
Vol. 58, 68–149 ©2023
http://doi.org/10.21711/231766362023/rmc583

Introduction to rough paths theory

Mazyar Ghani Varzaneh 1 and Sebastian Riedel 1

1FernUniversität in Hagen, Universitätsstr. 1, 58097 Hagen, Germany

Abstract. These notes are an extended version of the course “Intro-
duction to rough paths theory” given at the XXV Brazilian School
of Probability in Campinas in August 2022. Their aim is to give a
concise overview to Lyons’ theory of rough paths with a special focus
on applications to stochastic differential equations.

Keywords: rough paths, rough differential equations.

2020 Mathematics Subject Classification: 60L20.

Contents

1 Introduction 69
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2 Motivation: Fractional Brownian motion 72

3 Sewing lemma and Young’s integral 80
3.1 The Sewing lemma . . . . . . . . . . . . . . . . . . . . . . . 80
3.2 Young’s integral and differential equations driven by Hölder

paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3 Limitations of the Young integral . . . . . . . . . . . . . . . 88

e-mail: sebastian.riedel@fernuni-hagen.de

68

http://doi.org/10.21711/231766362023/rmc583
https://orcid.org/0000-0002-9578-2353
https://orcid.org/0000-0003-4897-5491


Introduction to rough paths theory 69

4 Rough paths and linear equations 91

4.1 Iterated integrals and rough paths . . . . . . . . . . . . . . 92

4.2 Linear equations driven by a rough path . . . . . . . . . . . 100

4.3 Brownian motion as a rough path . . . . . . . . . . . . . . . 101

5 The space of rough paths 104

5.1 Metrics on rough paths spaces and separability . . . . . . . 104

5.2 Shuffles and the signature . . . . . . . . . . . . . . . . . . . 107

6 Controlled paths and rough integral 110

6.1 Controlled paths as a field of Banach spaces . . . . . . . . . 115

7 Rough differential equations 126

7.1 Rough differential equations driven by a Brownian motion . 130

7.2 Rough differential equations driven by a fractional Brown-
ian motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8 Discussion and Outlook 133

1 Introduction

Rough paths theory, as we know it today, originates from a series of
papers T. Lyons wrote in the 90s, cf. [Lyo98] and the references therein. In
his work, Lyons obtained a deep understanding of paths with low regular-
ity and their interaction within nonlinear systems. One strong motivation
for a study of irregular paths is their ubiquity in stochastic analysis. In
fact, there are various examples of rescaled random systems that converge
to objects with “rough” behaviour. The most prominent example is, of
course, the Brownian motion (Bm) which is a rescaled version of a whole
class of random walks. Due to its universality, the Brownian motion plays
a key role in stochastic modelling. An important example is a stochas-
tic differential equation in which the “noise” is modelled by the (formal)
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derivative of a Brownian motion. For instance, let us look at the equation

dYt = σ(Yt) dBt(ω) (1.1)

where B(ω) is the trajectory of a Brownian motion and σ a nonlinear func-
tion. Although this equation might look like an innocent non-autonomous
random ordinary differential equation, it constitutes a great challenge if we
want to analyze it with the tools of classical analysis (we will see in these
notes some explanations why this is the case). A major contribution to the
understanding of the equation (1.1) was made in the 50s by K. Itō who
gave a rigorous meaning to it using a stochastic integral that nowadays
bears his name. Itō did not view (1.1) as an ordinary differential equa-
tion for every trajectory (what is called a pathwise point of view) but put
forward the probabilistic properties of the Brownian motion, namely, its
martingale property. His integral is defined using an isometry on a space
of martingales, not referring to single trajectories anymore. Eventually, he
understood (1.1) as an equation on a space of stochastic processes. Itō’s
stochastic calculus was (and is!) extremely successful. Still, a pathwise
understanding of (1.1) is desirable in many situations, and one of Lyons’
goals was to provide the ground for it.

The present text focuses on defining solutions to rough differential equa-
tions for which (1.1) is a prototype. On the journey to this overall goal,
we will touch several key aspects of rough paths theory. These notes are
almost self-contained as we give formal proofs of the stated results wher-
ever possible. However, some calculations will be omitted in order not to
overload the reader with technical details, but references are given in that
case, though. We hope that the reader can use this text to get an idea of
what rough paths theory is about, why it was invented and what it can be
used for.

There are some branches of rough paths theory we were not able to
discuss in these notes, and we want to mention two of them here. The
first concerns applications of rough paths in the field of stochastic partial
differential equations. The most famous result here is probably M. Hairer’s



Introduction to rough paths theory 71

solution to the KPZ-equation that was constructed with the help of rough
paths theory [Hai13]. Later, Hairer systematically expanded his ideas and
built a whole solution theory for a class of stochastic partial differential
equations that he called the theory of regularity structures [Hai14]. The
reader who is interested in these topics is referred to [FH20, Chapter 12
– 15] and [Hai15] for an overview. A second complex we were not able to
touch concerns the relationship between rough paths theory and machine
learning. In fact, the so-called signature method is a very powerful tool that
can be used to analyze and forecast very different kinds of data streams.
For an introduction to this method, the reader may consult [CK16] and
[LM22].

Several monographs about rough paths theory are available now, cf.
e.g. [LQ02, LCL07, FV10b, FH20]. The structure of our notes has some
similarities to [LCL07], but our notation and the proofs we present here are
closer to [FH20]. In particular, we wanted to discuss the important notion
of a controlled path introduced by Gubinelli [Gub04], since this concept
plays a prominent role also in regularity structures. In this context, we
present a more recent result about the geometry of controlled paths in
Section 6.1. In this form, these results did not appear elsewhere yet.

1.1 Notation

A path denotes a continuous function defined on a compact interval
with values in a topological space. If E is a topological vector space and
X : [0, T ] → E a path, we call Xt −Xs with s, t ∈ [0, T ] an increment of
the path. We will use the notation δXs,t := Xt−Xs. If (E, | · |) is a normed
space, we define for a function Ξ defined on a simplex

Ξ: {0 ≤ s ≤ t ≤ T} → E

and α > 0 the quantity

∥Ξ∥α := sup
s<t

|Ξs,t|
|t− s|α

.



72 M. Ghani Varzaneh, S. Riedel

If X : [0, T ] → E is a path and α ∈ (0, 1], ∥X∥α := ∥δX∥α is the usual
α-Hölder seminorm. A partition of an interval [s, t] is a finite set of points
P = {s = t0 < . . . < tN = t}. We will also view the partition P as a set
of closed intervals P = {[ti, ti+1] : i = 0, . . . , N − 1}. The mesh size of P
is defined as |P| := max[u,v]∈P |v − u|. For two Banach spaces V and W ,
L(V,W ) denotes the space of continuous linear functions from V to W .
The space L(V,W ) itself is equipped with the operator norm

∥Φ∥ := sup
v ̸=0

|Φv|
|v|

, Φ ∈ L(V,W ).

By C, we will mostly mean a generic constant that depends on the
aforementioned parameters. If we want to emphasize the dependence on a
certain parameter p, we use the notation Cp. In a series of (in-)equalities,
the actual value of this constant may change from line to line.

2 Motivation: Fractional Brownian motion

In this section, we present some background about the fractional Brow-
nian motion. These processes form a natural generalization of the Brow-
nian motion and were first introduced by Mandelbrot and van Ness in
[MVN68]. Let us first recall the definition of a Gaussian process.

Definition 2.1. A stochastic process X : [0,∞) → R is called Gaussian
if for every k ∈ N and every t1, . . . , tk ∈ [0,∞), the random variable
(Xt1 , . . . , Xtk) is a multivariate Gaussian random variable.

Note that the law of a Gaussian process is completely determined by the
mean function E(Xt), t ∈ [0,∞), and the covariance function cov(Xs, Xt),
s, t ∈ [0,∞), of the process.

Definition 2.2 (Mandelbrot, van Ness ’68). Let H ∈ (0, 1). The frac-
tional Brownian motion (fBm) is a continuous zero mean Gaussian process
BH : [0,∞) → R starting at 0 with covariance function given by

R(s, t) := cov(BH
s , B

H
t ) = E(BH

s B
H
t ) =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
.
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The parameter H ∈ (0, 1) is called Hurst parameter.

Remark 2.3. For H = 1
2 , one obtains R(s, t) = min{s, t}, i.e. BH is the

usual Brownian motion (Bm).

Below, we show typical trajectories of the fractional Brownian motion
with different Hurst parameters.

Figure 2.1: Trajectories of a fractional Brownian motion

For later purposes, we will list some properties of the fractional Brow-
nian motion here. These and others can be found e.g. in [Nua06, Chapter
5] and [BHOZ08].

Proposition 2.4. Let BH : [0,∞) → R be a fractional Brownian motion
with Hurst parameter H ∈ (0, 1). Then the following holds:

(i) BH has stationary increments, i.e. for every s ≥ 0, we have

(BH
t+s −BH

s )t≥0
D
= (BH

t )t≥0.
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(ii) BH is self-similar with index H, i.e. for every a > 0,

(BH
at)t≥0

D
= (a−HBH

t )t≥0.

Proof. Exercise.

The Hurst parameter describes the behaviour of the process. One easy
observation is the following:

Proposition 2.5. The increments of the fractional Brownian motion are

1. uncorrelated for H = 1
2 ,

2. positively correlated for H > 1
2 ,

3. negatively correlated for H < 1
2 .

Remark 2.6. • In stochastic modelling, the term noise usually de-
notes the formal derivative of the Brownian motion B. To give a
rigorous definition, Ḃ is understood as a random generalized func-
tion or distribution. More precisely,

⟨Ḃ, ϕ⟩ =
∫ ∞

0
ϕ(s)dBs

for every smooth function ϕ : [0,∞) → R with compact support. In
particular,

E(⟨Ḃ, ϕ⟩⟨Ḃ, ψ⟩) = E
(∫ ∞

0
ϕ(s) dBs

∫ ∞

0
ψ(s) dBs

)
=

∫ ∞

0
ϕ(s)ψ(s) ds.

This suggests that E(Ḃt) = 0 and

cov(Ḃs, Ḃt) = E(ḂsḂt) = δst =

1 if s = t,

0 otherwise
(2.1)

for every s, t ∈ [0,∞). Note, however, that these identities are only
formal since the indicator functions 1[0,t] are not smooth and thus
not a valid choice for ϕ and ψ. Still, (2.1) justifies the name white
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noise for Ḃ. For the fractional Brownian motion BH , one can make
a similar (formal) calculation that indicates that the process ḂH is
stationary but has non-vanishing correlations forH ̸= 1

2 . Sometimes,
this kind of noise is called colored.

• Using the fractional Brownian motion instead of the Brownian mo-
tion for modelling random phenomena can be more realistic in case
of models with memory. For instance, it was used to model price
processes in illiquid markets (electricity markets, gas markets etc.)

A generic form of a stochastic differential equation (SDE) driven by a
fractional Brownian motion is

dYt = b(Yt) dt+

d∑
i=1

σi(Yt) dB
H;i
t

Y0 = y0 ∈ Rm

(2.2)

where BH = (BH;1, . . . , BH;d) is a d-dimensional fractional Brownian
motion, i.e. a vector of independent one-dimensional fractional Brown-
ian motion, b, σ1, . . . , σd : Rm → Rm is a collection of vector fields and
Y : [0,∞) → Rm is a stochastic process we aim to call a solution to (2.2).
The fundamental problem is: How should we interpret (2.2)? Or, in other
words: What properties should the process Y satisfy to call it a solution to
the stochastic differential equation (2.2)?

First attempt: If the trajectories of BH , i.e. the paths t 7→ BH
t (ω),

ω ∈ Ω, were differentiable, we could interpret (2.2) pathwise as a random
(non-autonomous) ordinary differential equation (ODE):

dYt
dt

= b(Yt) +
d∑

i=1

σi(Yt)
dBH;i

t (ω)

dt
. (2.3)

However, we will see now that this attempt fails.
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Lemma 2.7. For a fractional Brownian motion BH and p > 0, we have

2n∑
j=1

|BH
j2−n −BH

(j−1)2−n |p P→

0 if pH > 1,

∞ if pH < 1
(2.4)

as n→ ∞.

Proof. Define

Yn :=
2n∑
j=1

|BH
j2−n −BH

(j−1)2−n |p(2n)pH−1.

By the scaling property,

Yn =

2n∑
j=1

|BH
j2−n −BH

(j−1)2−n |p(2n)pH−1 D
=

1

2n

2n∑
j=1

|BH
j −BH

(j−1)|
p =: Ỹn.

Since the fractional Brownian motion has stationary increments, the se-
quence (BH

j − BH
(j−1))j≥1 is stationary. Therefore, by Birkhoff’s ergodic

theorem,

Ỹn → E(|BH
1 |p) =: cp > 0

almost surely and in L1 as n → ∞. It follows that Yn
D→ cp and, conse-

quently, Yn
P→ cp as n→ ∞. From this, the claim follows.

Proposition 2.8. On any interval [0, T ], the fractional Brownian motion
is not continuously differentiable almost surely.

Proof. By rescaling, we can assume w.l.o.g. that [0, T ] = [0, 1]. Assume
that BH is continuously differentiable with positive probability on [0, 1].
Then there is a random constant C > 0 that is finite with positive proba-
bility such that |BH

t −BH
s | ≤ C|t− s| for every s, t ∈ [0, 1]. Therefore,

2n∑
j=1

|BH
j2−n −BH

(j−1)2−n | ≤
C

2n

2n∑
j=1

j − (j − 1) = C <∞

for every n ∈ N with positive probability which is a contradiction to
Lemma 2.7.
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Remark 2.9. There is a stronger statement saying that the fractional
Brownian motion is nowhere differentiable with probability one that can be
deduced from a general result on Gaussian processes, cf. [KK71]. However,
we will not need this stronger statement here.

Motivated by partial differential equations, one might have the idea to
weaken the notion of differentiability in order to give a meaning to (2.3).

We could interpret dBH;i
t (ω)
dt as a weak derivative, i.e. as a distribution or

generalized function [Str03, Eva10]. However, this will lead to another

problem: the equation (2.3) contains products σi(Yt) · dBH;i
t (ω)
dt of non-

smooth functions with distributions, and such products are (in general)
not well defined [Sch54].

Second attempt: In stochastic analysis, the Itō integral
∫
Y dX is

defined in case of X being a semimartingale and Y being adapted to the
filtration generated by X. One could try to interpret (2.2) as an integral
equation

Yt = Y0 +

∫ t

0
b(Ys) ds+

d∑
i=1

∫ t

0
σi(Ys) dB

H,i
s

where the stochastic integral is understood in Itō-sense. However, one can
prove the following:

Proposition 2.10. The fractional Brownian motion BH is not a semi-
martingale unless H = 1

2 .

Proof. This is another consequence of Lemma 2.7: If the fractional Brow-
nian motion was a semimartingale, the sum (2.4) would converge in proba-
bility for p = 2 to the quadratic variation process evaluated at 1. Since this
random variable is finite almost surely, this is a contradiction to Lemma
2.7 in the case H < 1

2 . For H > 1
2 , Lemma 2.7 implies that the quadratic

variation process equals 0 almost surely. This means that the martingale
part in the semimartingale decomposition vanishes and that the fractional
Brownian motion has almost surely paths of finite variation. This, how-
ever, is a contradiction to Lemma 2.7 when choosing p = 1.
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This shows that the classical Itō approach is not applicable to the
fractional Brownian motion, too.

Third attempt: In 1936, L.C. Young introduced a notion of an in-
tegral that generalizes Riemann-Stieltjes integration [You36]. More con-
cretely, he defined an integral for functions f, g : [0, T ] → R that are Hölder
continuous with Hölder index α ∈ (0, 1] resp. β ∈ (0, 1] of the form

∫
f dg

provided α+β > 1. To employ this approach, we first need to understand
the regularity of the fractional Brownian motion. The following theorem
is a classical result:

Theorem 2.11 (Kolmogorov-Chentsov). Let X : [0, T ] → R be a contin-
uous stochastic process, q ≥ 2, β > 1

q and assume that

∥Xt −Xs∥Lq ≤ C|t− s|β

for a constant C > 0 and any s, t ∈ [0, T ]. Then for all α ∈ [0, β − 1/q),
there is a random variable Kα ∈ Lq such that

|Xt −Xs| ≤ Kα|t− s|α

for all s, t ∈ [0, T ]. In particular, the trajectories of X are almost surely
α-Hölder continuous.

Proof. The proof is classical and can be found e.g. in [RY99, (2.1) Theo-
rem]. Since we will use similar arguments later for proving Theorem 4.10,
we provide a full proof here.

Without loss of generality, we can assume that T = 1. Set

Dn = {k2−n : k = 0, . . . , 2n} and D = ∪n≥0Dn.

We further define the random variables

Kn := sup
t∈Dn

|δXt,t+2−n |, δXt,t+2−n = Xt+2−n −Xt.
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Then it holds that

E(Kq
n) ≤ E

∑
t∈Dn

|δXt,t+2−n |q ≤ 1

|Dn|
Cq|Dn|qβ = Cq|Dn|qβ−1

where |Dn| = 2−n. Fix s < t ∈ D and choose m such that |Dm+1| <
t − s ≤ |Dm|. Going from coarser to finer partitions successively, we can
find τ0, . . . , τN ∈ ∪n≥m+1Dn such that

s = τ0 < τ1 < . . . < τN = t

with the property that at most two intervals of the form [τi, τi+1] have the
same length. With this choice, it follows that

|δXs,t| ≤
N−1∑
i=0

|δXτi,τi+1 | ≤ 2
∑

n≥m+1

Kn.

We thus obtain
|δXs,t|
|t− s|α

≤
∑

n≥m+1

2Kn

|Dm+1|α
≤

∑
n≥m+1

2Kn

|Dn|α
≤ 2

∑
n≥0

Kn

|Dn|α
=: Kα.

Therefore, we have shown that

|δXs,t| ≤ Kα|t− s|α

for every s, t ∈ D. By continuity of X, this bound holds in fact for every
s, t ∈ [0, 1]. It remains to check that Kα is in Lq. Indeed,

∥Kα∥Lq ≤ 2
∑
n≥0

∥Kn∥Lq

|Dn|α
≤ 2C

∑
n≥0

|Dn|β−
1
q
−α

which is summable by assumption on α. This proves the theorem.

Remark 2.12. Often, the formulation of the Kolmogorov-Chentsov theo-
rem does not assume that X is continuous. The statement then says that
X has a Hölder-continuous modification X̃, i.e. Xt = X̃t almost surely for
every t. Note that the proof above yields the same statement: instead of
using continuity of X, we define a process X̃ to coincide with X on the
dyadic numbers D and extend it continuously to the whole interval [0, 1].
One can check that X̃ is a modification of X.
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Using the Kolmogorov-Chentsov theorem, we can deduce an important
property concerning the trajectories of a fractional Brownian motion:

Corollary 2.13. The trajectories of the fractional Brownian motion are
almost surely α-Hölder continuous for every α < H.

Proof. By definition,

∥BH
t −BH

s ∥2L2 = E
(
(BH

t −BH
s )2

)
= E(BH

t B
H
t )− 2E(BH

t B
H
s ) + E(BH

s B
H
s )

= |t− s|2H

for every s, t. Since BH is Gaussian, all Lq-norms are equivalent. There-
fore,

∥BH
t −BH

s ∥qLq ≤ Cq
q (∥BH

t −BH
s ∥2L2)

q
2 = Cq

q |t− s|qH ,

for every q ≥ 2. The result now follows from Theorem 2.11.

Corollary 2.13 opens the possibility to understand the integral that
appears in the integrated equation (2.2) using Young’s integration theory.
We will follow this approach in the next section.

3 Sewing lemma and Young’s integral

3.1 The Sewing lemma

In rough path theory, the Sewing lemma is one of the cornerstones
which will allow us to define integrals. In this part, we present this result
and show how it can be used to define Young integrals. Before doing this,
we will introduce some more notation.

Definition 3.1. Let W be a Banach space.

1. C([0, T ],W ) will denote the space of continuous functions f : [0, T ] →
W .
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2. For α ∈ (0, 1], Cα([0, T ],W ) is defined as the space of α-Hölder
continuous functions f : [0, T ] → W , i.e. f ∈ Cα([0, T ],W ) if and
only if

∥f∥α = sup
s<t

|δfs,t|
|t− s|α

<∞.

3. The space Cα,β
2 ([0, T ],W ) denotes the space of functions Ξ defined

on the simplex {(s, t) ∈ [0, T ]2 : s ≤ t} such that Ξt,t = 0 and

∥Ξ∥α,β := ∥Ξ∥α + ∥δΞ∥β <∞

where

δΞs,u,t := Ξs,t − Ξs,u − Ξu,t, ∥δΞ∥β := sup
s<u<t

|δΞs,u,t|
|t− s|β

.

We can now formulate the Sewing lemma.

Lemma 3.2 (Sewing lemma). Let 0 < α ≤ 1 < β. Then there exists a
unique continuous linear map I : Cα,β

2 ([0, T ],W ) → Cα([0, T ],W ) such that
(IΞ)0 = 0 and

|δIΞs,t − Ξs,t| ≤ ∥δΞ∥β
[
2β(ζ(β)− 1) + 1

]
|t− s|β (3.1)

where C > 0 depends on β and ζ denotes the Riemann zeta function

ζ(s) =

∞∑
n=1

1

ns
.

Moreover,

δIΞs,t = lim
|P|→0

∑
[u,v]∈P

Ξu,v.

Proof. Let us prove uniqueness first. Assume that I and Ĩ both satisfy
(3.1). Then it holds that

|(I − Ĩ)t − (I − Ĩ)s| ≤ C|t− s|β.
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Since β > 1 and I − Ĩ is a path, I − Ĩ is constant. Since I0 = Ĩ0 = 0,
uniqueness follows. Now fix an interval [s, t] and a partition P = {s =

u0 < u1 < . . . < ur = t} of this interval. We set∫
P
Ξ :=

∑
[u,v]∈P

Ξu,v.

The idea is now to establish a maximal inequality for
∫
P Ξ by successively

removing distinguished points from the partition P. We claim that if
r ≥ 3, there exists a point u ∈ P such that for its neighbouring points
u− < u < u+ ∈ P,

|u+ − u−| ≤
2

r − 1
|t− s|.

Indeed, otherwise we would have

2|t− s| ≥
∑

u∈P\{u0,ur}

|u+ − u−| > 2|t− s|

which is a contradiction. Note that for r = 2, clearly |u+ − u−| ≤ |t− s|.
With this choice for #P = r + 1 ≥ 4, we obtain∣∣∣∣∣
∫
P
Ξ−

∫
P\{u}

Ξ

∣∣∣∣∣ = |δΞu−,u,u+ | ≤ ∥δΞ∥β|u+ − u−|β ≤ ∥δΞ∥β
2β|t− s|β

(r − 1)β
.

By successively removing points, we arrive at the uniform bound

sup
P

∣∣∣∣∫
P
Ξ− Ξs,t

∣∣∣∣ ≤ 2β|t− s|β∥δΞ∥β
∞∑
k=2

1

kβ
+ |t− s|β∥δΞ∥β

= ∥δΞ∥β
[
2β(ζ(β)− 1) + 1

]
|t− s|β

(3.2)

where the right hand side is finite since β > 1. We aim to define IΞ as
the limit lim|P|→0

∫
P Ξ for which we have to prove the existence now. It

suffices to show that

sup
max{|P|,|P ′|}≤ε

∣∣∣∣∫
P
Ξ−

∫
P ′

Ξ

∣∣∣∣→ 0 as ε→ 0.
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By adding and subtracting
∫
P∪P ′ Ξ, we can assume without loss of gener-

ality that P ⊂ P ′. In this case,∫
P
Ξ−

∫
P ′

Ξ =
∑

[u,v]∈P

(
Ξu,v −

∫
P ′∩[u,v]

Ξ

)
.

For max{|P|, |P ′|} = |P| ≤ ε, we can use the maximal inequality (3.2) to
see that∣∣∣∣∫

P
Ξ−

∫
P ′

Ξ

∣∣∣∣ ≤ ∥δΞ∥β
[
2β(ζ(β)− 1) + 1

] ∑
[u,v]∈P

|v − u|β = O(|P|β−1)

= O(εβ−1).

This finishes the proof.

3.2 Young’s integral and differential equations driven by
Hölder paths

We are now ready to state Young’s result that generalizes Riemann-
Stieltjes integration.

Theorem 3.3 (Young integral). Let V and W be Banach spaces, g ∈
Cα([0, T ], V ) and f ∈ Cβ([0, T ], L(V,W )). Assume that α + β > 1. Then
the integral ∫ t

s
fu dgu ∈W

exists as a limit of Riemann sums for every s < t ∈ [0, T ] and we call it
the Young integral. Moreover, we have the estimate∣∣∣∣∫ t

s
fu dgu − fs(gt − gs)

∣∣∣∣ ≤ C∥f∥β∥g∥α|t− s|α+β (3.3)

where C > 0 depends α+ β.

Proof. Set

Ξs,t := fs(gt − gs).
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Then we have

δΞs,u,t = fs(gt − gs)− fs(gu − gs)− fu(gt − gu)

= −(fu − fs)(gt − gu),

thus ∥Ξ∥α ≤ ∥f∥∞∥g∥α <∞ and

∥δΞ∥α+β ≤ ∥f∥β∥g∥α <∞.

We can therefore apply the Sewing lemma and set∫ t

s
fu dgu = δIΞs,t.

Interpreting the integral in this way, we can give meaning to differential
equations driven by sufficiently regular Hölder paths. Before we formulate
the statement, we define a class of functions that will be important for us.

Definition 3.4. For k ≥ 0, Ck(Rm, L(Rd,Rm)) denotes the space of
bounded k-times continuously differentiable functions σ : Rm → L(Rd,Rm)

with bounded derivatives, i.e. σ = (σ1, . . . , σd) and every σi : Rm → Rm is
bounded and k-times continuously differentiable with all derivatives being
bounded. For σ ∈ Ck = Ck(Rm, L(Rd,Rm)), we set

∥σ∥Ck := max
l=0,...,k

∥Dlσ∥∞.

Theorem 3.5. Let X ∈ Cα([0, T ],Rd) for some α > 1
2 and let σ ∈

C2(Rm, L(Rd,Rm)). Then the integral equation

Yt = y +

∫ t

0
σ(Yt) dXt; t ∈ [0, T ] (3.4)

possesses a unique solution Y ∈ Cα([0, T ],Rm) for every initial condition
y ∈ Rm. The integral is understood as a Young integral.
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Remark 3.6. The integral equation (3.4) is often called Young differen-
tial equation although Young never used his integral to solve differential
equations. To the authors knowledge, T. Lyons was the first who studied
differential equations involving the Young integral in [Lyo94].

Before we give the proof of Theorem 3.5, we state a technical result
that will be needed.

Lemma 3.7. Let σ ∈ C2(Rm, L(Rd,Rm)) and T ≤ 1. Then there exists
a constant Cα,K such that for every X,Y ∈ Cα([0, T ],Rd) with ∥X∥α ∨
∥Y ∥α ≤ K,

∥σ(X)− σ(Y )∥α ≤ Cα,K∥σ∥C2 (|X0 − Y0|+ ∥X − Y ∥α) .

Proof. It follows by using Taylor’s theorem repeatedly, cf. [FH20, Lemma
7.5] for details.

Proof of Theorem 3.5. The proof is classical and uses a fixed point argu-
ment. For 0 < T0 ≤ T and Y ∈ Cα([0, T ],Rm) with Y0 = y, we set

MT0(Y ) :=

(
t 7→ y +

∫ t

0
σ(Ys) dXs ; t ∈ [0, T0]

)
.

Since σ is Lipschitz, the path t 7→ σ(Yt) is α-Hölder continuous and the
integral is defined as a Young integral. Thus, MT0 is in fact a map from
Cα
y ([0, T0],Rm) to itself where Cα

y ([0, T0],Rm) is the complete metric space
of α-Hölder paths starting in y. We aim to show that it is a contraction.
We will not do this on the whole space, but restrict ourselves to the closed
unit ball

BT0
:= {Y ∈ Cα

y ([0, T0],Rm) : ∥Y ∥α ≤ 1}.

that is still a closed metric space with the induced metric. We first
show that MT0 leaves BT0 invariant for T0 > 0 sufficiently small, i.e.
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MT0 : BT0 → BT0 . From Theorem 3.3,

∥MT0∥α = ∥
∫ ·

0
σ(Ys) dXs∥α

≤ C∥X∥α(Tα∥σ(Y )∥α + ∥σ(Y )∥∞)

≤ C∥X∥α(Tα∥σ∥C1∥Y ∥α + ∥σ∥C0)

≤ C∥X∥α

where ∥X∥α denotes the α-Hölder norm on [0, T0]. We aim to choose T0
sufficiently small such that C∥X∥α ≤ 1. However, it is in general not true
that ∥X∥α gets small as T0 tends to 0 (to see this, take the 1

2 -Hölder norm
for the square root function, for instance). To solve this issue, we choose α′

such that 1
2 < α′ < α and repeat the calculation for α′. If X is α-Hölder, it

follows that ∥X∥α′ → 0 as T0 → 0, thus we can choose T0 small enough to
conclude that ∥MT0∥α′ ≤ 1 and therefore MT0 : BT0 → BT0 . We proceed
showing that MT0 is a contraction. For Y, Ỹ ∈ BT0 , Theorem 3.3 implies
that ∣∣∣δMT0(Y )s,t − δMT0(Ỹ )s,t

∣∣∣
=

∣∣∣∣∫ t

s
σ(Yu)− σ(Ỹu) dXu

∣∣∣∣
≤ C

(
∥σ(Y )− σ(Ỹ )∥∞ + ∥σ(Y )− σ(Ỹ )∥α′

)
∥X∥α′;[0,T0]|t− s|α′

.

Note that, since Y0 = Ỹ0,

∥σ(Y )− σ(Ỹ )∥∞ ≤ |σ(Y0)− σ(Ỹ0)|+ Tα′
0 ∥σ(Y )− σ(Ỹ )∥α′

= Tα′
0 ∥σ(Y )− σ(Ỹ )∥α′ .

From Lemma 3.7,

∥σ(Y )− σ(Ỹ )∥α′ ≤ Cα′,K∥σ∥C2(|Y0 − Ỹ0|+ ∥Y − Ỹ ∥α′)

= Cα′,K∥σ∥C2∥Y − Ỹ ∥α′
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where K > 0 satisfies ∥Y ∥α ∨ ∥Ỹ ∥α ≤ K. Since Y, Ỹ ∈ BT0 , C can be
chosen independently of Y and Ỹ . Therefore, we arrive at an estimate of
the form

∥MT0(Y )−MT0(Ỹ )∥α′ ≤ C∥X∥α′∥Y − Ỹ ∥α′

and choosing T0 > 0 smaller if necessary, we obtain C∥X∥α′ < 1, i.e. MT0

is a contraction on the space BT0 . It follows that the equation possesses a
unique solution on the interval [0, T0]. We can now repeat the argument
on the interval [T0, 2T0] with initial condition YT0 and glue together the
solutions. Iterating this sufficiently often, we eventually obtain a unique
solution Y on the interval [0, T ]. A posteriori, the estimates for the Young
integral in Theorem 3.3 show that Y is not only α′ Hölder, but even α-
Hölder continuous. This finishes the proof.

Combining Corollary 2.13 and Theorem 3.5, we can show:

Theorem 3.8. Let BH be a fractional Brownian motion with H > 1
2 . As-

sume that σ ∈ C2(Rm, L(Rd,Rm)). Then for every y ∈ Rm, the stochastic
differential equation

dYt = σ(Yt) dB
H
t (ω); t ∈ [0, T ],

Y0 = y,
(3.5)

can be interpreted as an integral equation using the Young integral and
possesses a unique solution Y for almost every trajectory.

Remark 3.9. The solution theory just presented is pathwise, meaning that
one can solve the stochastic differential equation (3.5) path-by-path. In
particular, if the fractional Brownian motion is α-Hölder continuous out-
side a set N ⊂ Ω of measure zero, the equation (3.5) can be solved outside
exactly that set. This is in contrast to Itō’s theory of stochastic differ-
ential equations which is not pathwise. The solution of an Itō stochastic
differential equation is defined outside a set of measure zero that depends
on the whole equation, e.g. on y and on σ, too. Considering another initial
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condition ỹ will create a new set of measure zero outside of which the solu-
tion is defined. Since the set of allowed initial conditions is not countable,
it is a priori not clear whether there exists a set of full measure on which
an Itō stochastic differential equation can be solved for every initial con-
dition y. In fact, assuming that σ is globally Lipschitz continuous, such
a universal set always exists, but there are examples of solutions to Itō
stochastic differential equations that fail to have this property, cf. [LS11].
For a pathwise solution theory, this cannot happen.

3.3 Limitations of the Young integral

While the Young integral can be used successfully for the fractional
Brownian motion in the case H > 1

2 , it cannot be applied even to the
Brownian motion. The main obstacle is the lack of sufficient regularity,
which is essential for defining the integral. We indeed have the following
statement for the fractional Brownian motion:

Proposition 3.10. The fractional Brownian motion BH does not have
α-Hölder continuous trajectories on [0, T ] almost surely for α > H.

Proof. Can be deduced from Lemma 2.7. The details are left to the reader.

It is natural to look for an extension of the Young integral that works
for paths with low Hölder-regularity, too. More generally, the minimal
condition on the notion of an integral would be that we can apply it to
the Brownian motion. We make the following (very general) definition:

Definition 3.11. Let E be a Banach space of paths in R and (Cn)n≥1 and
(Sn)n≥1 be two series of independent standard Gaussian random variables.
Let cn(t) := cos(2πnt) and sn(t) := sin(2πnt). We say that E carries the
Wiener measure if and only if sn and cn belong to E and if the series

∞∑
n=1

Cncn + Snsn
2πn

converges in E almost surely.
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Example 3.12. Let us motivate Definition 3.11 by showing that L2[0, 1]

carries the Wiener measure. Assume that B = (Bt)0≤t≤1 is a Brownian
motion, i.e. E(Bt) = 0 and E(BsBt) = min{s, t} for every s, t ∈ [0, 1].
Recall that {1,

√
2cn,

√
2sn}n≥1 is an orthonormal basis for L2[0, 1]. By

⟨·, ·⟩, we denote the inner product of two functions in L2[0, 1]. If we expand
B with respect to this basis, we obtain

B =

∫ 1

0
Bs ds+

∞∑
n=1

[
⟨B,

√
2cn⟩

√
2cn + ⟨B,

√
2sn⟩

√
2sn

]
almost surely in L2([0, 1]). Since B is a zero mean Gaussian process, it is
easy to check that

{
⟨B, 1⟩, ⟨B,

√
2cn⟩, ⟨B,

√
2sn⟩

}
n≥1

is a family of normal
random variables with zero mean. Therefore, the law of each random
variable is determined by its second moment. We calculate

E
(
⟨B,

√
2cn⟩2

)
= E

(∫ 1

0

∫ 1

0
2BtBs cos(2πnt) cos(2πns) dt ds

)
=

∫ 1

0

∫ 1

0
2min{s, t} cos(2πnt) cos(2πns) dt ds

=

∫ 1

0

∫ s

0
2t cos(2πnt) cos(2πns) dtds

+

∫ 1

0

∫ 1

s
2s cos(2πnt) cos(2πns) dt ds

=
1

(2πn)2
.

Similarly, E(⟨B,
√
2sn⟩2) = 1

(2πn)2
. Proceeding with similar calculations,

we see that

E
(
⟨B, 1⟩⟨B,

√
2cn⟩

)
= E

(
⟨B, 1⟩⟨B,

√
2sn⟩

)
= 0 for every n ≥ 1,

E
(
⟨B,

√
2cn⟩⟨B,

√
2sm⟩

)
= 0 for every n,m ≥ 1 and

E
(
⟨B,

√
2cn⟩⟨B,

√
2cm⟩

)
= E

(
⟨B,

√
2sn⟩⟨B,

√
2sm⟩

)
= 0 for every n ̸= m.

These calculations reveal that the elements
{
⟨B, 1⟩, ⟨B,

√
2cn⟩, ⟨B,

√
2sn⟩

}
n≥1

are uncorrelated and therefore, since they are normal, independent. Set-
ting

Cn := 2πn⟨B,
√
2cn⟩ and Sn := 2πn⟨B,

√
2sn⟩,
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we can thus represent B by

B =

∫ 1

0
Bs ds+

∞∑
n=1

Cncn + Snsn√
2πn

almost surely in L2[0, 1]. In fact, with more work, one can even show that
the convergence of the series holds uniformly almost surely. This shows
that L2[0, 1] and C[0, 1] carry the Wiener measure. One can also show that
Cα[0, 1] carries the Wiener measure for α < 1

2 but not for α ≥ 1
2 .

The following result is taken from [LCL07].

Theorem 3.13 (Lyons). Let E be a Banach space that carries the Wiener
measure. Then there is no continuous bilinear map I : E × E → R such
that if x and y are trigonometric functions, I(x, y) =

∫ 1
0 xt dyt.

Proof. For N ≥ 1, we define

WN :=
N∑

n=1

Cncn + Snsn
2πn

and W̃N :=
N∑

n=1

Cnsn − Sncn
2πn

where in both definitions, we take the same random variables Sn and Cn.
Note that WN D

= W̃N and that both WN and W̃N converge almost surely
to processes W resp. W̃ in E by assumption. We assume that a bilinear
map I : E × E → R satisfying the stated conditions exists. Then we have
I(WN , W̃N ) → I(W, W̃ ) almost surely as N → ∞. On the other hand,

I(WN , W̃N ) =

∫ 1

0
WN

t dW̃N
t =

N∑
n=1

C2
n + S2

n

2πn

diverges almost surely as N → ∞ which is a contradiction.

Remark 3.14. In view of Example 3.12, we see that the processes W
and W̃ are both (essentially) the sum of a Brownian motion and a smooth
random function. Note that the nonexistence of the integral

∫ 1
0 Wt dW̃t

does not contradict Itō’s theory of stochastic integration: the processes
W and W̃ are highly correlated and W is not adapted to the filtration
generated by W̃ .
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Theorem 3.13 shows that we cannot expect to find a linear theory
of deterministic integration that is rich enough to handle Brownian sam-
ple paths. The fact that a pathwise approach to stochastic differential
equations driven by a Brownian motion seems impossible underlines the
importance of Itō’s theory of stochastic integration and is one of many
reasons for its tremendous success.

4 Rough paths and linear equations

Our goal is to solve differential equations driven by paths with reg-
ularity less than Brownian sample paths. We already saw that a direct
approach using the Young integral will not work. To simplify the prob-
lem, we will consider linear equations first. For a d-dimensional path
X = (X1, . . . , Xd), we look at the equation

dYt = Yt dXt =

d∑
i=1

Yt dX
i
t ; t ≥ 0,

Y0 = y ∈ R.

(4.1)

Formally, a solution to (4.1) is given by

Yt = y + y

d∑
i=1

∫ t

0
dXi

s + y

d∑
i,j=1

∫ t

0

∫ s

0
dXi

udX
j
s

+ . . .+ y

d∑
i1,...,in=1

∫
0<t1<···<tn<t

dXi1
t1
· · · dXin

tn + . . .

The problem is, of course, that there is no good notion of an integral we
can use to define the iterated integrals for irregular paths X. On the
other hand, there are situations where iterated integrals are given in a
non-pathwise manner. For instance, in stochastic analysis, the Itō and the
Stratonovich integral are defined for a Brownian motion. The idea of rough
paths theory is to just assume that the iterated integrals exist and satisfy
some key properties. In this chapter, we will discuss these properties and
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see how linear equations can be solved. Eventually, we will consider the
case of a Brownian motion.

4.1 Iterated integrals and rough paths

What are the properties that characterize an iterated integral? To
answer this question, let us start with the second iterated integral. For
smooth X, we use the notation

Xij
s,t :=

∫ t

s

∫ u

s
dXi

v dX
j
u.

One basic algebraic property is additivity of the integral, i.e.
∫ u
s +

∫ t
u =

∫ t
s

for s < u < t. For the iterated integral, this leads to

Xij
s,t =

∫ t

s
(Xi

v −Xi
s) dX

j
v =

∫ u

s
(Xi

v −Xi
s) dX

j
v +

∫ t

u
(Xi

v −Xi
s) dX

j
v

=

∫ u

s
(Xi

v −Xi
s) dX

j
v +

∫ t

u
(Xi

v −Xi
u) dX

j
v +

∫ t

u
(Xi

u −Xi
s) dX

j
v

= Xij
s,u + Xij

u,t +

∫ u

s
dXi

v

∫ t

u
dXj

v .

Setting Xs,t := (Xij
s,t)i,j=1,...,d ∈ Rd×d ∼= Rd ⊗ Rd, the above equality reads

Xs,t = Xs,u + Xu,t + δXs,u ⊗ δXu,t.

To describe the corresponding property for the higher-order iterated inte-
grals, we will introduce some more notations. Note that the n-th order
iterated integral of a d-dimensional smooth path can be understood as an
element in (Rd)⊗n. Thus the collection of all iterated integrals will be an
element in the direct product of all tensor products.

Definition 4.1. The direct product

T ((Rd)) := R× Rd × (Rd ⊗ Rd)× · · · × (Rd)⊗n × · · · =
∞∏
n=0

(Rd)⊗n
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where (Rd)⊗0 = R, (Rd)⊗1 = Rd, is called extended tensor algebra. The
maps

πn : T ((Rd)) → (Rd)⊗n

are the usual projection maps.

Definition 4.2. For elements a, b ∈ T ((Rd)), we define an element a⊗b ∈
T ((Rd)) by setting

πn(a⊗ b) :=
∑

i+j=n

πi(a)⊗ πj(b)

for every n ∈ N0. We also define

1 := (1, 0, 0, . . .) ∈ T ((Rd)).

Note that the extended tensor algebra carries a natural vector space
structure. It becomes a associative unital algebra with product ⊗ and 1

as the unit.

Definition 4.3. Let X : [0, T ] → Rd be a smooth path. We define the
(canonical) lift X of X as a map X : ∆ → T ((Rd)), ∆ := {(s, t) ∈ [0, T ]2 :

s ≤ t}, by setting

πn(Xs,t) := X(n)
s,t :=

∫
s<u1<···<un<t

dXu1 ⊗ · · · ⊗ dXun

:=

(∫
s<u1<···<un<t

dXi1
u1

· · · dXin
un

)
i1,...,in∈{1,...,d}

∈ (Rd)⊗n

for n ≥ 1 and π0(Xs,t) := 1.

We can now prove an algebraic property called Chen’s identity that is
satisfied by iterated integrals.

Theorem 4.4 (Chen). Let X : [0, T ] → Rd be smooth and X its canonical
lift. Then

Xs,t = Xs,u ⊗Xu,t

for every s < u < t.
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Proof. We have to show that for every n ∈ N,

X(n)
s,t =

∑
i+j=n

X(i)
s,u ⊗ X(j)

u,t.

We do this by induction. For n = 1, the statement is obvious. For arbitrary
n ≥ 2,

X(n)
s,t =

∫ t

s
X(n−1)
s,v ⊗ dXv

=

∫ u

s
X(n−1)
s,v ⊗ dXv +

∫ t

u
X(n−1)
s,v ⊗ dXv

= X(n)
s,u +

∑
i+j=n−1

∫ t

u
X(i)
s,u ⊗ X(j)

u,v ⊗ dXv

= X(n)
s,u +

∑
i+j=n−1

X(i)
s,u ⊗

∫ t

u
X(j)
u,v ⊗ dXv

= X(n)
s,u +

∑
i+j=n−1

X(i)
s,u ⊗ X(j+1)

u,t

=
∑

i+j=n

X(i)
s,u ⊗ X(j)

u,t

and the claim is shown.

From Chen’s theorem, we can deduce that

X(2)
s,t = π2(Xs,u ⊗Xu,t) = X(2)

s,u + X(2)
u,t + δXs,u ⊗ δXu,t

which we calculated “by hand” above.

Definition 4.5. For N ≥ 0, the direct sum

TN (Rd) := R⊕ Rd ⊕ (Rd ⊗ Rd)⊕ · · · ⊕ (Rd)⊗N =
N⊕

n=0

(Rd)⊗n

if called truncated tensor algebra of level N . The truncated tensor product
⊗N : TN (Rd)×TN (Rd) → TN (Rd) is then defined similarly as in Definition
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4.2 by truncating each term of the product to level N . Abusing notation,
we will still use the symbol ⊗ instead of ⊗N on the truncated tensor
algebra.

The truncated tensor algebra is also an associative unital algebra with
sum and product induced by the extended tensor algebra.

Definition 4.6. A map X : ∆ → TN (Rd) satisfying the Chen relation

Xs,t = Xs,u ⊗Xu,t

for every s < u < t is called a multiplicative functional.

Multiplicative functionals satisfy an algebraic property that we expect
from iterated integrals. There is also an analytic property an iterated
integral should satisfy. Recall that for the Young integral, we showed that
for an α-Hölder path X with α > 1

2 ,

|δXs,t| =
∣∣∣∣∫ t

s
dXu

∣∣∣∣ = O(|t− s|α),∣∣∣∣∫ t

s
(Xu −Xs) ⊗ dXu

∣∣∣∣ = ∣∣∣∣∫
s<u1<u2<t

dXu1 ⊗ dXu2

∣∣∣∣ = O(|t− s|2α).

What is the regularity of higher order iterated integrals? We consider the
third order first. We set X(2)

s,t =
∫ t
s (Xu −Xs) ⊗ dXu and define

Ξu,v := X(2)
0,u ⊗ δXu,v + δX0,u ⊗ X(2)

u,v ∈ (Rd)⊗3.

By assumption, ∥Ξ∥α <∞. Using the Chen identity, for u < v < w,

δΞu,v,w = (X(2)
0,u − X(2)

0,v)⊗ δXv,w + δX0,u ⊗ (X(2)
u,w − X(2)

u,v)− δX0,v ⊗ X(2)
v,w

= −(X(2)
u,v + δX0,u ⊗ δXu,v)⊗ δXv,w + δX0,u ⊗ (X(2)

v,w + δXu,v ⊗ δXv,w)

− δX0,v ⊗ X(2)
v,w

= −X(2)
u,v ⊗ δXv,w − δXu,v ⊗ X(2)

v,w.
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Therefore, ∥δΞ∥3α <∞. From the Sewing lemma,

δIΞs,t = lim
|P|→0

∑
[u,v]∈P

Ξu,v = lim
|P|→0

∑
[u,v]∈P

X(2)
0,u ⊗ δXu,v + δX0,u ⊗ X(2)

u,v

= lim
|P|→0

∑
[u,v]∈P

X(2)
0,u ⊗ δXu,v

=

∫ t

s
X(2)
0,u ⊗ dXu

=:

∫
s<u1<u2<u3<t

dXu1 ⊗ dXu2 ⊗ dXu3

exists. In the second equality, we used that |X(2)
u,v| = O(|v − u|2α) and

2α > 1. The Sewing lemma also tells us that∣∣∣∣∫
s<u1<u2<u3<t

dXu1 ⊗ dXu2 ⊗ dXu3

∣∣∣∣ = O(|t− s|3α).

Our goal is now to deduce the right regularity of iterated integrals of any
order. As we will see in the sequel, we can repeat the previous argument
by applying the Sewing lemma. Another property of iterated integrals we
know from smooth functions is that their values decay very quickly when
considering higher orders. To prove this property in our context, we need
the neo-classical inequality that we cite now.

Theorem 4.7 (Neo-classical inequality). For α ∈ (0, 1], n ∈ N and s, t >
0,

α
∑

0≤j≤n

sjαt(n−j)α

(jα)!((n− j)α)!
≤ (t+ s)nα

(nα)!
,

where (jα)! := Γ(1 + jα) and

Γ(z) =

∫ ∞

0
tz−1 exp(−t) dt, z ∈ C and R(z) > 0.

Proof. [HH10].

We can now prove a first important result in rough paths theory, the
Extension theorem.



Introduction to rough paths theory 97

Theorem 4.8 (Lyon’s Extension theorem). Let X : ∆ → TN (Rd) be a
multiplicative functional with

|||X|||α := max
n=1,...,N

sup
0≤s<t≤T

|X(n)
s,t |

|t− s|nα
<∞

for N + 1 > 1
α . Then X has a unique extension to a multiplicative func-

tional X̃ : ∆ → T ((Rd)) with the same regularity. More precisely, X̃ sat-
isfies Chen’s relation, X̃(n) = X(n) for every n = 0, . . . , N and there are
constants M and β such that

sup
0≤s<t≤T

|X̃(n)
s,t |

|t− s|nα
≤ Mn

β(nα)!

holds for every n ∈ N0.

Proof. Existence: We use an induction argument. Let n ≥ N , and as-
sume for every 1 ≤ j ≤ n, X(j) is well-defined and for some M,β > 0

satisfying

sup
0≤s<t≤T

|X(j)
s,t |

|t− s|jα
≤ M j

β(jα)!
. (4.2)

Also, assume for 2 ≤ k ≤ n

X(k)
s,t = X(k)

s,u + X(k)
u,t +

∑
1≤i≤k−1

X(i)
s,u ⊗ X(k−i)

u,t , ∀s, u, t ∈ [0, T ] : s ≤ u ≤ t.

(4.3)

First, we show one can apply the Sewing lemma to define the following
integrals

Γn+1(s, t) :=

∫ t

s
Xn
0,σ ⊗ dXσ, Xσ := X1

0,σ .

Set

Ξ
(n+1)
s,t =

∑
1≤j≤n

X(n+1−j)
0,s ⊗ X(j)

s,t ,
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then for u < v < w, from (4.3)

δΞ(n+1)
u,v,w = Ξ(n+1)

u,w − Ξ(n+1)
u,v − Ξ(n+1)

v,w

=
∑

1≤j≤n

X(n+1−j)
0,u ⊗ [X(j)

u,w − X(j)
u,v]−

∑
1≤j≤n

X(n+1−j)
0,v ⊗ X(j)

v,w

=
∑

1≤j≤n

X(n+1−j)
0,u ⊗ X(j)

v,w +
∑

2≤j≤n

∑
1≤i≤j−1

X(n+1−j)
0,u ⊗ [X(j−i)

u,v ⊗ X(i)
v,w]

−
∑

1≤j≤n

X(n+1−j)
0,u ⊗ X(j)

v,w −
∑

1≤j≤n

X(n+1−j)
u,v ⊗ X(j)

v,w

−
∑

1≤j≤n−1

∑
1≤i≤n−j

[X(n+1−j−i)
0,u ⊗ X(i)

u,v⊗]⊗ X(j)
v,w

= −
∑

1≤j≤n

X(n+1−j)
u,v ⊗ X(j)

v,w .

(4.4)

From our induction assumption (4.2) and the neo-classical inequality,

|δΞ(n+1)
u,v,w |(n+1)β ≤

∑
1≤j≤n

|X(n+1−j)
u,v ||X(j)

v,w|

≤ Mn+1

β2

∑
1≤j≤n

(v − u)(n+1−j)α(w − v)jα

(jα)!((n+ 1− j)α)!

≤ Mn+1(w − v)(n+1)α

αβ2((n+ 1)α)!
.

(4.5)

We finally define

X(n+1)
s,t := δIΞ(n+1)

s,t − Ξ
(n+1)
s,t , s, t ∈ [0, T ]. (4.6)

Note that from (4.5) and (3.1),

|X(n+1)
s,t | ≤

(
1 + 2(n+1)α(ζ((n+ 1)α)− 1)

)
(t− s)(n+1)α∥δIΞ(n+1)∥

≤ 2(N+1)α(ζ((N + 1)α)− 1) + 1

αβ2
× Mn+1

((n+ 1)α)!
.

For β satisfying

β ≥ 2(N+1)α(ζ((N + 1)α)− 1) + 1

α2
,



Introduction to rough paths theory 99

we choose M > 0 such that

∀j, 1 ≤ j ≤ N : sup
0≤s<t≤T

|X(j)
s,t |

|t− s|jα
≤ M j

β(jα)!

and our claim is proved. It only remains to prove that

X(n+1)
s,t = X(n+1)

s,u + X(n+1)
u,t +

∑
1≤j≤n

X(j)
s,u ⊗ X(n+1−j)

u,t , ∀s, u, t ∈ [0, T ] : s ≤ u ≤ t,

which again follows by an induction argument. Indeed, by (4.4) and (4.6),

X(n+1)
s,t − X(n+1)

s,u − X(n+1)
u,t = −δΞ(n+1)

s,u,t =
∑

1≤j≤n

X(n+1−j)
s,u ⊗ X(j)

u,t.

Uniqueness: Assume that X̃ and X̂ are two extensions of X that agree
up to some level n ≥ N . Set

Ψs,t := X̃(n+1)
s,t − X̂(n+1)

s,t .

From Chen’s identity, for s < u < t,

Ψs,t = πn+1(X̃s,u ⊗ X̃u,t)− πn+1(X̂s,u ⊗ X̂u,t)

= X̃(n+1)
s,u + X̃(n+1)

u,t − X̂(n+1)
s,u − X̂(n+1)

u,t

= Ψs,u +Ψu,t.

It follows that t 7→ Ψt := Ψ0,t is a path that has (n+1)α-Hölder regularity.
Since (n + 1)α > 1, Ψt is constant, thus Ψs,t = 0 for every s < t which
shows X̃(n+1) = X̂(n+1). Therefore, our claim about the uniqueness is
proved.

The Extension theorem gives us the exact regularity of iterated Young
integrals of any order. Moreover, it tells us that multiplicative functionals
having a certain regularity up to a sufficiently high level can be uniquely
extended to TM (Rd) for any other integer M > 1

α . A rough path will be
a multiplicative functional that has such an extension.
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Definition 4.9. Let α ∈ (0, 1]. An α-Hölder rough path X is a multiplica-
tive functional X : ∆ → TN (Rd) such that

|||X|||α := max
n=1,...,N

sup
0≤s<t≤T

|X(n)
s,t |

|t− s|nα
<∞

where

⌊1/α⌋ := max

{
n ∈ N : n ≤ 1

α

}
= N,

i.e. N ≤ 1
α < N + 1. The set of α-Hölder rough paths is denoted by

C α([0, T ],Rd) or simply by C α. If X : [0, T ] → Rd is an α-Hölder path
and X a rough path with X(1) = δX, we call X a rough path lift of X.
If X is a rough path, the unique extension X̃ provided by Theorem 4.8 is
called the Lyons lift of X.

4.2 Linear equations driven by a rough path

We now return to linear equations. In fact, we will see now that if
X is an α-Hölder rough path, we can solve linear equations driven by
this path. We will first describe the equation we are looking at. Let
A1, . . . , Ad ∈ Rm×m and define a linear map A : Rd → Rm×m by setting

Av := A1v
1 + . . .+Adv

d, v = (v1, . . . , vd) ∈ Rd.

Set

σ : Rm → L(Rd,Rm),

σ(Z)(W ) := (AW )Z, Z ∈ Rm and W ∈ Rd.

We aim to solve

dYt = σ(Yt) dXt; t ∈ [0, T ],

Y0 = y ∈ Rm.
(4.7)

A natural candidate for a solution to (4.7) is

Yt =

∞∑
n=0

A⊗n

(∫
0<s1<...<sn<t

dXs1 ⊗ · · · ⊗ dXsn

)
(y) (4.8)
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where we write
∫
0<s1<...<sn<t dXs1 ⊗ · · · ⊗ dXsn for the element X(n)

0,t that
is uniquely defined for every n ∈ N due to Lyons’ Extension theorem. In
the expression above, A⊗n : (Rd)⊗n → Rm×m is the linear map defined by
A⊗0(v) = Im and

A⊗n(ei1 ⊗ · · · ⊗ ein) = Ai1 · · ·Ain , n ≥ 1,

where {e1, . . . , ed} denotes the Euclidean basis of Rd. For example, if
A1 = · · · = Ad = Im,

Yt = y + y
d∑

i=1

∫ t

0
dXi

s + . . .+ y
d∑

i1,...,in=1

∫
0<t1<···<tn<t

dXi1
t1
· · · dXin

tn + . . .

where we use the notation
∫
0<t1<···<tn<t dX

i1
t1
· · · dXin

tn = X(n);i1,...,in
0,t . Note

that the infinite sum (4.8) indeed converges due to the superexponential
decay of the iterated integrals X(n) deduced in Theorem 4.8.

4.3 Brownian motion as a rough path

We saw that rough paths can be used to solve linear equations, or
linear rough differential equations. The natural question is now how we
can use this result to solve linear stochastic differential equations path-
wise. This would be possible if we could show that a given stochastic
process can be “naturally extended” to a rough paths valued process. The
most important process in stochastic analysis is the Brownian motion.
Let B = (B1, . . . , Bd) be a d-dimensional Brownian motion, i.e. the Bi,
i = 1, . . . , d, are independent, real valued Brownian motions. We know
that the Brownian motion has trajectories that are α-Hölder continuous
for every α < 1

2 . Therefore, we can construct a rough paths valued pro-
cess if we determine the second iterated integral. There are (at least) two
natural candidates: First, we can set BItō = (1, B,BItō) where

BItō
s,t =

∫ t

s
(Bu −Bs) ⊗ dBu.
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The integral is understood as an Itō integral. Another choice would be
BStrat = (1, B,BStrat),

BStrat
s,t =

∫ t

s
(Bu −Bs) ⊗ ◦dBu = BItō

s,t + Id
(t− s)

2

where the integral is understood as Stratonovich integral. Since both the
Itō and the Stratonovich integral satisfy

∫ t
s =

∫ u
s +

∫ t
u for s < u < t,

they satisfy Chen’s relation, thus they are multiplicative functionals almost
surely. It remains to check that also the iterated integrals have the right
Hölder-regularity. To prove this regularity, we first state the following
version of the Kolmogorov-Chentsov theorem:

Theorem 4.10 (Kolmogorov-Chentsov theorem for multiplicative func-
tionals). Let X : ∆ → T 2(Rd) be a random continuous multiplicative func-
tional, q ≥ 2, β > 1

q and assume that

∥X(1)
s,t ∥Lq ≤ C|t− s|β and ∥X(2)

s,t ∥Lq/2 ≤ C|t− s|2β

for a constant C > 0 and any s, t ∈ [0, T ]. Then for all α ∈ [0, β − 1/q),
there are random variables K1

α ∈ Lq and K2
α ∈ L

q
2 such that

|X(1)
s,t | ≤ K1

α|t− s|α and |X(2)
s,t | ≤ K2

α|t− s|2α

for all s, t ∈ [0, T ]. In particular, |||X|||α <∞ almost surely.

Proof. The proof is similar to the one of the classical Kolmogorov-Chentsov
theorem that we already saw in Theorem 2.11. We proceed as in [FH20,
Theorem 3.1]. We assume that T = 1. Defining Dn and D as in the proof
of Theorem 2.11, we set

Kn := sup
t∈Dn

|X(1)
t,t+2−n | and K̃n := sup

t∈Dn

|X(2)
t,t+2−n |.

As before, one can check that E(Kq
n) ≤ Cq|Dn|qβ−1 and E(K̃q/2

n ) ≤
Cq/2|Dn|qβ−1. Fix s, t ∈ D and choose m with |Dm+1| < |t − s| ≤ |Dm|.
Furthermore, choose

s = τ0 < τ1 < . . . < τN = t
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as in the proof of Theorem 2.11. Then,

|X(1)
s,t | ≤ max

0≤i≤N−1
|X(1)

s,τi+1
| ≤

N−1∑
i=0

|X(1)
τi,τi+1

| ≤ 2
∑

n≥m+1

Kn.

Using the Chen relation repeatedly gives

|X(2)
s,t | =

∣∣∣∣∣
N−1∑
i=0

X(2)
τi,τi+1

+ X(1)
s,τi ⊗ X(1)

τi,τi+1

∣∣∣∣∣ ≤
N−1∑
i=0

|X(2)
τi,τi+1

|+ |X(1)
s,τi ||X

(1)
τi,τi+1

|

≤
N−1∑
i=0

|X(2)
τi,τi+1

|+ max
0≤i≤N−1

|X(1)
s,τi+1

|
N−1∑
i=0

|X(1)
τi,τi+1

|

≤ 2
∑

n≥m+1

K̃n +

2
∑

n≥m+1

Kn

2

.

In the proof of Theorem 2.11, we have already seen that this implies that
for every s < t

|X(1)
s,t |

|t− s|α
≤ 2

∞∑
n=0

Kn

|Dn|α
=: K1

α

and K1
α ∈ Lq. Similarly,

|X(2)
s,t |

|t− s|2α
≤ 2

∞∑
n=0

K̃n

|Dn|2α
+

(
2

∞∑
n=0

Kn

|Dn|α

)2

= K2
α + (K1

α)
2

where

K2
α :=

∞∑
n=0

K̃n

|Dn|2α
.

It is then straightforward to check that K2
α ∈ L

q
2 which finishes the proof.

Corollary 4.11. We have
∣∣∣∣∣∣BItō

∣∣∣∣∣∣
α
< ∞ and

∣∣∣∣∣∣BStrat
∣∣∣∣∣∣

α
< ∞ almost

surely for every α < 1
2 .
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Proof. Using Brownian scaling, one can show that the conditions of The-
orem 4.10 hold for the Itō- and for the Stratonovich lift of the Brownian
motion for β = 1

2 and every q ≥ 2.

From Corollary (4.11), we know that BItō and BStrat are both rough
path valued stochastic processes. Therefore, we can use them both to
solve linear stochastic differential equations driven by a Brownian motion.
However, choosing the Itō or the Stratonovich rough path lift leads to
different solutions, which is natural and well known in stochastic analysis.
In fact, the choice of the rough path lift should be regarded as another
parameter in the equation and depends on the problem one aims to find a
model for.

5 The space of rough paths

5.1 Metrics on rough paths spaces and separability

In the previous section, we defined the set C α([0, T ],Rd) of α-Hölder
rough paths. Note that there is no meaningful notion of the sum of two
rough paths, i.e. C α is not a linear space. We will see now that it is still
a metric space.

Definition 5.1. Let X,Y ∈ C α. Then we define

ϱα(X,Y) :=

⌊1/α⌋∑
n=1

sup
0≤s<t≤T

|X(n)
s,t − Y(n)

s,t |
|t− s|nα

.

It is not hard to see that ϱα is a metric on C α. Moreover, one can
prove the following:

Proposition 5.2. For every α ∈ (0, 1], the space (C α, ϱα) is a complete
metric space.

Proof. The arguments are the same as those used for proving that the
usual Hölder spaces are complete. We leave the details to the reader. A
detailed proof can be found in [LQ02, Lemma 3.3.3].
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Sometimes, it is desirable to work with separable rough paths spaces.
However, since Hölder spaces are not separable, we cannot expect that the
spaces C α are separable. To solve this issue for Hölder spaces, one often
considers little Hölder spaces that are defined as the closure of the space
of smooth functions in the α-Hölder metric. A similar definition works for
rough paths spaces, too.

Definition 5.3. Let X : [0, T ] → Rd be smooth (e.g. piecewise continu-
ously differentiable) and α ∈ (0, 1]. Then we call X ∈ C α with

X(n)
s,t =

∫
s<u1<...<un<t

dXu1 ⊗ · · · ⊗ dXun

the canonical lift of X to an α-Hölder rough path. Rough paths X ∈ C α

of this form are also called smooth rough paths. The space C α
g is defined

as the closure of smooth rough paths in the metric ϱα. The elements in
C α
g are called geometric rough paths.

Proposition 5.4. For every α ∈ (0, 1], the space (C α
g , ϱα) is a complete

separable metric, i.e. Polish space.

Proof. Completeness follows by definition. The idea to show separability is
to find a complete separable space of smooth paths containing all piecewise
C1-paths for which the canonical lift map is continuous. An example is
the space obtained by taking the closure of arbitrarily often differentiable
paths with respect to the total variation distance. Details can be found in
[BRS17, Appendix A and B].

Proposition 5.5. The process BStrat = (1, B,BStrat) takes values in the
space C α

g for every 1
3 < α < 1

2 almost surely.

Proof. For simplicity, T = 1. Choose α′ such that α < α′ < 1
2 . We know

that ∣∣∣∣∣∣BStrat∣∣∣∣∣∣
α′ <∞.
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For n ∈ N, we define B(n) to be the piecewise-linear approximation of B
at the dyadic points 0 < 2−n < · · · < (2n − 1)2−n < 1, i.e.

Bt(n) = Bk2−n + 2n(t− k2−n)(B(k+1)2−n −Bk2−n), t ∈ [k2−n, (k + 1)2−n].

Let B(n) be the canonical lift of B(n) to an α-Hölder rough path. With
some basic calculations, one can show that

∥δB(n)s,t∥L2 ≤ C|t− s|
1
2 and ∥B(n)s,t∥L2 ≤ C|t− s|

holds for every s < t for a constant C that is independent of n. Since B
is Gaussian, the same estimates also hold for the Lq-norm for every q ≥ 2.
The Kolmogorov-Chentsov theorem for multiplicative functionals implies
that

sup
n∈N

|||B(n)|||α′ <∞.

a.s. To prove that ϱα(BStrat,B(n)) → 0, by the Arzelà-Ascoli theorem,
it is sufficient to show that B(n) → B and B(n) → BStrat pointwise as
n→ ∞. The first statement is clear. For the second, we first note that∫ t

s
(Bi

u(n)−Bi
s(n)) dB

i
u(n) =

(Bt(n)−Bs(n))
2

2

→ (Bt −Bs)
2

2
=

∫ t

s
(Bi

u −Bi
s) ◦ dBi

u.

Define

Fn := σ(Bk : k ∈ {0, 2−n, . . . , (2n − 1)2−n, 1}).

Then (Fn)n≥1 is a filtration. Fix t ∈ [0, T ]. By Gaussian conditioning,
one can check that Bt(n) = E[Bt | Fn]. From the martingale convergence
theorem, it follows that

Bt(n) = E[Bt | Fn] → Bt
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almost surely and in Lp for any p ≥ 1 as n→ ∞ (which yields an alterna-
tive proof of what we already know). For i ̸= j,

E
(∫ t

0
Bi

s dB
j
s | Fn

)
= lim

|P|→0

∑
[u,v]∈P

E
(
Bi

uδB
j
u,v | Fn

)
=

∑
[u,v]∈P

Bi
u(n)δB

j
u,v(n)

=

∫ t

0
Bi

s(n) dB
j
s(n).

Therefore, the martingale convergence theorem yields that∫ t

0
Bi

s(n) dB
j
s(n) = E

(∫ t

0
Bi

s dB
j
s | Fn

)
→
∫ t

0
Bi

s dB
j
s

almost surely and in Lp for any p ≥ 1 as n → ∞, which finishes the
proof.

A natural question is whether BItō has geometric rough paths trajec-
tories, too. We will see in the next section that this is not the case.

5.2 Shuffles and the signature

There is also an important algebraic property satisfied by geometric
rough paths that is inherited from smooth rough paths. In fact, multiply-
ing two iterated integrals of smooth paths yields a linear combination of
iterated integrals. For example,∫ T

0
dXs ·

∫ T

0
dYs =

∫
0<s1<s2<T

dXs1 dYs2 +

∫
0<s1<s2<T

dYs1 dXs2 .

Note that this is a property that does not hold for every rough path. For
example, the Itō integral satisfies the identity∫ T

0
Bt dBt =

B2
t

2
− t

2

which shows that the sample paths of BItō behave differently.
We aim to give a more detailed description of the product of iterated

integrals of smooth paths. To do this, we introduce some more notation.
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Definition 5.6. The direct sum

T (Rd) := R⊕ Rd ⊕ (Rd ⊗ Rd)⊕ · · · =
∞⊕
n=0

(Rd)⊗n

is called tensor algebra.

One can show that the extended tensor algebra is the (algebraic) dual
of the tensor algebra. We will identify the basis elements ei1 ⊗ · · · ⊗ ein in
the tensor algebra T (Rd) with the words i1 · · · in composed by the letters
1, . . . , d. The empty word will be denoted by ϵ. For two words, we can
define their shuffle product:

Definition 5.7. Let u, v be words and a, b be letters. The shuffle product
is defined recursively by

u� ϵ = ϵ� u = u,

ua� vb = (u� vb)a+ (ua� v)b.

The shuffle product is extended bilinearly to a product

� : T (Rd)× T (Rd) → T (Rd).

Example 5.8. 1. For example,

12� 3 = 123 + 132 + 312,

12� 24 = 2 · 1224 + 1242 + 2124 + 2142 + 2412.

2. Let X : [0, T ] → Rd be a smooth path (e.g. C1) and

X0,T :=

(
1,

∫ T

0
dXs, . . . ,

∫
0<s1<···<sn<T

dXs1 ⊗ · · · ⊗ dXsn , . . .

)
∈ T ((Rd)).

(5.1)
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With the notation we introduced above, we have, for example,

⟨121,X0,T ⟩ =
∫
0<s1<s2<s3<T

dX1
s1 dX

2
s2 dX

1
s3 ,

⟨
√
3 · 12− 2 · 21,X0,T ⟩ =

√
3

∫
0<s1<s2<T

dX1
s1 dX

2
s2

− 2

∫
0<s1<s2<T

dX2
s1 dX

1
s2 .

The main observation is the following:

Theorem 5.9. For X defined as in (5.1), for every l1, l2 ∈ T (Rd),

⟨l1,X0,T ⟩⟨l2,X0,T ⟩ = ⟨l1 � l2,X0,T ⟩.

Proof. Let u and v be words and a and b be letters from the alphabet
{1, . . . , d}. The proof is by induction over the length of the words. Using
the induction hypothesis, we have

⟨ua,X0,T ⟩⟨vb,X0,T ⟩ =
∫ T

0
⟨u,X0,t⟩ dXa

t ·
∫ T

0
⟨v,X0,s⟩ dXb

s

=

∫
0<s,t<T

⟨u,X0,t⟩⟨v,X0,s⟩ dXa
t dX

b
s

=

∫
0<t<s<T

⟨u,X0,t⟩⟨v,X0,s⟩ dXa
t dX

b
s

+

∫
0<s<t<T

⟨u,X0,t⟩⟨v,X0,s⟩ dXb
s dX

a
t

=

∫ T

0
⟨ua,X0,s⟩⟨v,X0,s⟩ dXb

s +

∫ T

0
⟨u,X0,t⟩⟨vb,X0,t⟩ dXa

t

=

∫ T

0
⟨ua� v,X0,s⟩ dXb

s +

∫ T

0
⟨u� vb,X0,t⟩dXa

t

= ⟨(ua� v)b,X0,T ⟩+ ⟨(u� vb)a,X0,T ⟩

= ⟨(ua� v)b+ (u� vb)a,X0,T ⟩

= ⟨ua� vb,X0,T ⟩.
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The following corollary is immediate.

Corollary 5.10. Let X ∈ C α
g be a geometric rough path. We identify

X with its Lyons-lift to a path with values in T ((Rd)). Then for every
l1, l2 ∈ T (Rd),

⟨l1,X0,T ⟩⟨l2,X0,T ⟩ = ⟨l1 � l2,X0,T ⟩.

Remark 5.11. Let X be a geometric rough path. As usual, we identify
X with its Lyons lift to a path with values in T ((Rd)). Then the element
X0,T ∈ T ((Rd)) is called the signature of the rough path X. The signa-
ture is important since it contains all (necessary) information about the
rough path. Indeed, in a series of papers, it was shown that the signature
determines a geometric rough path completely up to so-called “tree-like”
excursions [Che58, HL10, BGLY16]. If X is random, the expected signature
determines the law of X and can be seen as a Laplace transform for mea-
sures on path spaces [CL16, CO22]. The (truncated) signature also plays
an important role in machine learning as a way to extract characteristic
features from a data stream, cf. [CK16, LM22] for an overview.

6 Controlled paths and rough integral

We aim to solve non-linear rough differential equations of the form

dYt = σ(Yt) dXt; t ∈ [0, T ]

Y0 = y ∈ Rm.

As for the Young case, we want to interpret the equation as an integral
equation:

Yt = y +

∫ t

0
σ(Ys) dXs; t ∈ [0, T ].

We want to find a notion of an integral that coincides with the Young
integral in case the integrand is smooth. That is, for a smooth function f
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and a Brownian motion B, we would like to have that∫ T

0
f(s) dBs =

∫ T

0
f(s) dBs.

Here, B may either denote BItō or BStrat. If we want to perform a fixed
point argument to solve the equation, it is desirable to look for a Banach
space E containing smooth functions such that the map

f 7→
(
t 7→

∫ t

0
f(s) dBs

)
is a continuous map from E to itself. A minimal requirement for E would
be that it contains the trajectories of the Brownian motion, otherwise we
would not be able to integrate constant functions. However, one can show
that such a space E does not exist:

Theorem 6.1. There is no space of functions E carrying the Wiener
measure on which we can define a continuous map I : E → E that coincides
with the pathwise defined integral

I(f) =
(
t 7→

∫ t

0
f(s) dBs

)
for smooth functions f on a set of full measure.

Proof. Same idea as in the proof of Theorem 3.13.

The solution to this issue proposed by rough paths theory is that we
allow the space E to depend on the trajectory of the Brownian motion,
i.e. we will define spaces {Eω}ω∈Ω for which B(ω) ∈ Eω with the property
that

Eω ∋ f 7→
(
t 7→

∫ t

0
f(s) dBs(ω)

)
∈ Eω

extends the integral map on smooth paths and is continuous. Our goal is
to define a “rough integral” of the form∫ T

0
Yt dXt,
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for a given rough path X ∈ C α. Before moving forward, let us assume the
following assumptions:

Assumption 6.2. For the sake of simplicity, we will assume α ∈ (1/3, 1/2]

from now on.

Remember that we deduced the regularity of a 3-times iterated Young
integral by introducing a “compensator”:∫ T

0
X(2)
0,t dXt =

∑
|P|→0

∑
[u,v]∈P

X(2)
0,u ⊗ δXu,v + δX0,u ⊗ X(2)

u,v.

This motivates the following ansatz: for given X = (1, X,X) ∈ C α and
Y : [0, T ] → L(Rd,Rm), we assume that there exists a path Y ′ : [0, T ] →
L(Rd ⊗ Rd,Rm) for which we can define the limit∫ T

0
Yt dXt =

∑
|P|→0

∑
[u,v]∈P

YuδXu,v + Y ′
uXu,v.

As before, we will use the Sewing lemma to prove the existence of the
limit. Set

Ξu,v := YuδXu,v + Y ′
uXu,v.

Clearly, ∥Ξ∥α < ∞. We have to make sure that ∥δΞ∥β < ∞ for some
β > 1. After some lines of calculations, we see that

δΞs,u,t = −(δYs,u − Y ′
sδXs,u)Xu,t − δY ′

s,uXu,t.

Therefore, we arrive at the conditions

|δY ′
s,t| = O(|t− s|γ) where γ + 2α > 1 and

|δYs,t − Y ′
sδXs,t| = O(|t− s|γ̃) with γ̃ + α > 1.

These conditions are in particular satisfied for γ = α and γ̃ = 2α. This
observation motivates the following definition that was introduced by Gu-
binelli in [Gub04] first.
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Definition 6.3. Let X ∈ C α([0, T ],Rd), α ∈ (1/3, 1/2]. A path Y ∈
Cα([0, T ],W ) is said to be controlled by X if there exists a path Y ′ ∈
Cα([0, T ], L(Rd,W )) such that the remainder term RY given by

RY
s,t := δYs,t − Y ′

sδXs,t

satisfies ∥RY ∥2α < ∞. The path Y ′ is called a Gubinelli-derivative of
Y . The set of all controlled paths (Y, Y ′) is denoted by Dα

X([0, T ],W ). If
(Y, Y ′) ∈ Dα

X([0, T ],W ), we set

∥Y, Y ′∥X,α := ∥Y ′∥α + ∥RY ∥2α.

Example 6.4. 1. If X = (1, δX,X(2)) ∈ C α, the path X is controlled
by X. A Gubinelli-derivative is given by the constant function Y ′ =

Id.

2. If Y is smooth or, more precisely, 2α-Hölder continuous, the path is
controlled by X with Gubinelli-derivative Y ′ = 0.

It is easily seen that the space of controlled paths is a linear space for
every fixed rough path X ∈ C α. Moreover, one can prove the following:

Proposition 6.5. The spaces Dα
X([0, T ],W ) are Banach spaces with a

norm given by

(Y, Y ′) 7→ |Y0|+ |Y ′
0 |+ ∥Y, Y ′∥X,α =:

∣∣∣∣∣∣Y, Y ′∣∣∣∣∣∣
X,α

.

Proof. Straightforward.

Remark 6.6. Gubinelli derivatives are not unique, in general. Indeed,
if Y is smooth, we can choose Y ′ = 0. But if X is smooth, too, we can
in fact choose any Cα-path as a Gubinelli-derivative. On the contrary, if
X is not smooth, one can show uniqueness of the Gubinelli-derivative, cf.
[FH20, Proposition 6.4].

The most important fact about controlled paths is that they are good
integrands.
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Theorem 6.7. Let X ∈ C α([0, T ],Rd) and (Y, Y ′) ∈ Dα
X([0, T ], L(Rd,Rm)).

1. The integral∫ t

s
Yu dXu := lim

|P|→0

∑
[u,v]∈P

YuδXu,v + Y ′
uXu,v

exists and satisfies the bound∣∣∣∣∫ t

s
Yu dXu − YsδXs,t − Y ′

sXs,t

∣∣∣∣ ≤ C(∥X∥α∥RY ∥2α + ∥X∥2α∥Y ∥α)

× |t− s|3α.
(6.1)

2. The path t 7→
∫ t
0 Yu dXu is a controlled path with Gubinelli-derivative

Y . The map

(Y, Y ′) 7→
(∫ ·

0
Yu dXu, Y

)
=: (Z,Z ′)

is a continuous linear map from Dα
X([0, T ], L(Rd,Rm)) to Dα

X([0, T ],Rm).
Moreover, we have the bound

∥Z,Z ′∥X,α ≤ ∥Y ∥α + ∥Y ′∥∞∥X∥2α + CTα(∥X∥α∥RY ∥2α + ∥X∥2α∥Y ′∥α).

Proof. As already indicated above, we use the Sewing lemma with

Ξu,v := YuδXu,v + Y ′
uXu,v.

From

δΞs,u,t = −RY
s,uXu,t − δY ′

s,uXu,t,

we see that

∥δΞ∥3α ≤ ∥RY ∥2α∥X∥α + ∥Y ′∥α∥X∥2α
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and the first assertion follows. For the second assertion, we have to prove
that

RZ
s,t := δZs,t − Z ′

sδXs,t =

∫ t

s
Yu dXu − YsδXs,t

is 2α-Hölder which follows from (6.1) and the triangle inequality. Note
that calculating the bound for ∥Z,Z ′∥ = ∥Z ′∥α + ∥RZ∥2α directly follows
from (6.1) .

6.1 Controlled paths as a field of Banach spaces

The statements discussed in this section are simplified versions of the
more general results obtained in [GVRST22]. Recall that we defined a
Banach space of controlled paths for every rough path X. The question we
would like to answer now is whether the indexed spaces {Dα

X([0, T ],W )}X∈Cα

have more structure than being just a collection of isolated spaces. This
will also have practical relevance. From Theorem 6.7, we know that rough
integration induces bounded linear maps

Φ(X, ·) : Dα
X([0, T ],W ) → Dα

X([0, T ], W̄ ).

If X is a stochastic process (i.e. a random rough path), the operator norm

∥Φ(ω)∥ := sup
(Z,Z′)∈Dα

X(ω)
([0,T ],W )

(Z,Z′ )̸=0

|||Φ(X(ω), (Z,Z ′))|||
|||Z,Z ′|||

is a natural quantity to consider (note that we dropped the lower indices
for the norms on controlled rough paths spaces on the right hand side of
the equation to ease notation). One seemingly basic question to answer
first is the measurability of this random number. We will see that having
some additional structure on the space of controlled paths will help us to
answer this question. We make the following definition:

Definition 6.8. Let X be a topological space and {Ex}x∈X a collection of
Banach spaces. {Ex}x∈X is called a separable continuous field of Banach
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spaces if there exists a countable set of sections ∆ ⊂
∏

x∈X Ex, i.e. every
g ∈ ∆ is a map g : X →

⋃
x∈X Ex with g(x) ∈ Ex for every x ∈ X , that

has the following properties:

1. For every g ∈ ∆, x 7→ ∥g(x)∥Ex ∈ R is continuous.

2. For every x ∈ X , the set {g(x) : g ∈ ∆} is dense in Ex.

Remark 6.9. The usual definition of a continuous field of Banach spaces
in the literature differs slightly from the one we gave in Definition 6.8.
In [Dix77], the definition of a continuous field of Banach spaces assumes
the existence of a linear subspace of sections ∆′ satisfying (1) and (2).
Separability in [Dix77] means that there is a countable subset ∆ ⊂ ∆′

satisfying (2.). It is clear that our definition is equivalent since a linear
subspace of sections can be just obtained by considering the linear span of
∆. Also, [Dix77] assumes a third property for ∆′ that is as follows:

(3’) Let g̃ ∈
∏

x∈X Ex. If for every y ∈ X and ε > 0, there exists gy ∈ ∆′

such that ∥g̃(x) − gy(x)∥Ex ≤ ε in some neighbourhood of y in X ,
then g̃ ∈ ∆′.

However, one can show that having a ∆′ satisfying only (1) and (2), one
can take some “completion” of ∆′ that satisfies (3’), too [Dix77, 10.2.3.
Proposition]. Therefore, the definition we gave here could also be called a
separable continuous pre-field of Banach spaces.

The question we want to answer now is whether the spaces of con-
trolled paths form a separable continuous field of Banach spaces. However,
we cannot expect that separability holds since the spaces of controlled
paths are equipped with Hölder-type norms that make them not separable
themselves. Nevertheless, we will see that a slightly weaker result holds.
Inspired by the little Hölder and geometric rough paths spaces, we define:

Definition 6.10. Let X ∈ C β , β ∈ (1/3, 1/2] and α ≤ β. We define
Dα,β

X ([0, T ],W ) to be the closure of the space Dβ
X([0, T ],W ) in the |||·|||α-

Norm.
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The key result is the following lemma.

Lemma 6.11. Let X ∈ C γ and 1
3 < α < β ≤ γ ≤ 1

2 . Then the set

Z :=

{
(Z,Z ′) : Zt =

∫ t

0
ϕu dXu + ψt, Z

′
t = ϕt

where ϕ ∈ C∞([0, T ], L(Rd,W )) and ψ ∈ C∞([0, T ],W )

}
is dense in Dα,β

X ([0, T ],W ). The integral here is defined as a Young inte-
gral.

Proof. It suffices to proof that Z is dense in Dβ
X([0, T ],W ) equipped with

the norm |||·|||α. Let (ξ, ξ′) ∈ Dβ
X([0, T ],W ) with remainder Rξ, i.e. ∥ξ′∥β <

∞ and ∥Rξ∥2β <∞. Let

P = {0 = t0 < t1 < . . . < tn = T}

be a partition with |P| = |ti+1− ti| =: θ > 0 for all i = 0, . . . , n−1. Define
ξ̄′ : [0, T ] → W to be the piecewise-linear approximation of ξ′ w.r.t. to P,
i.e.

ξ̄′t := ξ′ti +
t− ti
θ

(ξ′ti+1
− ξ′ti), t ∈ [ti, ti+1].

Our goal is to find a function ψ with ψ0 = ξ0 such that for

ξ̄t :=

∫ t

0
ξ̄′u dXu + ψt,

we have
∣∣∣∣∣∣(ξ, ξ′)− (ξ̄, ξ̄′)

∣∣∣∣∣∣
α
= ∥(ξ, ξ′)− (ξ̄, ξ̄′)∥X,α ≤ ε for any given ε > 0

as θ → 0. Set η := ξ′ − ξ̄′. It is straightforward to show that ∥η∥α → 0 as
θ → 0. It remains to show that

∥Rξ −Rξ̄∥2α → 0

as θ → 0 where

Rξ̄
s,t = δξ̄s,t − ξ̄′sδXs,t =

∫ t

s
ξ̄′u dXu − ξ̄′sδXs,t + δψs,t
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for a ψ still to be chosen. For s, t ∈ [0, T ], we define

ρs,t :=

∫ t

s
ξ̄′u dXu − ξ̄′sδXs,t =

∫ t

s
δξ̄′s,u dXu.

If s, t ∈ [ti, ti+1], we have

ρs,t =
δξ′ti,ti+1

θ

∫ t

s
(u− s) dXu.

Using the estimate for the Young integral in Theorem 3.3, we see that

∥ρ∥2α;[ti,ti+1] ≤ C∥ξ′∥β∥X∥γθγ+β−2α.

Now we take tj , tk ∈ P, k < j. Then,

ρtk,tj =
∑

k≤i<j

[∫ ti+1

ti

ξ̄′ti,u dXu + δξ̄′tk,tiδXti,ti+1

]
=
∑

k≤i<j

[
ρti,ti+1 −Rξ

ti,ti+1
+ δξti,ti+1 − ξtkδXti,ti+1

]
=
∑

k≤i<j

[
ρti,ti+1 −Rξ

ti,ti+1

]
+Rξ

tk,tj
.

Setting ρ̃s,t := Rξ
s,t − ρs,t, the calculation above implies that

ρ̃tk,tj =
∑

k≤i<j

[
ρti,ti+1 −Rξ

ti,ti+1

]
. (6.2)

We define ψ̃ to be the continuous, piecewise-linear function satisfying ψ̃0 =

ξ0 and

δψ̃s,t =
t− s

ti+1 − ti
(Rξ

ti,ti+1
− ρti,ti+1), s, t ∈ [ti, ti+1].

With this choice,

Rξ̄
s,t =

∫ t

s
ξ̄′u dXu − ξ̄′sδXs,t + δψ̃s,t = ρs,t + δψ̃s,t.

Now let s, t ∈ P with tk ≤ s ≤ tk+1 ≤ · · · ≤ tj ≤ t ≤ tj+1. By (6.2),

δψ̃s,t = δψ̃s,tk+1
+ δψ̃tk+1,tk+2

+ . . .+ δψ̃tj ,t = δψ̃s,tk+1
+ δψ̃tj ,t + ρ̃tk+1,tj .
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Furthermore,

ρs,t = ρs,tk+1
+ ρtk+1,tj + ρtj ,t + δξ̄′s,tk+1

δXtk+1,tj + δξ̄′tk+1,tj
δXtj ,t

and

ρ̃s,t = ρ̃s,tk+1
+ ρ̃tk+1,tj + ρ̃tj ,t + δηs,tk+1

δXtk+1,tj + δηtk+1,tjδXtj ,t.

Thus, we obtain that

Rξ̄
s,t −Rξ

s,t = δψ̃s,t − ρ̃s,t

= δψ̃s,tk+1
+ δψ̃tj ,t − ρ̃s,tk+1

− ρ̃tj ,t − δηs,tk+1
δXtk+1,tj

− δηtk+1,tjδXtj ,t.

Each term can now be estimated separately and we can conclude that
indeed

∥Rξ̄ −Rξ∥2α → 0

as θ → 0. It remains to argue that we can replace the piecewise smooth
functions ξ̄′ and ψ̃ by genuine smooth functions. This, however, does not
cause any problems since we can approximate any continuous function
arbitrarily close my smooth functions in the Hölder metric. Therefore, our
claim is proved.

Finally, the previous Lemma yields:

Proposition 6.12. Let 1
3 < α < β ≤ γ ≤ 1

2 . Then the family {Dα,β
X }X∈C γ

is a separable continuous field of Banach spaces.

Proof. Let S and S ′ be a countable dense subsets of C∞([0, T ], L(Rd,W ))

resp. C∞([0, T ],W ). Then we can define ∆ as the set of maps g : Cγ →⋃
X∈Cγ Dα,β

X given by g(X) = (Z,Z ′) where

Zt =

∫ t

0
ϕu dXu + ψt, Z

′
t = ϕt

with ϕ ∈ S and ψ ∈ S ′. The claimed properties now follow from continuity
of the Young integral, cf. Theorem 3.3, and Lemma 6.11.
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Remember that we considered the measurability question of the oper-
ator norm of a family of linear mappings

Φ(X(ω), ·) : Dα
X(ω)([0, T ],W ) → Dα

X(ω)([0, T ], W̄ )

(like rough integration, for instance). We will formulate a corresponding
result now.

Proposition 6.13. Let 1
3 < α < β ≤ γ ≤ 1

2 and let ∆ be the set of sections
given in the definition of a continuous field of Banach spaces. Assume that
for every rough path X ∈ C γ, there is a bounded linear map

Φ(X, ·) : Dα,β
X ([0, T ],W ) → Dα,β

X ([0, T ], W̄ )

that satisfies the property that X 7→ |||Φ(X, g(X))||| is continuous for every
g ∈ ∆. Let X(ω) be a random rough path with the property that ω 7→ X(ω)

is measurable. Then the operator norm

∥Φ(ω)∥ = sup
(Z,Z′)∈Dα,β

X(ω)
([0,T ],W )

(Z,Z′ )̸=0

|||Φ(X(ω), (Z,Z ′))|||
|||Z,Z ′|||

is measurable.

Proof. For every ω ∈ Ω,

∥Φ(ω)∥ = sup
(Z,Z′)∈Dα,β

X(ω)
([0,T ],W )

(Z,Z′ )̸=0

|||Φ(X(ω), (Z,Z ′))|||
|||Z,Z ′|||

= sup
g∈∆

|||Φ(X(ω), g(X(ω)))|||
|||g(X(ω))|||

.

By our assumptions, ω 7→ |||Φ(X(ω),g(X(ω)))|||
|||g(X(ω))||| is measurable for every fixed

g ∈ ∆. Since ∆ is countable, the result follows.

To apply Proposition 6.13 to the rough integration map, we still have
to prove that

X →
∥∥∥∥∫ g(X) dX

∥∥∥∥
Dα,β

X
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is continuous. This will follow by a more general result on rough integra-
tion, cf. the forthcoming Theorem 6.15 and Corollary 6.16.

It is known that every continuous field of Banach spaces {Ex}x∈X
induces a natural topology on the total space E :=

⊔
x∈X Ex. To describe

it, we introduce the projection p : E → X , i.e. if Z ∈ Ex, p(Z) = x. We
define for g ∈ ∆, an open set U ⊂ X and ε > 0 the tube

W (g, U, ε) := {Z ∈ E : p(Z) ∈ U, ∥Z − g(p(Z))∥Ep(Z)
< ε},

see the picture below.

Figure 6.1: Open tube

The topology defined on E is the smallest one containing the tubes
as open sets. It is also called tube topology. Fortunately, in the case

of controlled paths, the tube topology is completely metrizable with an
explicit metric. We state this result now.

Proposition 6.14. Let α < β ≤ 1
2 and D :=

⊔
X∈C β Dα,β

X ([0, T ],W ).
Then the tube topology on D is completely metrizable with metric given by

d♭α,β((Y, Y
′), (Ỹ , Ỹ ′)) := ϱβ(p(Y, Y

′), p(Ỹ , Ỹ ′)) + ∥Y ′ − Ỹ ′∥α + ∥RY −RỸ ∥2α
+ |Y0 − Ỹ0|+ |Y ′

0 − Ỹ ′
0 |.
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If we replace C β by C β
g , D is also separable, i.e. Polish.

Proof. We fix some notation first. For given (Y, Y ′) ∈ Dα,β
X ([0, T ],W ) and

(Ỹ , Ỹ ′) ∈ Dα,β

X̃
([0, T ],W ), we set∣∣∣∣∣∣∣∣∣(Y, Y ′); (Ỹ , Ỹ ′)
∣∣∣∣∣∣∣∣∣

α
:= ∥Y ′ − Ỹ ′∥α + ∥RY −RỸ ∥2α + |Y0 − Ỹ0|+ |Y ′

0 − Ỹ ′
0 |.

For given (Y, Y ′) ∈ D and ε > 0, we define

Bε(Y, Y
′) := {(Ỹ , Ỹ ′) ∈ D : d♭α,β((Y, Y

′), (Ỹ , Ỹ ′)) < ε}.

For X ∈ C β and η > 0, we use the notation

Bη(X) := {X̃ ∈ C β : ϱ(X, X̃) < η}.

Recall the definition of ∆ given in the proof of Proposition 6.12.

Claim 1: For given (Y, Y ′) ∈ D and ε > 0, there is an open set
U ⊂ C β , an element g ∈ ∆ and a number δ > 0 such that

(Y, Y ′) ∈W (g, U, δ) ⊆ Bε(Y, Y
′).

To prove this claim, for X = p(Y, Y ′), we define U := Bη(X) where
η > 0 will be chosen later. For given δ > 0, we choose g = gδ ∈ ∆ such
that ∣∣∣∣∣∣(Y, Y ′)− g(p(Y, Y ′))

∣∣∣∣∣∣
X,α

< δ.

With these choices, we always have that (Y, Y ′) ∈ W (g, U, δ). Now let
(Ỹ , Ỹ ′) ∈W (g, U, δ) be arbitrary and set X̃ = p(Ỹ , Ỹ ′). Note that

d♭α,β((Y, Y
′), (Ỹ , Ỹ ′))

= ϱβ(X, X̃) +
∣∣∣∣∣∣∣∣∣(Y, Y ′); (Ỹ , Ỹ ′)

∣∣∣∣∣∣∣∣∣
α

< η +
∣∣∣∣∣∣(Y, Y ′)− g(p(Y, Y ′))

∣∣∣∣∣∣
X,α

+
∣∣∣∣∣∣∣∣∣(Ỹ , Ỹ ′)− g(p(Ỹ , Ỹ ′))

∣∣∣∣∣∣∣∣∣
X̃,α

+
∣∣∣∣∣∣∣∣∣g(p(Y, Y ′)); g(p(Ỹ , Ỹ ′))

∣∣∣∣∣∣∣∣∣
α

< η + 2δ +
∣∣∣∣∣∣∣∣∣g(p(Y, Y ′)); g(p(Ỹ , Ỹ ′))

∣∣∣∣∣∣∣∣∣
α
.
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Using continuity of the Young integral, we can deduce the bound∣∣∣∣∣∣∣∣∣g(p(Y, Y ′)); g(p(Ỹ , Ỹ ′))
∣∣∣∣∣∣∣∣∣

α
≤ Cgϱβ(X, X̃) ≤ Cgη. (6.3)

Therefore, if ε > 0 is given, we first choose 0 < δ < ε/4 and then η > 0

such that η(1 + Cg) < ε/2 to obtain that d♭α,β((Y, Y
′), (Ỹ , Ỹ ′)) < ε. This

proves claim 1.

Claim 2: For given W (g, U, δ) and (Y, Y ′) ∈ W (g, U, δ), there is an
ε > 0 such that

Bε(Y, Y
′) ⊆W (g, U, δ).

To see this, let X = p(Y, Y ′). By definition, X ∈ U and since U is
open, there is an η > 0 such that Bη(X) ⊆ U . Let (Ỹ , Ỹ ′) ∈ Bε(Y, Y

′) be
arbitrary and X̃ = p(Ỹ , Ỹ ′). If 0 < ε < η, it follows that

X̃ ∈ Bη(X) ⊆ U.

In remains to show that choosing ε > 0 sufficiently small, we can obtain
that ∣∣∣∣∣∣∣∣∣(Ỹ , Ỹ ′)− g(p(Ỹ , Ỹ ′))

∣∣∣∣∣∣∣∣∣
X̃,α

< δ.

Note that∣∣∣∣∣∣∣∣∣∣∣∣∣(Ỹ , Ỹ ′)− g(p(Ỹ , Ỹ ′))
∣∣∣∣∣∣∣∣∣

X̃,α
−
∣∣∣∣∣∣(Y, Y ′)− g(p(Y, Y ′))

∣∣∣∣∣∣
X,α

∣∣∣∣
≤
∣∣∣∣∣∣∣∣∣(Y, Y ′); (Ỹ , Ỹ ′)

∣∣∣∣∣∣∣∣∣
α
+
∣∣∣∣∣∣∣∣∣g(p(Y, Y ′)); g(p(Ỹ , Ỹ ′))

∣∣∣∣∣∣∣∣∣
α
.

Using again (6.3) and the assumption, the right hand side gets small when
ε is chosen small. Therefore, for any given ν > 0, we can choose ε > 0

sufficiently small to obtain∣∣∣∣∣∣∣∣∣(Ỹ , Ỹ ′)− g(p(Ỹ , Ỹ ′))
∣∣∣∣∣∣∣∣∣

X̃,α
≤ ν +

∣∣∣∣∣∣(Y, Y ′)− g(p(Y, Y ′))
∣∣∣∣∣∣

X,α
.

Since |||(Y, Y ′)− g(p(Y, Y ′))|||X,α < δ, we can find a ν > 0 such that

ν +
∣∣∣∣∣∣(Y, Y ′)− g(p(Y, Y ′))

∣∣∣∣∣∣
X,α

< δ.
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From these observations, we can deduce the second claim. Both claims
together prove that d♭α,β indeed metrizes the tube topology. The fact that
D is complete with respect to d♭α,β follows from completeness of the space
C β with respect to ϱβ and completeness of the spaces Dα,β

X . Separability
follows from separability of the respective spaces.

We can now prove an important stability result for rough integration.

Theorem 6.15. Let X, X̃ ∈ C β, (Y, Y ′) ∈ Dα,β
X and (Ỹ , Ỹ ′) ∈ Dα,β

X̃
. Set

Z :=

∫ ·

0
Yu dXu, Z ′ := Y

and define (Z̃, Z̃ ′) similarly. Then, locally,

d♭α,β((Z,Z
′), (Z̃, Z̃ ′)) ≤ C d♭α,β((Y, Y

′), (Ỹ , Ỹ ′)).

In other words: the integration map

(Y, Y ′) 7→
(∫

Y dp(Y, Y ′), Y

)
is locally Lipschitz continuous.

Proof. It suffices to establish a bound for ∥RZ −RZ̃∥2α. Recall that

RZ
s,t =

∫ t

s
Yu dXu − YsδXs,t = (IΞ)s,t − Ξs,t + Y ′

sXs,t

where Ξu,v = YuδXu,v + Y ′
uXu,v and I is the integration map provided by

the Sewing lemma. A similar decomposition holds for RZ̃
s,t with Ξ replaced

by Ξ̃u,v = ỸuδX̃u,v + Ỹ ′
uX̃u,v. Setting Ψ := Ξ− Ξ̃, linearity of I yields

|RZ
s,t −RZ̃

s,t| ≤ |(IΨ)s,t −Ψs,t|+ |Y ′
sXs,t − Ỹ ′

s X̃s,t|.

The Sewing lemma gives us the bound

|(IΨ)s,t −Ψs,t| ≤ C∥δΨ∥3α|t− s|3α.



Introduction to rough paths theory 125

We have

δΨs,u,t = δΞs,u,t − δΞ̃s,u,t = RỸ
s,uX̃u,t + δỸ ′

s,uX̃u,t −RY
s,uXu,t − δY ′

s,uXu,t.

Therefore, by using the triangle inequality:

∥δΨ∥3α ≤ Cd♭α,β((Y, Y
′), (Ỹ , Ỹ ′)).

The triangle inequality also yields

|Y ′
sXs,t − Ỹ ′

s X̃s,t| ≤ C|t− s|2αd♭α,β((Y, Y ′), (Ỹ , Ỹ ′))

which concludes the proof.

Corollary 6.16. For every g ∈ ∆, the map

X →
∥∥∥∥∫ g(X) dX

∥∥∥∥
Dα,β

X

is continuous.

Proof. For X, X̃ ∈ C β , the reverse triangle inequality for Hölder norms
gives∣∣∣∣∣
∥∥∥∥∫ g(X) dX

∥∥∥∥
Dα,β

X

−
∥∥∥∥∫ g(X̃) dX̃

∥∥∥∥
Dα,β

X̃

∣∣∣∣∣ ≤ d♭α,β

(∫
g(X) dX,

∫
g(X̃) dX̃

)
≤ C d♭α,β(g(X), g(X̃))

locally. Recall that

g(X) =

(∫
ϕ dX + ψ, ϕ

)
for some smooth functions ϕ and ψ. Therefore, we can use continuity of
the Young integral to see that

d♭α,β(g(X), g(X̃)) ≤ Cϱβ(X, X̃)

locally and continuity follows.
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7 Rough differential equations

Having defined the rough integral, we can now say how a general rough
differential equation should be understood.

Definition 7.1. Let X ∈ C α, 1
3 < α ≤ 1

2 , σ = (σ1, . . . , σd) a collection
of vector fields σi : Rm → Rm and y ∈ Rm. We call Y : [0, T ] → Rm a
solution to the rough differential equation (RDE)

dYt = σ(Yt) dXt; t ∈ [0, T ],

Y0 = y,

if and only if t 7→ σ(Yt) is controlled by X and satisfies the integral equation

Yt = y +

∫ t

0
σ(Ys) dXs (7.1)

where the integral is understood as a rough integral.

Since rough integrals are also controlled paths, any solution Y that
satisfies (7.1) will be controlled by X, too. A natural candidate for a
Gubinelli derivative of Y is σ(Y ). We would therefore like to consider the
map

M(Y, Y ′) :=

(
y +

∫ ·

0
σ(Ys) dXs, σ(Y )

)
as a map from the space of controlled paths to itself and try show that
that it is a contraction on a small time interval. To properly define this
map, one has to show that the composition of a controlled path with a
sufficiently smooth function σ is again controlled.

Lemma 7.2. Let X ∈ C α, (Y, Y ′) ∈ Dα
X([0, T ],W ) and let φ : W → W̄

be twice continuously differentiable. Then the path t 7→ φ(Yt) is again
controlled by X with a Gubinelli derivative given by φ(Y )′t = Dφ(Yt)Y

′
t .

Moreover, if φ is bounded with bounded derivatives, the estimate

∥φ(Y ), φ(Y )′∥X,α ≤ C(∥Y ∥α + ∥Y ∥2α + ∥Y, Y ′∥X,α)

holds where C depends on ∥φ∥C2.
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Proof. It suffices to consider the case of σ being bounded with bounded
derivatives, the general case follows by localization. We have

∥φ(Y )∥α ≤ ∥Dσ∥∞∥Y ∥α

and

∥φ(Y )′∥α = ∥Dφ(Y )Y ′∥α ≤ ∥Dφ(Y )∥α∥Y ′∥∞ + ∥Dφ(Y )∥∞∥Y ′∥α
≤ ∥D2σ∥∞∥Y ∥α + ∥Dσ∥∞∥Y ′∥α.

This shows that φ(Y ), φ(Y )′ ∈ Cα. We have to prove that

Rφ
s,t := R

φ(Y )
s,t := δφ(Y )s,t − σ(Y )′sδXs,t

= δφ(Y )s,t −Dφ(Ys)Y
′
sδXs,t

is 2α-Hölder. Since

Rφ
s,t = φ(Yt)− φ(Ys)−Dφ(Ys)δYs,t +Dφ(Ys)R

Y
s,t,

Taylor’s theorem yields the bound

∥Rφ∥2α ≤ 1

2
∥D2φ∥∞∥Y ∥2α + ∥Dφ∥∞∥RY ∥2α,

which shows that indeed (φ(Y ), φ(Y )′) is controlled by X and the desired
bound.

Next, we formulate the main theorem about the non-linear rough dif-
ferential equations.

Theorem 7.3. Let X ∈ C α([0, T ],Rd) for 1
3 < α ≤ 1

2 , y ∈ Rm and σ ∈
C3(Rm, L(Rd,Rm)). Then there exists a unique controlled path (Y, Y ′) ∈
Dα

X([0, T ],Rm) with Y ′ = σ(Y ) that satisfies

Yt = y +

∫ t

0
σ(Ys) dXs; t ∈ [0, T ].
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Proof. The proof is very similar to the one we gave in Theorem 3.5, i.e.
we will show that a properly defined mapping has a fixed point. For
(Y, Y ′) ∈ Dα

X and 0 < T0 ≤ T , set

(Zt, Z
′
t) := (σ(Yt), Dσ(Yt)Y

′
t ) ∈ Dα

X ; t ∈ [0, T0].

We define the map

M(Y, Y ′) :=

(
y +

∫ t

0
Zs dXs, Zt; t ∈ [0, T0]

)
.

The expected solution will be a fixed point of this map. We will not define
this map on the whole space of controlled paths but on the closed unit ball

BT0
:=
{
(Y, Y ′) ∈ Dα

X : Y0 = y, Y ′
0 = σ(y), ∥Y, Y ′∥X,α ≤ 1

}
of controlled paths starting in (y, σ(y)). We will have to prove two things:

1. M leaves BT0 invariant, i.e. M : BT0 → BT0 is a well defined map,

2. M is a contraction.

We start with the first point. Clearly, M(Y, Y ′)0 = (y, σ(y)). To prove
that ∥Y, Y ′∥X,α ≤ 1, we use the estimate for the rough integral given in
Theorem 6.1:

∥M∥X,α = ∥
∫ ·

0
Zs dXs, Z∥X,α

≤ ∥Z∥α + ∥Z ′∥α∥X∥2α + CTα
0 (∥X∥α∥RZ∥2α + ∥X∥2α∥Z ′∥α)

≤ ∥Z∥α + ∥Z,Z ′∥X,α∥X∥2α + CTα|||X|||α∥Z,Z
′∥X,α.

We have ∥Z∥α ≤ C∥Y ∥α and

∥Y ∥α ≤ ∥Y ′∥∞∥X∥α + Tα
0 ∥RY ∥2α

≤ |Y ′
0 |∥X∥α + Tα

0 ∥Y ′∥α∥X∥α + Tα∥RY ∥2α
≤ C∥X∥α + Tα

0 (1 + ∥X∥α)∥Y, Y ′∥X,α

≤ C∥X∥α + Tα
0 (1 + ∥X∥α).
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To estimate ∥Z,Z ′∥X,α, we use Lemma 7.2:

∥Z,Z ′∥X,α ≤ C(∥Y ∥α + ∥Y ∥2α + ∥Y, Y ′∥X,α)

≤ C(1 + ∥Y ∥α + ∥Y ∥2α).

Note that we already estimated ∥Y ∥α above. To summarize, we see that
∥M∥X,α gets small if T0 and |||X|||α are getting small. As in the proof of
Theorem 3.5, we will therefore assume first that X is smoother than only
being α-Hölder continuous to assure that |||X|||α gets small as T0 → 0. In
total, we can thus guarantee that M leaves BT0 invariant for a sufficiently
small T0 > 0. It remains to prove that M is a contraction on BT0 . To
do this, we have to estimate the difference between two rough integrals in
the |||·|||X,α-norm. Note that we do not have to use Theorem 6.15 since
the driving rough path X is fixed. The complete proof for the contraction
property is a bit long, but does not provide many new insights, that is why
we will not present it here. It can be found in [FH20, Theorem 8.3.].

There is also a stability result for solutions to rough differential equa-
tions that we want to cite here. To formulate it, we define the metric

d♭α((Y, Y
′), (Ỹ , Ỹ ′)) := d♭α,α((Y, Y

′), (Ỹ , Ỹ ′))

:= ϱα(X, X̃) + ∥Y ′ − Ỹ ′∥α + ∥RY −RỸ ∥2α
+ |Y0 − Ỹ0|+ |Y ′

0 − Ỹ ′
0 |

for (Y, Y ′) ∈ Dα
X and (Ỹ , Ỹ ′) ∈ Dα

X̃
which is a metric on the total space

D = ⊔X∈CαDα
X .

Theorem 7.4 (Stability of RDE solutions). Let (Y, Y ′) and (Ỹ , Ỹ ′) be
solutions to

dYt = σ(Yt) dXt; Y0 = y resp. dỸt = σ(Ỹt) dX̃t; Ỹ0 = ỹ

with Y ′ = σ(Y ) and Ỹ ′ = σ(Ỹ ). Then

d♭α((Y, Y
′), (Ỹ , Ỹ ′)) ≤ C(|y − ỹ|+ ϱα(X, X̃))

locally.

Proof. [FH20, Theorem 8.5].
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7.1 Rough differential equations driven by a Brownian mo-
tion

In this part, we discuss how to employ rough theory in stochastic anal-
ysis. Let us start with the following proposition which, loosely speaking,
claims that Itō (resp. Stratonovich) integration coincides with rough inte-
gration against the enhanced Itō (resp. Stratonovich) Brownian motion.

Proposition 7.5. Let B = (B1, . . . , Bd) be a d-dimensional Brownian
motion and BItō resp. BStrat its Itō resp. Stratonovich lift to a rough
paths valued process. For 1

3 < α < 1
2 , assume that (Y (ω), Y ′(ω)) ∈ Dα

X(ω)

almost surely and that (Y, Y ′) is adapted to the filtration generated by B.
Then∫ T

0
Ys dBs =

∫ T

0
Ys dB

Itō
s and

∫ T

0
Ys ◦ dBs =

∫ T

0
Ys dB

Strat
s

almost surely.

Proof. We will only prove the Itō-case, the identity for Stratonovich inte-
gral can be found in [FH20, Corollary 5.2]. It is known that∫ T

0
Ys dBs = lim

|P|→0

∑
[u,v]∈P

YuδBu,v

in probability. Passing to a subsequence, we may assume that there is a
sequence of partitions such that the convergence holds almost surely. It
suffices to prove that

lim
|P|→0

∑
[u,v]∈P

Y ′
uBItō

u,v = 0

in L2(Ω). We will assume that ∥Y ′(ω)∥ ≤ M almost surely, the general
case follows by a stopping argument. Fix a partition P = {0 = τ0 <

. . . τN = T}. One can check that (Sk) with S0 = 0 and Sk+1 − Sk =

Y ′
τk
BItō
τk+1,τk

is a discrete martingale. Since its increments are uncorrelated,∥∥∥∥∥∥
∑

[u,v]∈P

Y ′
uBItō

u,v

∥∥∥∥∥∥
2

L2

=
∑

[u,v]∈P

∥∥Y ′
uBItō

u,v

∥∥2
L2 ≤M

∑
[u,v]∈P

∥∥BItō
u,v

∥∥2
L2 = O(|P|)
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and the claim follows.

Corollary 7.6. For σ ∈ C3(Rm, L(Rd,Rm)), the solutions to

dYt = σ(Yt) dBt and dYt = σ(Yt) dBt
Itō

resp.

dYt = σ(Yt) ◦ dBt and dYt = σ(Yt) dBt
Strat

with the same initial conditions coincide almost surely.

We can now prove an important theorem in stochastic analysis, the
Wong-Zakai theorem, that connects stochastic differential equations to ran-
dom ordinary differential equations.

Theorem 7.7. Let σ ∈ C3(Rm, L(Rd,Rm)), y ∈ Rm, B = (B1, . . . , Bd) be
a Brownian motion defined on [0, 1] and B(n) and be its piecewise-linear
approximation at the the dyadic points 0 < 2−n < . . . < (2n − 1)2−n < 1.
Then the solutions Y (n) to the random ordinary differential equations

dYt(n) = σ(Yt(n)) dBt(n); Y0(n) = y (7.2)

converge in the α-Hölder metric for any 1
3 < α < 1

2 to the solution of the
Stratonovich stochastic differential equation

dYt = σ(Yt) ◦ dBt; Y0 = y

almost surely as n→ ∞.

Proof. Let B(n) be the canonical lift of B(n) to an α-Hölder rough path.
Then the solutions Y (n) to the random ordinary differential equations
(7.2) coincide with the solutions to the rough differential equations

dYt(n) = σ(Yt(n)) dBt(n); Y0(n) = y.

From Corollary 7.6, the solution Y of the Stratonovich stochastic differ-
ential equation coincides almost surely with the solution to the random
rough differential equation

dYt = σ(Yt) dB
Strat
t ; Y0 = y.
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In the proof of Proposition 5.5, we have seen that ϱα(B(n),BStrat) → 0

as n → ∞. From the stability result on RDE solutions (Theorem 7.4), it
follows that

d♭α((Y, Y
′), (Y (n), Y ′(n))) → 0

almost surely as n→ ∞. In particular, Y (n) → Y almost surely as n→ ∞
in the α-Hölder metric.

7.2 Rough differential equations driven by a fractional Brow-
nian motion.

We will come back now to our motivating problem, i.e. the question
of how to define a meaningful solution to a stochastic differential equation
driven by a fractional Brownian motion BH . For H > 1

2 , we can use
Young’s integration theory to solve such equations. In the case H = 1

2 , we
can either use Itō’s theory of stochastic integration or rough paths theory
as we saw in the previous section. What about H < 1

2? It turns out that a
similar result as seen in the proof of Proposition 5.5 holds for the fractional
Brownian motion, too, provided H > 1

4 . To formulate it, let BH(n) denote
a piecewise-linear approximation of BH . Since BH(n) has smooth sample
paths, the canonical lift BH(n) to an α-Hölder rough path exists. With
much more involved arguments as in Proposition 5.5 (cf. [CQ02, FV10a]),
it can be shown that (BH(n))n∈N is a Cauchy sequence almost surely in
the space of geometric α-Hölder rough paths for α < H. Since the space of
geometric rough paths is complete, the sequence converges to a limit BH

which is then called the natural lift of the fractional Brownian motion.
This result allows to study stochastic equations driven by a fractional
Brownian motion with a Hurst parameter H > 1

4 . There are many works
in which such equations are studied, the interested reader is referred to
[FH20, Chapter 10] and the comments at the end of this chapter.

A natural question is whether there is a meaningful lift in the case of
H ≤ 1

4 , too. In [CQ02], it is shown that the approach we just described
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here does not work for H ≤ 1
4 because the natural lifts BH(n) will diverge

in this case. To the authors’ knowledge, it is currently not clear whether
a meaningful rough path lift can be defined in the regime H ∈ (0, 1/4].

8 Discussion and Outlook

In these notes, we gave a brief introduction to the theory of rough
paths. We emphasized its application in stochastic analysis, discussing, in
particular, its ability to solve stochastic differential equations driven by a
fractional Brownian motion.

Rough path theory is nowadays a mature theory that found many
applications in various fields of mathematics. At the end of these notes,
we would like to discuss further branches of research in which rough paths
theory plays a role. We are aware that the choice of topics we present here
reflects our personal interests, and there are many important subjects we
are not going to discuss here. In particular, we want to repeat that we will
not touch the numerous applications of rough paths theory in the context
of stochastic partial differential equation, a topic far beyond the scope of
these notes.

• Gaussian rough paths and rough differential equations driven by
Gaussian signals were studied extensively. The foundations were laid
in the articles [CQ02, FV10a, FGGR16], cf. also [FV10b, Chapter
15] and [FH20, Chapter 10]. The continuity of the solution map, cf.
Theorem 7.4, allows to give an easy proof for the Freidlin-Wentzell
large deviation principle and the Stroock-Varadhan support theo-
rem [LQZ02]. These theorems have natural extensions to stochastic
differential equations driven by Gaussian rough paths, too [FV10b,
Chapter 19].

• A famous theorem from Hörmander characterizes second order hy-
poelliptic differential operators by stating a condition on the iterated
Lie brackets of the involved vector fields [Hör67]. This result has an
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equivalent formulation in terms of stochastic differential equations:
Hörmander’s theorem says that if the vector fields of an SDE driven
by a Brownian motion satisfy the bracket condition, the solution
to the SDE obtains a smooth density at every time point t > 0.
In [Mal78], Malliavin gave a proof of Hörmander’s theorem using a
form of stochastic analysis on the Wiener space. Today, this calcu-
lus is called Malliavin calculus. One core idea of Malliavin was to
prove that the solution map to a stochastic differential equation is
differentiable in certain directions of the noise. It turns out that the
solution map of a rough differential equation enjoys a similar regular-
ity [CFV09]. This motivated the study of Hörmander’s theorem in
the context of rough differential equations driven by Gaussian rough
paths. In a series of papers, it was shown that Hörmander’s bracket
condition is indeed sufficient for the solution to a rough differential
equations driven by a Gaussian process to admit a smooth density
[CF10, CLL13, FR13, CHLT15]. This density was further investi-
gated in [BOT14, BOZ15, Ina16, BNOT16, GOT20, IN21, GOT23,
GOT22]

• In stochastic analysis, the Markov property ususally plays an im-
portant role. Different aspects for rough paths valued stochastic
processes having the Markov property, known as Markovian rough
paths, were studied in [FV08, Lej06, Lej08, CO17, CO18, Che18].

• In the classical texts about rough paths theory, one usually consid-
ers continuous paths exclusively. However, rough paths theory can
be generalized to non-continuous paths, too, and is able to study
stochastic processes with càdlàg sample paths such as Lévy processes
or general semimartingales, cf. [FS13, FS17, FZ18, LP18, CF19].

• Solving rough differential equations numerically can be a challeng-
ing problem. A natural numerical scheme to solve a rough differ-
ential equation can be deduced from the (formal) Taylor expan-
sion of the solution, cf. [Dav07] and [FV10b, Chapter 10]. These
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schemes usually contain iterated integrals of, at least, order 2. Since
these integrals are notoriously difficult to simulate, in particular if
the driving signal is not a Brownian motion, several alternatives
were studied. For instance, the simplified or implementable Milstein
scheme replaces the iterated integral by a product of increments,
cf. [DNT12, FR14]. If this scheme is used in combination with
Monte Carlo simulations, a complexity reduction can be obtained
by using a multilevel Monte Carlo method, cf. [BFRS16]. General
Runge-Kutta schemes were studied in [RR22]. Many articles study
numerical schemes that are specifically designed to solve rough dif-
ferential equations driven by a fractional Brownian motion and use
some probabilistic properties of this process, cf. [Nag15] for the (im-
plicit) Crank-Nicolson scheme or [LT19] for a first order Euler scheme
with deterministic correction term.

• Expanding the solution to an ordinary differential equation leads to
a so-called B-series. The B-series expansion of a rough differential
equation motivates the notion of a branched rough path that was
introduced by Gubinelli in [Gub10]. A branched rough path does
not only contain iterated integrals, but also integrated products of
iterated integrals. The difference to a geometric rough path is that
for branched rough paths, no product rule is assumed, i.e. the shuffle
property in Corollary 5.10 does not hold for branched rough paths.
For example, the product iterated integrals of the Brownian motion
in Itō-sense constitute a branched rough path, but not a geometric
one. It turns out that there is a kind of embedding of the space of
branched rough paths into a larger space of geometric rough paths, cf.
[HK15, BC19]. The geometry of branched rough paths was further
studied in [TZ20]. It turns out that the space of branched rough
paths also form a continuous field of Banach spaces seen in Section
6.1, cf. [GVRST22].

• Studying the long-time behaviour of the solution to a rough differ-
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ential equation is a natural problem. However, if the solution is non-
Markovian, well established strategies fail. We would like to mention
two approaches here that do not rely on the Markov property and
were quite successful in this context. The first one was invented by
Hairer to study ergodicity of stochastic differential equations driven
by a fractional Brownian motion [Hai05, HO07, HP11, HP13]. Hairer
defines a structure that he calls stochastic dynamical system (SDS) to
study these equations. An SDS has certain similarities to L. Arnold’s
notion of a random dynamical system [Arn98] (see below), but it
is closer to the classical Markovian framework. In Hairer’s theory,
invariant measures can be similarly defined as for classical Markov
processes. Existence and uniqueness of these measures can be proven
with techniques (e.g. the coupling method) that are well-known in
the Markovian world. Other researchers adopted this framework and
studied, for instance, the convergence rate towards the equilibrium
[FP17, DPT19] or used it to study an estimator for the drift coeffi-
cient in an equation driven by a fractional Brownian motion [PTV20].
Another approach is to study the random dynamical system (RDS)
in the sense of L. Arnold [Arn98] that is generated by a stochas-
tic differential equation. A rough differential equations generates an
RDS whenever the driving rough paths valued process has stationary
increments [BRS17]. This is the case, for instance, for the fractional
Brownian motion. In the theory of RDS, different objects can be de-
fined that describe the long time behaviour of the solution to a rough
differential equation. For example, one can study random attractors
[Duc22], random center manifolds [NK21] or random stable and un-
stable manifolds for rough delay equations [GVRS22, GVR21].

• As we already mentioned in Remark 5.11, the signature of a rough
path is an important object that is still studied a lot. One interest-
ing problem is to find an algorithm that reconstructs the path from
a given signature effectively. This question was discussed e.g. in
[LX18, LX17, CDNX17, Gen17]. Due to its generalilty, the signature
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also plays a role in model-free mathematical finance, cf. [LNPA19,
LNPA20, KLA20, BHRS23, CGSF23]. We already mentioned that
the signature is an important object in machine learning and time
series analysis, but we are unable to summarize the corresponding
vast literature in these notes. Instead, we refer the reader to the
overview articles [CK16, LM22].

• We saw in these lecture notes that the Sewing lemma (Lemma 3.2)
is one of the cornerstones in rough paths theory. In the work [Lê20],
Lê proves a stochastic version of it that he called Stochastic sewing
lemma, see also [FH20, Section 4.6]. With the Stochastic sewing
lemma, it is possible to prove that certain Riemann-type sums in-
volving random variables converge to a limit in a stochastic sense,
taking into account stochastic cancellations. For instance, it is well-
known that the Itō-integral that integrates an adapted process with
respect to a Brownian motion can be approximated by Riemann
sums in probability, but this fact cannot be proven with the clas-
sical Sewing lemma that only looks at the regularity of the sample
paths and neglects the probabilistic structure. With the Stochas-
tic sewing lemma, however, this is possible. The Stochastic sewing
lemma proved to be a very helpful tool and could be used in vari-
ous settings, e.g. in the context of the regularization by noise phe-
nomenon [HP21, HL22, Ger23] or for the analysis of numerical meth-
ods for singular SDEs [BDG21, BDG23, DGL23].

Acknowledgements

Both authors would like to thank the organizers of the XXV Brazilian
School of Probability for their hospitality and generosity during our stay
in Campinas.



138 M. Ghani Varzaneh, S. Riedel

References

[Arn98] Ludwig Arnold. Random dynamical systems. Springer Mono-
graphs in Mathematics. Springer-Verlag, Berlin, 1998.

[BC19] Horatio Boedihardjo and Ilya Chevyrev. An isomorphism
between branched and geometric rough paths. Ann. Inst.
Henri Poincaré Probab. Stat., 55(2):1131–1148, 2019.

[BDG21] Oleg Butkovsky, Konstantinos Dareiotis, and Máté Gerenc-
sér. Approximation of SDEs: a stochastic sewing approach.
Probab. Theory Related Fields, 181(4):975–1034, 2021.

[BDG23] Oleg Butkovsky, Konstantinos Dareiotis, and Máté Gerenc-
sér. Optimal rate of convergence for approximations of SPDEs
with nonregular drift. SIAM J. Numer. Anal., 61(2):1103–
1137, 2023.

[BFRS16] Christian Bayer, Peter K. Friz, Sebastian Riedel, and John
Schoenmakers. From rough path estimates to multilevel
Monte Carlo. SIAM J. Numer. Anal., 54(3):1449–1483, 2016.

[BGLY16] Horatio Boedihardjo, Xi Geng, Terry J. Lyons, and Danyu
Yang. The signature of a rough path: uniqueness. Adv. Math.,
293:720–737, 2016.

[BHOZ08] Francesca Biagini, Yaozhong Hu, Bernt Oksendal, and
Tusheng Zhang. Stochastic Calculus for Fractional Brownian
Motion and Applications. Probability and Its Applications.
Springer, 2008.

[BHRS23] Christian Bayer, Paul P. Hager, Sebastian Riedel, and John
Schoenmakers. Optimal stopping with signatures. Ann. Appl.
Probab., 33(1):238–273, 2023.

[BNOT16] F. Baudoin, E. Nualart, C. Ouyang, and S. Tindel. On prob-
ability laws of solutions to differential systems driven by a



Introduction to rough paths theory 139

fractional Brownian motion. Ann. Probab., 44(4):2554–2590,
2016.

[BOT14] Fabrice Baudoin, Cheng Ouyang, and Samy Tindel. Upper
bounds for the density of solutions to stochastic differential
equations driven by fractional Brownian motions. Ann. Inst.
Henri Poincaré Probab. Stat., 50(1):111–135, 2014.

[BOZ15] Fabrice Baudoin, Cheng Ouyang, and Xuejing Zhang. Varad-
han estimates for rough differential equations driven by
fractional Brownian motions. Stochastic Process. Appl.,
125(2):634–652, 2015.

[BRS17] Ismaël Bailleul, Sebastian Riedel, and Michael Scheutzow.
Random dynamical systems, rough paths and rough flows.
J. Differential Equations, 262(12):5792–5823, 2017.

[CDNX17] Jiawei Chang, Nick Duffield, Hao Ni, and Weijun Xu. Sig-
nature inversion for monotone paths. Electron. Commun.
Probab., 22:Paper No. 42, 11, 2017.

[CF10] Thomas Cass and Peter K. Friz. Densities for rough differen-
tial equations under Hörmander’s condition. Ann. of Math.
(2), 171(3):2115–2141, 2010.

[CF19] Ilya Chevyrev and Peter K. Friz. Canonical RDEs and general
semimartingales as rough paths. Ann. Probab., 47(1):420–463,
2019.

[CFV09] Thomas Cass, Peter K. Friz, and Nicolas B. Victoir. Non-
degeneracy of Wiener functionals arising from rough differen-
tial equations. Trans. Amer. Math. Soc., 361(6):3359–3371,
2009.

[CGSF23] Christa Cuchiero, Guido Gazzani, and Sara Svaluto-Ferro.
Signature-based models: theory and calibration. SIAM J.
Financial Math., 14(3):910–957, 2023.



140 M. Ghani Varzaneh, S. Riedel

[Che58] Kuo-Tsai Chen. Integration of paths—a faithful representa-
tion of paths by non-commutative formal power series. Trans.
Amer. Math. Soc., 89:395–407, 1958.

[Che18] Ilya Chevyrev. Random walks and Lévy processes as rough
paths. Probab. Theory Related Fields, 170(3-4):891–932, 2018.

[CHLT15] Thomas Cass, Martin Hairer, Christian Litterer, and Samy
Tindel. Smoothness of the density for solutions to Gaussian
rough differential equations. Ann. Probab., 43(1):188–239,
2015.

[CK16] Ilya Chevyrev and Andrey Kormilitzin. A primer on the
signature method in machine learning. arXiv preprint
arXiv:1603.03788, 2016.

[CL16] Ilya Chevyrev and Terry J. Lyons. Characteristic func-
tions of measures on geometric rough paths. Ann. Probab.,
44(6):4049–4082, 2016.

[CLL13] Thomas Cass, Christian Litterer, and Terry J. Lyons. In-
tegrability and tail estimates for Gaussian rough differential
equations. Ann. Probab., 41(4):3026–3050, 2013.

[CO17] Thomas Cass and Marcel Ogrodnik. Tail estimates for Marko-
vian rough paths. Ann. Probab., 45(4):2477–2504, 2017.

[CO18] Ilya Chevyrev and Marcel Ogrodnik. A support and density
theorem for Markovian rough paths. Electron. J. Probab.,
23:Paper No. 56, 16, 2018.

[CO22] Ilya Chevyrev and Harald Oberhauser. Signature moments to
characterize laws of stochastic processes. Journal of Machine
Learning Research, 23(176):1–42, 2022.



Introduction to rough paths theory 141

[CQ02] Laure Coutin and Zhongmin Qian. Stochastic analysis, rough
path analysis and fractional Brownian motions. Probab. The-
ory Related Fields, 122(1):108–140, 2002.

[Dav07] Alexander M. Davie. Differential equations driven by rough
paths: an approach via discrete approximation. Appl. Math.
Res. Express. AMRX, (2):Art. ID abm009, 40, 2007.

[DGL23] Konstantinos Dareiotis, Máté Gerencsér, and Khoa Lê. Quan-
tifying a convergence theorem of Gyöngy and Krylov. Ann.
Appl. Probab., 33(3):2291–2323, 2023.

[Dix77] Jacques Dixmier. C∗-algebras. North-Holland Publishing
Co., Amsterdam-New York-Oxford, 1977. Translated from
the French by Francis Jellett, North-Holland Mathematical
Library, Vol. 15.

[DNT12] Aurélien Deya, Andreas Neuenkirch, and Samy Tindel. A
Milstein-type scheme without Lévy area terms for SDEs
driven by fractional Brownian motion. Ann. Inst. Henri
Poincaré Probab. Stat., 48(2):518–550, 2012.

[DPT19] Aurélien Deya, Fabien Panloup, and Samy Tindel. Rate
of convergence to equilibrium of fractional driven stochastic
differential equations with rough multiplicative noise. Ann.
Probab., 47(1):464–518, 2019.

[Duc22] Luu Hoang Duc. Random attractors for dissipative systems
with rough noises. Discrete Contin. Dyn. Syst., 42(4):1873–
1902, 2022.

[Eva10] Lawrence C. Evans. Partial differential equations, volume 19
of Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, second edition, 2010.



142 M. Ghani Varzaneh, S. Riedel

[FGGR16] Peter K. Friz, Benjamin Gess, Archil Gulisashvili, and Se-
bastian Riedel. The Jain-Monrad criterion for rough paths
and applications to random Fourier series and non-Markovian
Hörmander theory. Ann. Probab., 44(1):684–738, 2016.

[FH20] Peter K. Friz and Martin Hairer. A Course on Rough Paths
with an introduction to regularity structures, volume XVI of
Universitext. Springer, second edition, 2020.

[FP17] Joaquin Fontbona and Fabien Panloup. Rate of conver-
gence to equilibrium of fractional driven stochastic differential
equations with some multiplicative noise. Ann. Inst. Henri
Poincaré Probab. Stat., 53(2):503–538, 2017.

[FR13] Peter K. Friz and Sebastian Riedel. Integrability of (non-
)linear rough differential equations and integrals. Stoch. Anal.
Appl., 31(2):336–358, 2013.

[FR14] Peter Friz and Sebastian Riedel. Convergence rates for the
full Gaussian rough paths. Ann. Inst. Henri Poincaré Probab.
Stat., 50(1):154–194, 2014.

[FS13] Peter Friz and Atul Shekhar. Doob-Meyer for rough paths.
Bull. Inst. Math. Acad. Sin. (N.S.), 8(1):73–84, 2013.

[FS17] Peter K. Friz and Atul Shekhar. General rough integration,
Lévy rough paths and a Lévy-Kintchine-type formula. Ann.
Probab., 45(4):2707–2765, 2017.

[FV08] Peter K. Friz and Nicolas B. Victoir. On uniformly subelliptic
operators and stochastic area. Probab. Theory Related Fields,
142(3-4):475–523, 2008.

[FV10a] Peter K. Friz and Nicolas B. Victoir. Differential equations
driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab.
Stat., 46(2):369–413, 2010.



Introduction to rough paths theory 143

[FV10b] Peter K. Friz and Nicolas B. Victoir. Multidimensional
stochastic processes as rough paths, volume 120 of Cambridge
Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 2010. Theory and applications.

[FZ18] Peter K. Friz and Huilin Zhang. Differential equations
driven by rough paths with jumps. J. Differential Equations,
264(10):6226–6301, 2018.

[Gen17] Xi Geng. Reconstruction for the signature of a rough path.
Proc. Lond. Math. Soc. (3), 114(3):495–526, 2017.

[Ger23] Máté Gerencsér. Regularisation by regular noise. Stoch. Par-
tial Differ. Equ. Anal. Comput., 11(2):714–729, 2023.

[GOT20] Benjamin Gess, Cheng Ouyang, and Samy Tindel. Density
bounds for solutions to differential equations driven by Gaus-
sian rough paths. J. Theoret. Probab., 33(2):611–648, 2020.

[GOT22] Xi Geng, Cheng Ouyang, and Samy Tindel. Precise local esti-
mates for differential equations driven by fractional Brownian
motion: hypoelliptic case. Ann. Probab., 50(2):649–687, 2022.

[GOT23] Xi Geng, Cheng Ouyang, and Samy Tindel. Precise local esti-
mates for differential equations driven by fractional Brownian
motion: elliptic case. J. Theoret. Probab., 36(3):1341–1367,
2023.

[Gub04] Massimiliano Gubinelli. Controlling rough paths. J. Funct.
Anal., 216(1):86–140, 2004.

[Gub10] Massimiliano Gubinelli. Ramification of rough paths. J. Dif-
ferential Equations, 248(4):693–721, 2010.

[GVR21] Mazyar Ghani Varzaneh and Sebastian Riedel. A dynamical
theory for singular stochastic delay differential equations ii:



144 M. Ghani Varzaneh, S. Riedel

nonlinear equations and invariant manifolds. Discrete Contin.
Dyn. Syst., 26(8):4587–4612, 2021.

[GVRS22] M. Ghani Varzaneh, S. Riedel, and M. Scheutzow. A dynami-
cal theory for singular stochastic delay differential equations I:
linear equations and a multiplicative ergodic theorem on fields
of Banach spaces. SIAM J. Appl. Dyn. Syst., 21(1):542–587,
2022.

[GVRST22] Mazyar Ghani Varzaneh, Sebastian Riedel, Alexander
Schmeding, and Nikolas Tapia. The geometry of controlled
rough paths. arXiv preprint arXiv:2203.05946, 2022.

[Hai05] Martin Hairer. Ergodicity of stochastic differential equa-
tions driven by fractional Brownian motion. Ann. Probab.,
33(2):703–758, 2005.

[Hai13] Martin Hairer. Solving the KPZ equation. Ann. of Math. (2),
178(2):559–664, 2013.

[Hai14] Martin Hairer. A theory of regularity structures. Invent.
Math., 198(2):269–504, 2014.

[Hai15] Martin Hairer. Introduction to regularity structures. Braz.
J. Probab. Stat., 29(2):175–210, 2015.

[HH10] Keisuke Hara and Masanori Hino. Fractional order Taylor’s
series and the neo-classical inequality. Bull. Lond. Math. Soc.,
42(3):467–477, 2010.

[HK15] Martin Hairer and David Kelly. Geometric versus non-
geometric rough paths. Ann. Inst. Henri Poincaré Probab.
Stat., 51(1):207–251, 2015.

[HL10] Ben Hambly and Terry J. Lyons. Uniqueness for the signature
of a path of bounded variation and the reduced path group.
Ann. of Math. (2), 171(1):109–167, 2010.



Introduction to rough paths theory 145

[HL22] Fabian A. Harang and Chengcheng Ling. Regularity of local
times associated with Volterra-Lévy processes and path-wise
regularization of stochastic differential equations. J. Theoret.
Probab., 35(3):1706–1735, 2022.

[HO07] M. Hairer and A. Ohashi. Ergodic theory for SDEs with
extrinsic memory. Ann. Probab., 35(5):1950–1977, 2007.

[Hör67] Lars Hörmander. Hypoelliptic second order differential equa-
tions. Acta Math., 119:147–171, 1967.

[HP11] M. Hairer and N. S. Pillai. Ergodicity of hypoelliptic SDEs
driven by fractional Brownian motion. Ann. Inst. Henri
Poincaré Probab. Stat., 47(2):601–628, 2011.

[HP13] Martin Hairer and Natesh S. Pillai. Regularity of laws and
ergodicity of hypoelliptic SDEs driven by rough paths. Ann.
Probab., 41(4):2544–2598, 2013.

[HP21] Fabian Andsem Harang and Nicolas Perkowski. C∞-
regularization of ODEs perturbed by noise. Stoch. Dyn.,
21(8):Paper No. 2140010, 29, 2021.

[IN21] Yuzuru Inahama and Nobuaki Naganuma. Asymptotic ex-
pansion of the density for hypoelliptic rough differential equa-
tion. Nagoya Math. J., 243:11–41, 2021.

[Ina16] Yuzuru Inahama. Short time kernel asymptotics for rough
differential equation driven by fractional Brownian motion.
Electron. J. Probab., 21:Paper No. 34, 29, 2016.

[KK71] Takayuki Kawada and Norio Kôno. A remark on nowhere dif-
ferentiability of sample functions of Gaussian processes. Proc.
Japan Acad., 47(suppl, suppl. II):932–934, 1971.



146 M. Ghani Varzaneh, S. Riedel

[KLA20] Jasdeep Kalsi, Terry Lyons, and Imanol Perez Arribas. Opti-
mal execution with rough path signatures. SIAM J. Financial
Math., 11(2):470–493, 2020.

[LCL07] Terry J. Lyons, Michael Caruana, and Thierry Lévy. Differ-
ential equations driven by rough paths, volume 1908 of Lecture
Notes in Mathematics. Springer, Berlin, 2007. Lectures from
the 34th Summer School on Probability Theory held in Saint-
Flour, July 6–24, 2004, With an introduction concerning the
Summer School by Jean Picard.

[Lê20] Khoa Lê. A stochastic sewing lemma and applications. Elec-
tron. J. Probab., 25:Paper No. 38, 55, 2020.

[Lej06] Antoine Lejay. Stochastic differential equations driven by pro-
cesses generated by divergence form operators. I. A Wong-
Zakai theorem. ESAIM Probab. Stat., 10:356–379, 2006.

[Lej08] Antoine Lejay. Stochastic differential equations driven by
processes generated by divergence form operators. II. Con-
vergence results. ESAIM Probab. Stat., 12:387–411, 2008.

[LM22] Terry J. Lyons and Andrew D. McLeod. Signature methods
in machine learning. arXiv preprint arXiv:2206.14674, 2022.

[LNPA19] Terry Lyons, Sina Nejad, and Imanol Perez Arribas. Numeri-
cal method for model-free pricing of exotic derivatives in dis-
crete time using rough path signatures. Appl. Math. Finance,
26(6):583–597, 2019.

[LNPA20] Terry Lyons, Sina Nejad, and Imanol Perez Arribas. Non-
parametric pricing and hedging of exotic derivatives. Appl.
Math. Finance, 27(6):457–494, 2020.

[LP18] Chong Liu and David J. Prömel. Examples of Itô càdlàg rough
paths. Proc. Amer. Math. Soc., 146(11):4937–4950, 2018.



Introduction to rough paths theory 147

[LQ02] Terry J. Lyons and Zhongmin Qian. System control and rough
paths. Oxford Mathematical Monographs. Oxford University
Press, Oxford, 2002. Oxford Science Publications.

[LQZ02] M. Ledoux, Z. Qian, and T. Zhang. Large deviations and sup-
port theorem for diffusion processes via rough paths. Stochas-
tic Process. Appl., 102(2):265–283, 2002.

[LS11] Xue-Mei Li and Michael Scheutzow. Lack of strong com-
pleteness for stochastic flows. Ann. Probab., 39(4):1407–1421,
2011.

[LT19] Yanghui Liu and Samy Tindel. First-order Euler scheme for
SDEs driven by fractional Brownian motions: the rough case.
Ann. Appl. Probab., 29(2):758–826, 2019.

[LX17] Terry J. Lyons and Weijun Xu. Hyperbolic development and
inversion of signature. J. Funct. Anal., 272(7):2933–2955,
2017.

[LX18] Terry J. Lyons and Weijun Xu. Inverting the signature of a
path. J. Eur. Math. Soc. (JEMS), 20(7):1655–1687, 2018.

[Lyo94] Terry J. Lyons. Differential equations driven by rough signals.
I. An extension of an inequality of L. C. Young. Math. Res.
Lett., 1(4):451–464, 1994.

[Lyo98] Terry J. Lyons. Differential equations driven by rough signals.
Rev. Mat. Iberoamericana, 14(2):215–310, 1998.

[Mal78] Paul Malliavin. Stochastic calculus of variation and hypoel-
liptic operators. In Proceedings of the International Sympo-
sium on Stochastic Differential Equations (Res. Inst. Math.
Sci., Kyoto Univ., Kyoto, 1976), Wiley-Intersci. Publ., pages
195–263. John Wiley & Sons, New York-Chichester-Brisbane,
1978.



148 M. Ghani Varzaneh, S. Riedel

[MVN68] Benoit B. Mandelbrot and John W. Van Ness. Fractional
Brownian motions, fractional noises and applications. SIAM
Rev., 10:422–437, 1968.

[Nag15] Nobuaki Naganuma. Asymptotic error distributions of the
Crank-Nicholson scheme for SDEs driven by fractional Brow-
nian motion. J. Theoret. Probab., 28(3):1082–1124, 2015.

[NK21] Alexandra Neamţu and Christian Kuehn. Rough center man-
ifolds. SIAM J. Math. Anal., 53(4):3912–3957, 2021.

[Nua06] David Nualart. The Malliavin calculus and related topics.
Probability and its Applications (New York). Springer-Verlag,
Berlin, second edition, 2006.

[PTV20] Fabien Panloup, Samy Tindel, and Maylis Varvenne. A
general drift estimation procedure for stochastic differential
equations with additive fractional noise. Electron. J. Stat.,
14(1):1075–1136, 2020.

[RR22] M. Redmann and S. Riedel. Runge-Kutta methods for rough
differential equations. J. Stoch. Anal., 3(4):Art. 6, 24, 2022.

[RY99] Daniel Revuz and Marc Yor. Continuous martingales and
Brownian motion, volume 293 of Grundlehren der mathema-
tischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences]. Springer-Verlag, Berlin, third edition, 1999.

[Sch54] Laurent Schwartz. Sur l’impossibilité de la multiplication des
distributions. C. R. Acad. Sci. Paris, 239:847–848, 1954.

[Str03] Robert S. Strichartz. A guide to distribution theory and
Fourier transforms. World Scientific Publishing Co., Inc.,
River Edge, NJ, 2003. Reprint of the 1994 original [CRC,
Boca Raton; MR1276724 (95f:42001)].



Introduction to rough paths theory 149

[TZ20] Nikolas Tapia and Lorenzo Zambotti. The geometry of the
space of branched rough paths. Proc. Lond. Math. Soc. (3),
121(2):220–251, 2020.

[You36] Laurence C. Young. An inequality of the Hölder type, con-
nected with Stieltjes integration. Acta Math., 67(1):251–282,
1936.


	Introduction
	Notation

	Motivation: Fractional Brownian motion
	Sewing lemma and Young's integral
	The Sewing lemma
	Young's integral and differential equations driven by Hölder paths
	Limitations of the Young integral

	Rough paths and linear equations
	Iterated integrals and rough paths
	Linear equations driven by a rough path
	Brownian motion as a rough path

	The space of rough paths
	Metrics on rough paths spaces and separability
	Shuffles and the signature

	Controlled paths and rough integral
	Controlled paths as a field of Banach spaces

	Rough differential equations
	Rough differential equations driven by a Brownian motion
	Rough differential equations driven by a fractional Brownian motion.

	Discussion and Outlook

