺ β, so that the summand vanishes
by induction hypothesis. Thus also π̃(n)β vanishes.

This allows us to argue that Γ̃ ∈ G associated to {π̃(n)}n is the inverse
of Γ. By the strict upper triangularity of Γ w. r. t. to the coercive ≺,
we already know that Γ is invertible, so that it suffices to show Γ̃Γ = id,
which in turn follows from its transpose Γ∗Γ̃∗ = id. By the composition
rule (8.17) established above, Γ∗Γ̃∗ is associated to {π(n) + Γ∗π̃(n)}n. By
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(8.18) we have that π(n) + Γ∗π̃(n) = 0, and learn from Lemma 8.1 that id

is associated with 0.
We finally turn to the proof of (8.16). We note that β1 + · · ·+ βl = β

implies the componentwise βj ≤ β, which by (8.14) implies |βj |≺ ≤ |β|≺.
Since every γ with [γ] ≥ 0 can be written as the sum of γ’s of the form

γ = ek + en1 + · · ·+ enj with j ≤ k, (8.19)

we learn from (8.6) that we may assume that γ is of this form. Once more
by (8.6) we have for these γ’s

(Γ∗)γβ =
∑

β0+···+βj=β

(Γ∗)ekβ0
(Γ∗)

en1
β1

· · · (Γ∗)
enj

βj
.

From (8.8) & (8.9) we learn that this (Γ∗)γβ is a linear combination of

π
(0)
β′
1
· · ·π(0)

β′
l
(zn1 + π(n1))β1 · · · (znj + π(nj))βj

, (8.20)

where the multi-indices satisfy

β = ek+l + β′1 + · · ·+ β′l + β1 + · · ·+ βj . (8.21)

We need to show that the product (8.20) contains only factors π(n)β′ with
β′ ≺ β; w. l. o. g. we may assume l + j ≥ 1. To this purpose we apply
| · |≺ to (8.21); by (8.14) and |ek+l|≺ ≥ |ek+l| = α(1 + k + l) this implies
|β|≺ ≥ α(1 + k − j) + |β′1|≺ + · · · + |β′l|≺ + |β1|≺ + · · · + |βj |≺, which by
j ≤ k implies the desired |β′1|≺, . . . , |β′l|≺, |β1|≺, . . . , |βj |≺ < |β|≺.

Finally, we show that the group G is large enough to contain the re-
expansion maps.

Lemma 8.4. There exists {π(n)yx }n satisfying (8.1) such that the Γyx ∈ G

associated by Lemma 8.1 satisfies (7.5).

As a consequence of working with a larger group than in [20], see
Remark 8.3, we don’t have uniqueness of {π(n)yx }n and thus of Γyx. We
refer the reader to [25] for a uniqueness result when working with the
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smaller group. An inspection of our construction reveals transitivity in
line with [14, Definition 3.3]

Γ∗
xyΓ

∗
yz = Γ∗

xz and Γ∗
xx = id,

see [21, Section 5.3] for the argument; it would also be a consequence of
uniqueness.

Proof of Lemma 8.4. We start by specifying π
(n)
yxβ in the special cases of

n = 0 and of β = em for some m ̸= 0:

π(0)yx := Πy(x), (8.22)

π(n)yxem :=

{ (
m
n

)
(x− y)m−n provided n <m,

0 otherwise

}
for n ̸= 0, (8.23)

where n < m means component-wise (non-strict) ordering and n ̸= m.
We note that (8.22) is necessary in order to bring the second item of (7.5)
into agreement with the form (8.2). We also remark that (8.23) yields by
(8.3)

(Γ∗
yx)

en
em =

{ (
m
n

)
(x− y)m−n provided n ≤ m,

0 otherwise

}
.

By the second part of (8.4), which implies (Γ∗
yx)

γ
0 = 0 unless γ = 0, by

(8.8) in form of (Γ∗
yx)

ek
em = 0, and via (8.6) this strengthens to

(Γ∗
yx)

γ
em =

{ (
m
n

)
(x− y)m−n if γ = en with n ≤ m,

0 otherwise

}
. (8.24)

The latter is imposed upon us by taking the (β = em)-component of the
first item in (7.5) and plugging in (5.7). The second part of (8.24) implies
that Γyx maps the linear span of {zm}m ̸=0 into itself; since this linear
span can be identified with the space R[x1, x2]/R of space-time polynomi-
als (modulo constants), this can be assimilated to Hairer’s postulate [14,
Assumption 3.20]. We note that (8.22) and (8.23) satisfy (8.1) because of
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| · | ≥ α > 0, cf. (8.14), and |em| = |m| > |n|, respectively. In line with
(5.14) and [20], we also set

π
(n)
yxβ = 0 unless [β] ≥ 0 or β = em for some m ̸= 0. (8.25)

It thus remains to construct π(n)yxβ for n ̸= 0 and [β] ≥ 0, which we
will do by induction in β w. r. t. ≺. According to (8.16), we may consider
(Γ∗)γβ as already constructed for [γ] ≥ 0. According to (6.7) and by the
induction hypothesis (7.5), an inspection of the argument that leads from
there to (7.7) shows that we also have

Π−
yβ = (Γ∗

yxΠ
−
x )β. (8.26)

The induction step consists in choosing {π(n)yxβ}0<|n|<|β| such that

Πyβ = (Γ∗
yxΠx)β +Πyβ(x)

(8.22)
= (Γ∗

yxΠx)β + π
(0)
yxβ. (8.27)

Denoting by P the projection on multi-indices γ with [γ] ≥ 0, so that by
(5.7) and (5.14) we have (id− P )Πx =

∑
n ̸=0(· − x)nzn and thus by (8.1)

and (8.3)

(Γ∗
yx(1− P )Πx)β =

∑
0<|n|<|β|

(· − x)nπ
(n)
yxβ, (8.28)

allows us to make {π(n)yxβ}0<|n|<|β| in (8.27) explicit:

(Πy − Γ∗
yxPΠx)β =

∑
n:|n|<|β|

π
(n)
yxβ(· − x)n. (8.29)

Hence our task reads

(Πy − Γ∗
yxPΠx)β = polynomial of degree < |β|. (8.30)

According to the PDE (6.1), to (8.26), and to (8.28) we have

(∂2 − ∂21)(Πy − Γ∗
yxPΠx)β = polynomial of degree < |β| − 2. (8.31)
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In order to pass from (8.31) to (8.30), we will now appeal to the unique-
ness/Liouville statement in Lemma 2.1 with η = |β|, which is ̸∈ Z accord-
ing to (6.5) and ≥ α according to (8.14), and p = 1 for simplicity. More
precisely, we apply Lemma 2.1 to

u = (Πy − Γ∗
yxPΠx)β − its Taylor polynomial in x of order < |β|,

which makes sense since (8.31) implies that (Πy − Γ∗
yxPΠx)β is smooth,

and to f ≡ 0. Hence for the assumption (2.6) we need to check that

lim sup
z:|z−x|↑∞

1

|z − x||β|
E|(Πy − Γ∗

yxPΠx)β(z)| <∞, (8.32)

which forces us to now become semi-quantitative.
By the estimate (6.3) on Π, for (8.32) it remains to show35

E
1
p |(Γ∗

yx)
γ
β|

p ≲β,γ,p |y − x||β|−|γ| provided [γ] ≥ 0. (8.33)

In line with the language of [21], we split the argument for (8.33) into an
“algebraic argument”, where we derive (8.33) from

E
1
p |π(n)yxβ′ |p ≲β′,p |x− y||β′|−|n| for β′ ≺ β, (8.34)

and a “three-point argument”, where we derive (8.34) from the estimate
(6.3) on Π.

Here comes the argument for (8.33), which is modelled after the one
for (8.16) in Lemma 8.2. By Hölder’s inequality in probability and the
additivity of | · | − α, cf. (8.14), we may restrict to γ’s of the form (8.19).
We are thus lead to estimate the product (8.20), which now takes the form
of

π
(0)
yxβ′

1
· · ·π(0)

yxβ′
l
(zn1 + π(n1)

yx )β1 · · · (znj + π
(nj)
yx )βj

. (8.35)

Once again by Hölder’s inequality, we infer from (8.34) that the E
1
p | · |p-

norm of (8.35) is

≲ |y − x||β′
1| · · · |y − x||β′

l||y − x||β1|−|n1| · · · |y − x||βj |−|nj |.

35which coincides with Hairer’s postulate [14, (3.2) in Definition 3.3]



Lecture notes on tree-free regularity structures 193

By the additivity of | · | −α, the total exponent of |y−x| can be identified
with the desired expression:

|β′1|+ · · ·+ |β′l|+ (|β1| − |n1|) + · · ·+ (|βj | − |nj |)
(8.21)
= |β| − |ek+l|+ (l + j)α− (|n1|+ · · ·+ |nj |)

(8.19)
= |β| − |γ|.

Finally, we give the “three-point argument” for the estimate (8.34), for
notational simplicity in case of the current multi-index β, so that we now
may use (8.29) and (8.33). By (6.3) and (8.33), the left hand side of (8.29)
can be estimated as follows

E
1
p |(Πy − Γ∗

yxPΠx)β(z)|p ≲β,p (|z − x|+ |y − x|)|β|.

By the equivalence of norms on the finite-dimensional space of space-time
polynomials of degree < |β|, which by a duality argument can be upgraded
to the following estimate of annealed norms for random polynomials

max
n: |n|<|β|

|y − x||n| E
1
p |π(n)yxβ|

p ≲
 
|z−x|≤|y−x|

dz E
1
p
∣∣ ∑
n: |n|<|β|

(z − x)nπ
(n)
yxβ

∣∣p,
we obtain (8.34).
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