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1 Introduction

In recent years, there has been a large number of works on singular
stochastic partial differential equations, prompted notably by the rapid
development of the theories of regularity structures [16, 5, 7, 4] (see also

e-mail: lucas.broux@mis.mpg.de
e-mail: francesco.caravenna@unimib.it
e-mail: zambotti@lpsm.paris

3

http://doi.org/10.21711/231766362023/rmc582
https://orcid.org/0000-0002-7877-1273
https://orcid.org/0000-0002-3028-0993
mailto:lucas.broux@mis.mpg.de
mailto:francesco.caravenna@unimib.it
mailto:zambotti@lpsm.paris


4 L. Broux, F. Caravenna and L. Zambotti

[11, 1, 2] for monographs on the theory and [25, 21, 22] for a tree-free
approach) and of paracontrolled calculus [13, 14], culminating into a
complete solution theory for all subcritical semilinear singular stochastic
partial differential equations.

More recently, the authors of this article have tried to isolate some of
the key analytic results of the theory of regularity structures – namely
the reconstruction theorem and the multi-level Schauder estimates [6,
3] – reformulating those theorems as results in distribution theory as
independently as possible from the formalism of regularity structures.

In this article, we illustrate those ideas with the following “Poisson-type”
stochastic partial differential equation as motivation:

(1 − ∆)u = (a+ b u)ξ, (E)

where a, b ∈ R are given (constant) coefficients, u = u(x) with x ∈ Td, and
ξ is Gaussian white noise in Td, d ∈ {1, 2}.

In dimension d = 1, the equation (E) can be discussed in classical
Hölder spaces Cα (we recall their definition in Appendix A.2). However,
already in dimension d = 2, the equation is singular and even resists
the Da Prato–Debussche trick introduced in [9] (see Remark 3.1 below
though). Still, it is simple enough so that it does not require the full
machinery of regularity structures and can in fact be renormalised “by
hand”. The purpose of this article is to demonstrate how to perform
this renormalisation using the techniques of regularity structures [16],
while keeping the presentation as elementary and pedagogical as possible:
in particular, we will not formally define what a regularity structure is,
although we will introduce the crucial concepts of models and modelled
distributions. On the other hand, we hope to convey that the approach we
present is not specific to equation (E), but is far more general.

More precisely, in the case of dimension d = 1 we will prove the
following result.

Theorem 1.1 (Dimension d = 1). Let ξ be a Gaussian white noise on
T and a ∈ R. There exists a random constant b0(ω) > 0 depending
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on ξ(ω), such that for any (random) b ∈ (0, b0), there exists a unique
solution u ∈ C

3
2 −(T) to (E) in the distributional sense, where the product

u ξ is understood as the canonical “Young” product of Hölder distributions,
defined in Theorem A.12 below.

This is in contrast to the case of dimension d = 2, where there is no
“classical” solution anymore, and a “renormalisation” of the equation has
to be introduced. Indeed, we will show:

Theorem 1.2 (Dimension d = 2). Let ξ be a Gaussian white noise on
T2, a ∈ R, and ρ ∈ C∞

c (R2) with
∫
ρ = 1. There exists a random constant

b0(ω) > 0 depending on ξ(ω), as well as a diverging (deterministic) family
of constants (cϵ)ϵ>0 (depending on ρ) with

cϵ = − 1
2π log |ϵ| +Oϵ→0(1),

such that for any (random) b ∈ (0, b0), there is a unique solution uϵ ∈
C∞(T2) to

(1 − ∆)uϵ = (a+ b uϵ)(ξ ∗ ρϵ − b cϵ), (1.1)

and (uϵ)ϵ>0 converges in probability in the Hölder space C1−(T2) to a
random function u which does not depend on the choice of ρ. In (1.1), we
have denoted ρϵ(·) := ϵ−2ρ(·/ϵ) the L1-scaling of ρ at scale ϵ.

We note that in Theorem 1.2 equation (E) has to be modified, or in
fancier terms renormalised, and must be replaced with (1.1), for a limit of
the smooth approximations uϵ to exist. We discuss in Section 5.4 below
this crucial point.

This article is mostly self-contained in the sense that we will only
admit the proofs of the major, well-documented, theorems (Reconstruction
Theorem 4.7; multilevel Schauder estimates Theorem 4.25; Kolmogorov
Theorem 5.1 for models) and of the most technical calculations when they
are already performed somewhere else in the literature.

Finally, let us mention that elliptic SPDEs similar to (E) were previously
studied in the context of the so-called Anderson hamiltonian, i.e. the
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random operator −∆ + ξ: see e.g. [20] where the corresponding resolvent
map g 7→ (−∆ + ξ + c)−1g =: f is constructed by solving the elliptic
equation (c− ∆)f = g − fξ for c ∈ R large enough.

Structure

This paper is organised as follows. In Section 2, we discuss the case of
the dimension d = 1 and prove Theorem 1.1. In Section 3, we show that
the approach of d = 1 does not generalise to d = 2 and discuss heuristics
to repair the corresponding problems. In Section 4, we discuss the analytic
aspects of the theory of regularity structures applied to (E), introducing the
notions of germs, models, modelled distributions. In Section 5, we discuss
the probabilistic aspects of the theory of regularity structures applied to
(E), i.e. the question of renormalisation.

Finally, we have gathered in Appendix A a self-contained “toolbox”,
where we recall the important definitions and properties of distributions,
Hölder regularity, and (Gaussian) white noise.

Acknowledgements
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2 The equation in dimension d = 1

In this section, we warm up by recalling some classical tools and
techniques used to solve the equation (E) in dimension d = 1.

Let us first recall the basic analytic ingredients which we will use in
the remainder of this article (the reader unfamiliar with them may consult
Appendix A below, where we motivate and introduce them in more detail):
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1. We will work in the space D′(Td) of periodic distributions, and will
quantify their regularity in the Hölder scale

(
Cα(Td)

)
α∈R. For α > 0,

those spaces contain actual functions, while for α ≤ 0 their elements
are typically only distributions.

2. The Hölder scale is compatible with multiplication in the following
sense: if (and only if) α+ β > 0, there exists a canonical continuous
bilinear multiplication map Cα(Td) × Cβ(Td) → Cmin(α,β)(Td) extend-
ing the pointwise multiplication on C∞ × C∞ (see Theorem A.12 of
“Young multiplication”).

3. The operator 1 − ∆ may be inverted in D′(Td) by taking the con-
volution with its fundamental solution G on Rd, given explicitly
by

G(x) =


1
2e

−|x| (for d = 1),
1

2πK0(|x|) (for d = 2),
(2.1)

where K0 is explicit in terms of Bessel functions, diverges logarith-
mically at 0 and decays exponentially at infinity. Furthermore, the
Hölder scale is compatible with convolution against G, in the sense
that for all α ∈ R, G ∗ · : Cα(Td) → Cα+2(Td) (see the “Schauder
estimates”, Theorem A.20).

4. Finally, our main probabilistic object is Gaussian white noise, i.e.
any linear isometry ξ : L2(Td) → L2(Ω,F ,P). By a Kolmogorov-type
continuity theorem for distributions (Theorem A.26), one can see
that up to a modification, the sample paths of ξ are distributions of
Hölder regularity C− d

2 −κ(Td) for any κ > 0.

With those ingredients in mind, fix a, b ∈ R and a realisation ξ ∈
C− 1

2 −κ(Td=1) of a Gaussian white noise (where κ > 0 can be taken arbi-
trarily small), so that the equation we want to solve, u− ∆u = (a+ bu)ξ,
is equivalent to

u = G ∗ ((a+ bu)ξ).
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The strategy is to perform a Picard iteration in a Hölder space of suit-
able exponent: consider the sequence (u(n))n∈N0 (where N0 = {0, 1, 2, . . .})
defined by

u(0) = 0, u(n+1) = G ∗ ((a+ bu(n))ξ). (2.2)

Now by the compatibility of the Hölder scale with multiplication and
convolution, we hope to have defined a Cauchy sequence in some Hölder
space. Explicitly, since G ∗ ξ ∈ C

3
2 −κ(T), we have

u(0) := 0 ∈ C∞,

u(1) := G ∗ ((a+ bu(0))ξ) = aG ∗ ξ ∈ C
3
2 −κ(T),

u(2) := G ∗ ((a+ bu(1))ξ) ∈ C
3
2 −κ(T),

where the regularity of u(2) is guaranteed by an application of Young
multiplication (Theorem A.12) to u(1) ∈ C

3
2 −κ(T) with the distribution

ξ ∈ C− 1
2 −κ(T), followed by the Schauder estimates (Theorem A.20) to

the resulting u(1)ξ ∈ C− 1
2 −κ(T). Thus the sequence remains in the space

C
3
2 −κ(T). Let us now prove Theorem 1.1.

Proof of Theorem 1.1. Applying Theorems A.12 and A.20, the iteration
map

P : C
3
2 −κ(T) −→ C

3
2 −κ(T)

u 7−→ G ∗ ((a+ bu)ξ),
(2.3)

is well-defined and there exists a constant C > 0 such that

∥P(u) − P(v)∥
C

3
2 −κ(T)

≤ C b ∥ξ∥C−1−κ(T)∥u− v∥
C

3
2 −κ(T)

,

thus for b small enough in function of (the random variable) ∥ξ∥C−1−κ(T),
the map P is a contraction in the Banach space C

3
2 −κ(T), yielding the

announced fixed-point.

3 The equation in dimension d = 2: heuristics

We now turn to the dimension d = 2, and so we fix a realisation
ξ ∈ C−1−κ(Td=2) of a Gaussian white noise (where κ > 0 can be taken
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arbitrarily small). Fix also G = K + R a decomposition of the fundamental
solution (2.1) as the sum of a (compactly supported) 2-regularising kernel
K and a Schwartz function R (see Appendix A.4 for a detailed discussion on
convolution in Hölder spaces). For convenience, we will omit the remainder
R in the following heuristic discussion, as it will not be problematic to
treat later on. Thus, in this section we consider the fixed-point problem

u = K ∗ ((a+ bu)ξ).

Let us mention at this point that similar presentations of the heuristics
discussed in this section can be found in [15, Section 3.2], [8, Section 1.1.3].

3.1 Failure of Picard iteration in Hölder spaces

It is natural to first attempt the classical Picard iteration in the spaces
of Hölder distributions, as we did in Section 2: we may define

u(0) := 0 ∈ C∞,

u(1) := K ∗ ((a+ bu(0))ξ) = aK ∗ ξ ∈ C1−κ(T2),

however at this point it is not possible anymore to define

u(2) := K ∗ ((a+ bu(1))ξ), (3.1)

in a canonical way. This is because the regularities of u(1) ∈ C1−κ(Td)
and ξ ∈ C−1−κ(T2) sum to −2κ < 0, whence the product u(1)ξ can not be
canonically defined by Theorem A.12.

Note that by exploiting the randomness in ξ we might hope to be able
to give a meaning to u(1)ξ via stochastic techniques. Still, this is not a
viable strategy because more and more complicated ill-defined products of
this type will appear at every step of the Picard iteration. Thus, we look
for other ideas to solve (E).

3.2 Failure of the Da Prato–Debussche trick

One possible approach, called the “Da Prato–Debussche trick” after
[9], is to consider the new function v := u − u(1), and try to solve for v.
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The hope is that all the products appearing in the Picard iteration of v
are well-defined (except possibly for a finite number of them, treatable by
stochastic techniques). The interpretation is that u(1) should be the term
of “worst regularity” in the system, thus removing it from the equation
might possibly improve the situation. The new function v itself satisfies a
fixed-point equation: since

v = u− u(1) = K ∗ ((a+ bu)ξ − aK ∗ ξ = bK ∗ (uξ),

then v satisfies
v = bK ∗ (u(1)ξ) + bK ∗ (vξ). (3.2)

Of course, the product u(1)ξ is still classically ill-defined, but we may
hope to give it a canonical meaning by stochastic techniques (since u(1) is
given as an explicit function of ξ). Now if the Picard iteration on v could
furthermore be performed in a suitable Hölder space, then the original
equation could be solved, by setting u := v + u(1). Thus, let us try to
perform the Picard iteration corresponding to (3.2): the first terms are

v(0) := 0 ∈ C∞,

v(1) := bK ∗ (u(1)ξ) + bK ∗ (v(0)ξ) = bK ∗ (u(1)ξ) ∈ C1−κ(T2),

but here we run into the same problem as above for u, since the multipli-
cation Theorem A.12 does not allow the term

u(2) := bK ∗ (u(1)ξ) + bK ∗ (v(1)ξ),

to be canonically well-defined, as the regularities of the unknown v(1) ∈
C1−κ(Td) and ξ ∈ C−1−κ(T2) sum to −2κ < 0. It is tempting to try and
iterate again and again this Da Prato–Debussche technique. However, one
quickly realises that this always results in the same problem: indeed, the
first step of the Picard iteration never gives a function of regularity better
than 1 − κ, which is not enough for the multiplication with ξ in the second
step.
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Remark 3.1 (Multiplicative Da Prato–Debussche trick). One reason
why the Da Prato–Debussche trick presented above fails here is that the
equation under consideration has multiplicative noise (the term uξ appears
in its right-hand side). Still, in such cases similar techniques can be
implemented, see [17], but the “Ansatz” u = v + Y has to be replaced by
a more appropriate one. In our case, we may make the “multiplicative
Ansatz” u = veY , where Y := bG ∗ ξ ∈ C1−κ(T2) is the solution of the
linearised equation

(1 − ∆)Y = b ξ,

then a direct calculation shows that if u solves (1 − ∆)u = (a+ bu)ξ, then
v := ue−Y solves (at least formally)

(1 − ∆)v = (Y + (∇Y )2)v + 2∇Y · ∇v + aξe−Y . (3.3)

One observes by going through the first Picard iterates that this is still
not sufficient, but we may iterate the trick because (3.3) now has additive
noise: specifically, defining w by v = w + Z, where Z ∈ C1−κ(T2) solves

(1 − ∆)Z = aξe−Y ,

we get the following equation on w:

(1 − ∆)w = (Y + (∇Y )2)w + 2∇Y · ∇w +
(
Z(Y + (∇Y )2) + ∇Z · ∇Y

)
,

for which we can see that a Picard iteration should be possible in w ∈ C2−2κ:
our solution u is then given by u := (w+Z)eY . Of course, the argument just
sketched still requires that we should give a meaning to the few ill-defined
products which appear, namely here:

(∇Y )2, ξe−Y , ∇Z · ∇Y.

Note also that this technique is very specific to the fact that our
equation (E) displays a nonlinearity of the form uξ: in particular it is not
clear how it would generalize if we replaced it by F (u)ξ for some F . On
the other hand, the approach of regularity structures which we present
below is more general, and it is suited to such nonlinearities (provided F

is sufficiently smooth); see section 5.6 below.
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3.3 The idea of germs

To summarise the discussion of the previous sections, we are confronted
with the problem that multiplying distributions of regularity α and β gives
(when it exists i.e. when α+ β > 0) a distribution of regularity min(α, β):
this is too low in general. This is also a very global statement. On the
other hand, we can make the following local remark: the multiplication of
functions which behave at a point x at order α resp. β gives a function
which behaves at x at order α+ β, and note that α+ β > min(α, β) if at
least one among α, β is positive. To illustrate this, take functions f, g of
Hölder regularity respectively α, β ∈ (0, 1), then

|f(y)g(y) − f(x)g(x)| ≲ |y − x|min(α,β),

but: |f(y) − f(x)||g(y) − g(x)| ≲ |y − x|α+β. (3.4)

The heuristic idea is now that if we could exploit this improved expo-
nent, then we may possibly “close the loop” of the Picard iteration in a
satisfactory way. Of course, this will require to work with new objects, as
the left-hand side of (3.4) displays the increments of f and g, indexed by
a base point x.

Let us revisit the Picard iteration (2.2) with this idea: we know by
Schauder estimates (Theorem A.20) that

u(1) = aK ∗ ξ ∈ C1−κ,

is 1−κ Hölder. Thus if we want to exploit optimally this regularity around
some given point x ∈ R2, the increment K ∗ ξ(·) − K ∗ ξ(x) should appear:
by substracting and adding K ∗ ξ(x), we rewrite

u(1) = a(K ∗ ξ − K ∗ ξ(x)) + aK ∗ ξ(x), (3.5)

where K ∗ ξ − K ∗ ξ(x) vanishes at order 1 − κ around x. Now the second
Picard iterate (3.1) is

u(2) = abK ∗ ((K ∗ ξ − K ∗ ξ(x))ξ) + (a+ abK ∗ ξ(x))K ∗ ξ. (3.6)
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Of course, here there is still an undefined product (K∗ξ−K∗ξ(x))ξ, but
with stochastic techniques we might expect to be able to give a meaning
to it in such a way that it should vanish around x at order (1 − κ) +
(−1 − κ) i.e. −2κ (where here we sum the regularities instead of taking
their minimum because of the observation (3.4)). We can continue this
process by convolving this term with K, substracting its Taylor expansion
to exploit the regularity around x, writing the next Picard iterate, and so
on. The important point is the following: iterating this process suggests
that the solution u is described around x by a local expansion, of the form

u(y) =
∑
i∈N0

ui(x)Πi
x(y),

where the Πi
x are explicit and vanish at a known order, say αi, around x,

and where the family (αi)i∈N0 is locally finite (in the sense that (αi)i∈N0 ∩B
is finite for any bounded set B ⊂ R) and bounded from below. In fact, it
will be sufficient to cut the expansion at a certain order γ (to be determined)
and to describe the solution u locally around x by the finite expansion

u(y) =
∑

αi<γ

ui(x)Πi
x(y) +Rx(y), (3.7)

where Rx vanishes at order γ around x. Furthermore, it turns out that the
only objects which possibly require a stochastic treatment are the Πi

x(y):
but this family is explicit and finite (in fact only those with αi ≤ 0 are
concerned).

The conclusion of this heuristic discussion is that it should be beneficial
to start working at the level of local approximations of the distributions of
interests, which we will call germs. In the next section we come back to (3.7)
in more detail and show that it can be interpreted as a generalised Taylor
expansion of the solution u with respect to the family of distributions
(Πi

x)i.

3.4 Taylor expansion

One of the main ideas of regularity structures and rough paths is to
formulate a differential equation as a local finite difference equation. For
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example, the Itô SDE

Xt = X0 +
∫ t

0
σ(Xs) dBs, t ≥ 0,

where (Bt)t≥0 is a Brownian motion in Rd, σ = Rk → Rk ⊗ Rd is smooth,
and X : [0, T ] → Rk, can be reformulated as follows

Xt −Xs −σ(Xs)(Bt −Bs) − ∇σ(Xs)σ(Xs)
∫ t

s
(Br −Bs) ⊗ dBr = o(t− s),

uniformly for 0 ≤ s ≤ t ≤ T . Remarkably, the latter formulation is
equivalent to the above SDE [10].

Now we want to show how a similar approach is possible for the PDE
(E) on Rd. For the remainder of this section, assume for simplicity that ξ
is smooth (e.g. a smooth approximation of an actual white noise). We fix
a base point x ∈ Rd and we write for y ∈ Rd

u(y) = K ∗ ((a+ bu)ξ) (y),

so that we obtain

u(y) = u(x) + u(y) − u(x)

= u(x) + K ∗ ((a+ bu)ξ) (y) − u(x)

= u(x) + K ∗ ((a+ bu)ξ) (y) − K ∗ ((a+ bu)ξ) (x).

Now we use again u = u(x) + u− u(x) and we obtain

u(y) =u(x) + K ∗ ((a+ b(u(x) + u− u(x)))ξ) (y)

− K ∗ ((a+ b(u(x) + u− u(x))ξ) (x)

=u(x) + (a+ bu(x)) (K ∗ ξ(y) − K ∗ ξ(x)) +

+ bK ∗ ((u− u(x))ξ) (y)︸ ︷︷ ︸
fx(y)

− bK ∗ ((u− u(x))ξ) (x)︸ ︷︷ ︸
fx(x)

.

Consider two symbols1 1 and and set

1x(y) := 1, x(y) := K ∗ ξ(y) − K ∗ ξ(x). (3.8)
1We use the color blue for some objects viewed as abstract symbols, but only in order

to enhance the readability of some expressions.
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Then the above expansion can be rewritten

u(y) = u(x) + (a+ bu(x)) (K ∗ ξ(y) − K ∗ ξ(x))︸ ︷︷ ︸
x(y)

+ fx(y) − fx(x)︸ ︷︷ ︸
Rx(y)

= u(x) 1x(y) + (a+ bu(x)) x(y) +Rx(y).

This is a generalised Taylor expansion of the solution u, where {1x, x} are
our monomials, and {u(x), (a+ bu(x))} their respective coefficients; on the
other hand Rx is a remainder. Note that

Rx(y) = fx(y) − fx(x), fx(y) := bK ∗ ((u− u(x))ξ) (y). (3.9)

Since y 7→ fx(y) is smooth, then we have the bound

|Rx(y)| ≲ |x− y|,

uniformly for x, y in compact sets.
Suppose now that we want to continue the expansion and obtain an

even smaller remainder. At this stage it will be convenient to slightly
change our notations in order to write the obtained expressions as functions
of symbols 1, , etc. Precisely, set

Πx(1)(y) := 1x(y) = 1, Πx( )(y) := x(y) = K ∗ ξ(y) − K ∗ ξ(x),

and introduce
Πx(Xi)(y) := yi − xi, i = 1, 2,

then we want to continue the expansion:

u(y) = u(x) Πx(1) + (a+ bu(x)) Πx( )(y)

+ C1Πx(X1)(y) + C2Πx(X2)(y) +Rx(y)

with

Rx(y) = fx(y) − fx(x) − C1(y1 − x1) − C2(y2 − x2).
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In order to make Rx(y) smaller than |y − x|1+κ, we are forced to choose
Ci = ∂ifx(x) so that

Rx(y) = fx(y) − fx(x) −
2∑

i=1
∂ifx(x) (yi − xi).

Finally we have obtained the following generalised Taylor expansion of the
solution to (E)

u(y) = u(x) Πx(1)(y) + (a+ bu(x)) Πx( )(y)

+
2∑

i=1
∂ifx(x) Πx(Xi)(y) +Rx(y), (3.10)

where the remainder Rx is expected to satisfy |Rx(y)| ≲ |y − x|1+κ with
κ > 0, uniformly over x, y in compact sets.

At this point, we have arrived at the following insight: solutions to (E)
with smooth noise enjoy the structure of a generalized Taylor expansion

u(y) =
∑

k

ck(u)(x)Πk
x(ξ)(y) +O(|y − x|1+κ), (3.11)

where the coefficients ck are functions of u, while the monomials Πk
x are

explicit functions only of the noise ξ: as we have seen, they can be deduced
from (E) by a recursive procedure. The interest of (3.11) is that we may
hope for this formulation to be “stable” in some sense at the limit where
the smooth noise ξ goes to an actual white noise. The programme of
solving (E) can now be pursued in two steps:

1. Giving a suitable well-posedness theory for equations whose solutions
are further constrained to satisfy a local expansion of the form (3.11).
The key point will be the continuity of the solution map (Πk(ξ))k 7→ u

in an appropriate distributional topology. This is the analytic part
of the theory, which we discuss in Section 4.

2. Giving a suitable sense to the the family of Πk
x at the limit where ξ

is an actual white noise: this requires a stochastic correction, called
renormalisation. It is the probabilistic part of the theory, which we
discuss in Section 5.
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As it is often the case with Taylor expansions, in the following we
ignore the remainder and we concentrate on the other terms of the sum.
Regularity structures are based on the two following approaches to such
sums:

1. One can consider a germ, namely a family of distributions (generalised
functions) on R2 and indexed by x ∈ R2, which in this case takes the
form Fx = Fx(y) with

Fx := u(x) Πx(1) + (a+ bu(x)) Πx( ) +
2∑

i=1
∂ifx(x) Πx(Xi), (3.12)

see Section 4.1.

2. One can separate the family of monomials {Πx(1),Πx( ),Πx(Xi), . . .}
from the respective coefficients {u(x), (a+ bu(x)), ∂ifx(x), . . .}, and
define

Ux := u(x) 1 + (a+ bu(x)) +
2∑

i=1
∂ifx(x)Xi, (3.13)

which is an element of the vector space generated by {1, , Xi, . . .},
see Section 4.3. The relation between the two objects is given by the
formula Fx = Πx(Ux).

4 The equation in dimension d = 2: analytic as-
pects

4.1 Germs of distributions and their properties

We have introduced in (3.12) a first example of germ, a notion that we
now make precise.

Definition 4.1 (Germ). A germ2 is a family of distributions (Fx)x∈Rd ⊂
D′(Rd).

2There is another notion of “germ” in topology, which does not coincide with this
one. Still, we will use this terminology in the remainder of this article.
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For technical reasons (which appear in the proofs of Theorems 4.7
and 4.12), we will also impose the (always satisfied in practice) constraint
that for each φ ∈ C∞

c , the map x 7→ Fx(φ) should be measurable.

Definition 4.2 (Periodic germ). We say that a germ (Fx)x∈Rd is perodic
of period a ∈ Rd if for all x ∈ Rd, Fx+a ◦ τa = Fx.

Example 4.3. We see a germ as a family of local approximations. Let us
collect some first examples:

1. If f ∈ D′(Rd) is a distribution, one can of course define a constant
germ Fx := f , which is periodic of period a ∈ Rd if and only if f is.

2. For k ∈ Nd
0 one can define the corresponding monomial germ on

x, y ∈ Rd by Fx(y) := (y−x)k, which is periodic of period a for every
a ∈ Rd.

3. If f is a locally γ-Hölder function for some γ ∈ R+ \ N0, one can
define its Taylor germ on x, y ∈ Rd by

Fx(y) :=
∑

|k|≤γ

f (k)(x)
k! (y − x)k,

which is periodic of period a ∈ Rd as soon as f is.

4. In Section 3.4 we have introduced, for x, y ∈ R2,

Πx(1) := 1, Πx(Xi)(y) := yi −xi, Πx( )(y) := K ∗ ξ(y) − K ∗ ξ(x).

Note that the first two are monomial germs, while the third one is
the Taylor germ of the C1−κ(Td) function K ∗ ξ. We will see later
that the equation (E) gives rise to other “basis germs” Π(τ) which
are neither monomial germs nor Taylor germs, see e.g. Table 4.1.

5. A last example from Section 3.4 has been introduced in (3.12): if u
is solution to (E) with a smooth ξ, then we saw that the germ

Fx := u(x) Πx(1) + (a+ bu(x)) Πx( ) +
2∑

i=1
∂ifx(x) Πx(Xi),
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produces a local approximation of u, at order 1 + κ in the sense of
(3.10).

Of course, if we want to lift the problem of solving (E) to the space of
germs, the following question should be adressed: when does a germ really
correspond to a family of local approximations? In other words, under
which conditions on a given germ F is it possible to produce a (ideally
canonical) distribution f which is suitably well approximated by Fx around
each point x?

To answer this question, we will need to quantify the local behaviour of
Fx(φ), both in x and φ. For this purpose, let we define two key properties.
Below, Br denotes the family of smooth functions φ supported in B(0, 1) :=
{x ∈ Rd, |x| := (

∑
i x

2
i )1/2 ≤ 1} with ∥φ∥Cr ≤ 1, see Definition A.9, and

φλ
x is defined as in Definition A.8.

Definition 4.4 (Coherence and homogeneity). Let ᾱ, α, γ ∈ R, with α ≤ γ.
A germ (Fx)x∈Rd is said to be

1. (locally) ᾱ-homogeneous if there exists r ∈ N0 such that for every
compact K ⊂ Rd,

sup
x∈K,λ∈(0,1],φ∈Br

|Fx(φλ
x)|

λᾱ
< +∞; (4.1)

2. (locally) (α, γ)-coherent if there exists r ∈ N0 such that for every
compact K ⊂ Rd,

sup
x,y∈K,λ∈(0,1],φ∈Br

|(Fy − Fx)(φλ
x)|

λα(|y − x| + λ)γ−α
< +∞. (4.2)

The interpretation is as follows: the property of homogeneity quantifies
the behaviour of Fx around x, while the property of coherence quantifies
the relative proximity of Fy and Fx around x, at the relevant scales.

Remark 4.5 (Choice of r). When a germ is both (locally) ᾱ-homogeneous
and (α, γ)-coherent, it can be shown that the estimates (4.1)-(4.2) do not
depend on r as long as r > max(−ᾱ,−α), see e.g. [3, Appendix B].
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It will then be convenient to use the following notation:

Notation 4.6. We will note:

1. Gᾱ;α,γ(Rd) the space of (locally) ᾱ-homogeneous and (α, γ)-coherent
germs, which is a Fréchet space when endowed with the seminorms
(4.1)-(4.2) for any (equivalent) choice of r > max(−ᾱ,−α) and over
any (countable) exhaustion of Rd by compacts.

2. Gᾱ;α,γ(Td) the subspace of Gᾱ;α,γ(Rd) consisting of 1-periodic germs.
This is also a Fréchet space for the same collection of seminorms
(4.1)-(4.2).

The following celebrated reconstruction theorem states that the proper-
ties of homogeneity and coherence are precisely those required on a germ
F in order to exhibit a (unique when γ > 0) distribution R(F ) which is
approximated by Fx at order γ around each x. In fact only the assumption
of coherence is required to construct R(F ), while that of homogeneity
guarantees its regularity, see [29]. Because we will only consider periodic
germs in the remainder of this article, we state the result on the torus
(the cited references work on the whole space but the case of the torus is a
straightforward adaptation).

Theorem 4.7 (Reconstruction, see [16, 6, 29]). Let ᾱ, α, γ ∈ R with α ≤ γ,
γ ̸= 0. There exists a (unique if and only if γ > 0) continuous linear map

R : Gᾱ;α,γ(Td) −→ Cᾱ(Td)
F 7−→ R(F ),

making R(F ) well-approximated by Fx at order γ around x in the sense
that the remainder (Fx − R(F ))x∈Rd is a γ-homogeneous germ. In fact,
the map

Gᾱ;α,γ(Td) −→ Gγ;α,γ(Td)
F 7−→ (Fx − R(F ))x∈Rd ,

is continuous.
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Remark 4.8. There is a statement of reconstruction when γ = 0, but
logarithms appear in the estimates, whence we refrain from discussing this
case here, see [6] for a precise statement.

Example 4.9. Let us come back to the germs from Example 4.3: the
following points follow from straightforward calculations.

1. If f ∈ Cᾱ(Td) and Fx = f , then F ∈ Gmin(ᾱ,0);α,γ(Td) for any choice
of α and for γ > 0, R(F ) = f .

2. If Fx(y) = (y − x)k for some k ∈ Nd
0, then F ∈ G|k|;0,|k|(Td) and

R(F ) = 0 except for k = 0 in which case R(F ) = 1.

3. If F is the “Taylor germ” of some periodic function f ∈ Cγ(Td),
γ ∈ R+ \ N0, then F ∈ G0;0,γ(Td), and R(F ) = f .

In general, checking the assumptions of coherence and homogeneity
on germs of the form Fx =

∑
k fk(x)Πk

x requires good assumptions on
both families of Πk and fk: this will motivate the notion of modelled
distributions, which we discuss in Section 4.3 below.

Example 4.10 (Continuous germs). The construction performed in the
proof of Theorem 4.7 ensures that if a continuous function (x, y) 7→ Fx(y)
is also an (α, γ)-coherent germ for some γ > 0, then one can explicitly
express its reconstruction as

R(F )(x) = Fx(x), x ∈ Rd.

Example 4.11 (Young multiplication, see [6, Section 14]). Let β ≤ 0 < α

with α+ β > 0, and f ∈ Cα(Td), g ∈ Cβ(Td). Setting Px := gFx where Fx

is the Taylor germ of f from Example 4.3 (the multiplication is well-defined
since Fx is a smooth function), one can prove that P ∈ Gβ;β,α+β(Td), and
that one retrieves Theorem A.12 by defining f · g := R(P ).

It turns out that the operation of convolution can be adapted at the
level of germs, in such a way that it is compatible with the operation of
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reconstruction. In fact, this convolution map is simply obtained from the
pointwise convolution K ∗ Fx subtracting a suitable explicit polynomial
germ, as the following result shows. The notion of β-regularising kernel is
given in Definition A.18.

Theorem 4.12 (Schauder estimates for germs, see [3]). Let ᾱ, α, γ ∈ R,
β > 0 be such that ᾱ, α ≤ γ, γ ̸= 0, ᾱ+ β ≠ 0, α+ β ̸= 0, γ + β /∈ N0. Let
K be a β-regularising kernel. Then the map

K : Gᾱ;α,γ(Td) −→ G(ᾱ+β)∧0;(α+β)∧0,γ+β(Td)
F 7−→ K ∗ Fx −

∑
|k|<γ+β

∂k(K ∗ (Fx − RF ))(x) (·−x)k

k! ,

(4.3)
is well-defined (i.e. the derivatives appearing in (4.3) have a canonical
definition), it is linear, continuous, and compatible with reconstruction in
the sense that for F ∈ Gᾱ;α,γ(Td),

R(KF ) = K ∗ RF. (4.4)

Remark 4.13. Recall from Theorem 4.7 that R is only canonically de-
fined for positive coherence exponents. Still Theorem 4.12 remains valid
even for negative exponents with the following convention: when γ < 0,
Theorem 4.12 is valid for any choice of reconstruction R(F ), and when
γ + β < 0, (4.4) means that K ∗ RF is one reconstruction of KF .

Thus, it is possible to lift the convolution with K at the level of germs;
however, there is no canonical way of multiplying two germs in general,
just as there is no canonical way of multiplying two distributions. Of
course, recalling (3.7), the germs that appear in the context of solving (E)
are not arbitrary, but rather enjoy a specific structure: they correspond to
finite linear combinations of basis germs Πi

x. Such germs will be examples
of modelled distributions, and it will be possible to multiply them in a
suitable way.

But before discussing modelled distributions, let us first describe the
collection of germs Πi

x which appear in the process described in Section 3.3.
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4.2 The model for equation (E)

We now turn to a precise discussion of equation (E) in dimension d = 2.
The first step is to regularize the equation i.e. replace it by a version where
the noise has been smoothly approximated. Rigorously, we fix from now
on:

1. A mollifier ρ ∈ C∞
c i.e. a symmetric test-function with

∫
ρ = 1. For

ϵ > 0 we denote ξϵ := ξ ∗ ρϵ ∈ C∞, so that (by a standard result in
distribution theory) ξϵ converges to ξ in D′ as ϵ → 0.

2. A decomposition G = K + R of the kernel defined in (2.1), where K is
2-regularising as per Definition A.18, and R belongs to the Schwartz
class. Without loss of generality, we will also assume that K coincides
with G, say, on [−1, 1]2.

This section is concerned with the equation driven by ξϵ. On the other
hand, the question of convergence of the solution as ϵ → 0 will be addressed
in Section 5.

4.2.1 The basis germs Π

Let us go back to the context described in Section 3.3. Recall the
expressions (3.5)-(3.6) of the first (recentered) Picard iterates. In order to
analyse those expressions in a systematic manner, it is convenient to adopt
a symbolic notation, as we have already begun to do in (3.8). The first
symbol, a blue dot , represents the noise, and we note

Πϵ
x( )(y) := ξϵ(y).

Furthermore, putting a bar under a symbol denotes convolution with
K: for instance, the symbol represents the convolution of the noise by K,
to which a suitable Taylor expansion is substracted. More precisely, we
define analogously to (3.8)

Πϵ
x( )(y) := K ∗ ξϵ(y) − K ∗ ξϵ(x).
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Note that the substraction of the Taylor expansion ensures that the
resulting germ is homogeneous in the sense of Definition A.7. For in-
stance, since ξ ∈ C−1−κ and K ∗ ξ ∈ C1−κ, the germs Πϵ( ) resp. Πϵ( ) are
homogeneous of exponent α = −1 − κ resp. α = 1 − κ (uniformly in ϵ).

We also add symbols (Xk = Xk1
1 Xk2

2 )k1,k2∈N0 representing polynomials,
with

Πϵ
x(Xk1

1 Xk2
2 )(y) := (y1 − x1)k1(y2 − x2)k2 ,

giving germs of homogeneity k1 + k2. Note that with this notation, one
can now rewrite the first Picard iterate (3.5) as

u(1)
ϵ (y) = aΠϵ

x( )(y) + aK ∗ ξϵ(x)Πϵ
x(1)(y),

= Πϵ
x(a + aK ∗ ξϵ(x)1)(y),

where in the second line we naturally extended Πϵ by linearity on the free
vector space spanned by the symbols. Finally, we encode the operation of
pointwise multiplication formally by the concatenation of the corresponding
symbols. For instance, corresponds to the multiplication of and , the
corresponding germ being the pointwise multiplication of smooth functions

Πϵ
x( )(y) := Πϵ

x( )(y)Πϵ
x( )(y) = (K ∗ ξϵ(y) − K ∗ ξϵ(x))ξϵ(y),

and the resulting homogeneity is the sum of those of the multiplied symbols.
Continuing the process described in Sections 3.3 and 3.4, we see that a
number of such germs Πϵ appear in the calculations. It will turn out that
only those with homogeneity less than or equal to 1 will play a role in
what follows; we list them in Table 4.1.

Notation 4.14. We will denote

I := { , , X1 , X2 ,1 , , X1 , X2} , T := Span(I). (4.5)

the set of the symbols thus formed, resp. the vector space of their formal
linear combinations. We will refer to I as the index set or set of symbols.

In the literature, T is called model space [16] or structure space [11].
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Germ Πϵ
x(τ)(·) = Homogeneity ατ Symbol

ξϵ(·) −1 − κ

(K ∗ ξϵ(·) − K ∗ ξϵ(x))ξϵ(·) −2κ

ξϵ(·)(·1 − x1) −κ X1

ξϵ(·)(·2 − x2) −κ X2

1 0 1

K ∗ ξϵ(·) − K ∗ ξϵ(x) 1 − κ

(·1 − x1) 1 X1

(·2 − x2) 1 X2

Table 4.1: The first basis germs, by increasing homogeneity

Remark 4.15 (Multiplicativity of Πϵ). By construction, for all (applicable)
symbols τ, τ ′ ∈ I,

Πϵ
x(ττ ′) = Πϵ

x(τ)Πϵ
x(τ ′) (as a product of smooth functions).

Remark 4.16 (Divergence). The family Πϵ has a divergent behaviour as
ϵ → 0. As an example, observe from the definition of (periodic) white-noise
that for x, y ∈ Rd,

E[Πϵ
x( )(y)] = E[(K ∗ ξϵ)(y)ξϵ(y)]

= E[ξ((K ∗ ρϵ)y) ξ(ρϵ
y)]

= ⟨(K ∗ ρϵ)per, ρϵ,per⟩,

which can be shown to diverge (logarithmically for d = 2) to ∞ as ϵ → 0,
because K diverges (logarithmically) at the origin, recall (2.1). We will
quantify the divergence more precisely in Section 5, where we will also
implement a renormalisation procedure in order to “cure” this divergence.
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4.2.2 The reexpansion operator Γ

One very useful characteristic of the family of basis germs (Πϵ(τ))τ∈I

defined above is that it admits a reexpansion operator Γϵ : T → T , i.e. a
linear map satisfying

Πϵ
y(τ) = Πϵ

x(Γϵ
x,y(τ)), Γϵ

x,y(τ) =
∑
σ∈I

Γϵ,σ,τ
x,y σ. (4.6)

In fact, such a Γϵ can even be explicitly constructed, as we highlight in
the following calculations:

Example 4.17 (Some calculations for Γϵ(τ)). Let us explore some (repre-
sentative) examples.

1. (polynomials: τ = Xk) We want Πϵ
x(Γϵ

x,y(Xk)) = Πϵ
y(Xk), but from

the binomial formula

Πϵ
y(Xk) = (· − y)k

=
∑

0≤l≤k

(
k

l

)
(x− y)l−k(· − x)l

= Πϵ
x

( ∑
0≤l≤k

(
k

l

)
(x− y)l−kX l

)
.

whence it suffices to set Γϵ
x,y(Xk) =

∑
0≤l≤k

(k
l

)
(x− y)l−kX l.

2. (noise: τ = ) We want Πϵ
x(Γϵ

x,y( )) = Πϵ
y( ), but we know

Πϵ
y( ) = ξϵ = Πϵ

x( ),

whence it suffices to set Γϵ
x,y( ) = .

3. (convolution: τ = ) We want Πϵ
x(Γϵ

x,y( )) = Πϵ
y( ) but we know

Πϵ
y( ) = K ∗ ξϵ − K ∗ ξϵ(y)

= K ∗ ξϵ − K ∗ ξϵ(x) + K ∗ ξϵ(x) − K ∗ ξϵ(y)

= Πϵ
x

(
+ (K ∗ ξϵ(x) − K ∗ ξϵ(y))1

)
,

whence it suffices to set Γϵ
x,y( ) = + (K ∗ ξϵ(x) − K ∗ ξϵ(y))1.
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4. (multiplication: τ = ) We want Πϵ
x(Γϵ

x,y( )) = Πϵ
y( ) but we know

Πϵ
y( ) = (K ∗ ξϵ − K ∗ ξϵ(y))ξϵ

= (K ∗ ξϵ − K ∗ ξϵ(x))ξϵ + (K ∗ ξϵ(x) − K ∗ ξϵ(y))ξϵ

= Πϵ
x

(
+ (K ∗ ξϵ(x) − K ∗ ξϵ(y))

)
,

whence it suffices to set Γϵ
x,y( ) = + (K ∗ ξϵ(x) − K ∗ ξϵ(y)) .

All calculations done, we can write the operator Γϵ explicitly in matrix
form:

Γϵ
x,y =

σ\τ X1 X2 1 X1 X2



1 K ∗ ξϵ(x) − K ∗ ξϵ(y) x1 − y1 x2 − y2 0 0 0 0
0 1 0 0 0 0 0 0

X1 0 0 1 0 0 0 0 0
X2 0 0 0 1 0 0 0 0
1 0 0 0 0 1 K ∗ ξϵ(x) − K ∗ ξϵ(y) x1 − y1 x2 − y2

0 0 0 0 0 1 0 0
X1 0 0 0 0 0 0 1 0
X2 0 0 0 0 0 0 0 1

.

(4.7)
It follows from the expressions of Table 4.1 and (4.7) that the pair

M ϵ := (Πϵ,Γϵ) forms what is called a (periodic) model as per the following
definition:

Definition 4.18 (Periodic model). Let I be a finite set and (ατ )τ∈I a
collection of real numbers. A periodic model on I is any pair M = (Π,Γ)
such that

1. Π = (Πx(τ))x∈Rd,τ∈I is a family of 1-periodic germs which are locally
ατ -homogeneous,

2. Γ = (Γσ,τ
x,y)x,y∈Rd,σ,τ∈I is a family of real numbers satisfying the

reexpansion property (4.6), and are furthermore 1-periodic in the
sense that for i ∈ {1, . . . , d}, Γσ,τ

x+ei,y+ei
= Γσ,τ

x,y,

and where Γ also enjoys the further additional properties:

3. (triangular structure): Γτ,τ
x,y = 1, and Γσ,τ

x,y = 0 if σ ̸= τ and ασ ≥ ατ ,
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4. (group property): Γx,yΓy,z = Γx,z,

5. (analytic bound): |Γσ,τ
x,y| ≲ |y − x|ατ −ασ .

As a consequence of those three properties and (4.6), the germs Πx(τ)
are automatically (ᾱ, ατ )-coherent for ᾱ := minτ∈I ατ . We will denote M
the set of periodic models, and set for compact sets K ⊂ Rd:

∥Π∥M(K) := max
τ∈I

∥Π(τ)∥Gατ ;ᾱ,ατ (K), ∥Γ∥M(K) := sup
σ,τ∈I
x,y∈K

|Γσ,τ
x,y|

|y − x|ατ −ασ
,

and ∥M∥M(K) := ∥Π∥M(K) + ∥Γ∥M(K).

In the following, the index set I will be either arbitrary or the one
defined by (4.5), depending on the context. We now comment on some of
the further properties of the model M ϵ = (Πϵ,Γϵ) defined above

Remark 4.19 (Multiplicativity of Γϵ). For all (applicable) symbols τ, τ ′ ∈
I,

Γϵ
x,y(ττ ′) = Γϵ

x,y(τ)Γϵ
x,y(τ ′).

As an example:

Γϵ
x,y( ) = + (K ∗ ξϵ(x) − K ∗ ξϵ(y))

=
(

+ (K ∗ ξϵ(x) − K ∗ ξϵ(y))1
)

= Γϵ
x,y( )Γϵ

x,y( ).

This property of multiplicativity is not a coincidence: for general
equations, it is in fact guaranteed by the algebraic part of the theory.

Remark 4.20 (Stationarity). For any given symbol τ , test-function φ ∈
C∞

c and point h ∈ Rd, the random processes

x 7→ Πϵ
x(τ)(φx), x 7→ Γϵ

x,x+h(τ),

are stationary in the sense that their distribution do not depend on x. As
an example, observe that

Πϵ
x( )(φx) = K ∗ ξϵ(φx) − K ∗ ξϵ(x) = ξ

(
(K ∗ ρϵ ∗ φ− K ∗ ρϵ)x

)
,
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so that the claimed stationarity follows from that of the white noise ξ.
A useful consequence which will be exploited in Section 5 below is the
identity in expectation

E[|Πϵ
x(τ)(φλ

x)|2] = E[|Πϵ
0(τ)(φλ)|2].

Remark 4.21 (Admissibility). Observe that the model M ϵ = (Πϵ,Γϵ)
built above is admissible, which we define to mean that

Πϵ
x( ) = K ∗ Πϵ

x( )(·) − K ∗ Πϵ
x( )(x),

Γϵ
x,y( ) = − Πϵ

x( )(y)1,

Γϵ
x,y(ττ ′) = Γϵ

x,y(τ)Γϵ
x,y(τ ′) for all τ, τ ′ ∈ T.

(This notion makes sense for general equations, in which case the first
two identities above should be replaced by a more general expression of the
action of the model on abstract integration, which come from the Schauder
estimates).

The importance of this property is that it implies that Γϵ is completely
determined by Πϵ. In particular, it justifies that one can identify the
model M ϵ and the basis germs Πϵ. In what follows, we will denote Madm

the set of admissible models, and when we consider such a model we will
indifferently refer to it as M or Π.

Finally, note that admissibility requires the multiplicativity property
on Γϵ but not on Πϵ, and indeed the approximating renormalised model
constructed in Section 5.4 will be admissible but not multiplicative.

4.3 Modelled distributions

Recall from the heuristics of Sections 3.3 and 3.4 and in the example
(3.13) that we look for solutions that are locally approximated by germs
of the form

Fx = Πϵ
x

(
a(x)1 + b(x) + c1(x)X1 + c2(x)X2

)
, (4.8)
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i.e. explicitly

Fx(y) = f1(x) + f2(x)
(
K ∗ ξϵ(y) − K ∗ ξϵ(x)

)
+ f3(x)(y1 − x1) + f4(x)(y2 − x2), (4.9)

for some functions f1, f2, f3, f4 to be determined. Of course, the end goal
is to reconstruct the germ F into an actual solution f ∈ D′, with the
help of the reconstruction Theorem 4.7: thus we need to guarantee that
(4.9) indeed corresponds to a coherent germ. In particular, we should be
able to estimate the difference Fy − Fx: for this purpose, observe that
for any model (Π,Γ), recall Definition 4.18, and any germ of the form
Fx =

∑
τ∈I f

τ (x)Πx(τ), one may use the reexpansion operator Γ to express

Fy − Fx =
∑
τ∈I

(∑
σ∈I

Γτ,σ
x,yf

σ(y) − f τ (x)
)
Πx(τ), (4.10)

This expression justifies the following definition of a modelled distribu-
tion.

Definition 4.22 (Modelled distributions). Let M ∈ Madm be a model and
γ ∈ R. A periodic modelled distribution on M is a 1-periodic T = SpanR(I)-
valued function f(x) =

∑
τ∈I,ατ <γ f

τ (x)τ with real coefficients f τ (x) ∈ R,
such that for every compact set K ⊂ Rd,

∥f∥Dγ(K) := sup
x∈K,τ∈I

|f τ (x)| + sup
x,y∈K,τ∈I,

|x−y|≤1

∣∣∣f τ (x) −
∑

σ∈I Γτ,σ
x,yf

σ(y)
∣∣∣

|y − x|γ−ατ
< +∞.

(4.11)
We will note Dγ = Dγ

M (Td) the Banach space of periodic modelled
distributions on M with norm given by (4.11) on K = [0, 1]d.

Let f ∈ Dγ
M be some modelled distribution on some model M = (Π,Γ).

We will denote by ⟨f,Π⟩ the germ

⟨f,Π⟩x :=
∑
τ∈I

f τ (x)Πx(τ) = Πx(f(x)).
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so that from (4.10)-(4.11) (see also [6, Example 4.10]), and noting ᾱ :=
minτ∈I ατ ,

⟨f,Π⟩ ∈ Gᾱ;ᾱ,γ(Td),

and we will define the reconstruction of f as that of this germ:

RM (f) := R(⟨f,Π⟩).

When the model M is clear from the context, we will omit it from the
subscript.

As noted in (4.8), the modelled distributions that are of interest for us
are spanned only by a strict subset of I, namely the symbols {1, , X1, X2}.
This motivates the following:

Notation 4.23. For a model M on the index set I defined in (4.5), we
will note Dγ

M ;fp the subspace of Dγ
M containing modelled distibutions of

the form f = f11 + f2 + f3X1 + f4X2 for functions f1, f2, f3, f4.
Note that Dγ

M ;fp is again a Banach space, and that we have added the
subscript fp to indicate that this is the space in which we want to set up a
fixed-point.

In the remainder of this section, we discuss the different operations
(truncation, convolution, multiplication) that can be performed at the level
of modelled distributions in a way that is compatible with reconstruction:
the goal is to express and solve (E) (with mollified noise) at the level of
modelled distributions.

4.3.1 Truncation

Truncation will play an important part in the iteration: indeed as
motivated in Section 3.3 a truncation will need to be performed at each
step in order to get rid of the terms of “too high” order.

Definition 4.24 (Truncation of modelled distributions). Let γ′ < γ and
let f =

∑
τ∈I f

ττ ∈ Dγ
M be a modelled distribution on some model M ∈ M.



32 L. Broux, F. Caravenna and L. Zambotti

We truncate f at level γ′ by removing the terms corresponding to symbols
with homogeneity larger than γ′, i.e. we set

f≤γ′ :=
∑

τ∈I,ατ ≤γ′

f ττ.

Then f≤γ′ ∈ Dγ′

M : this is a consequence of the analytic property of Γ.
Furthermore, one has the following bound: there exists a constant C > 0
and a compact K ⊂ Rd such that for all f ∈ Dγ

∥f≤γ′∥Dγ′ ≤ C
(
1 + ∥Γ∥M(K)

)
∥f ∥Dγ .

Furthermore,
R(f≤γ′) = R(f),

where if γ′ ≤ 0 this should be read as “R(f) is one reconstruction of f≤γ′”.

4.3.2 The convolution operator K

We already know how to perform the convolution with K at the level
of coherent and homogeneous germs in a way that is compatible with
the reconstruction, recall the operator K defined in 4.12. Given a model
M ∈ M and a modelled distribution f ∈ Dγ

M , this means that the germ
K(⟨f,Π⟩) is a natural candidate for defining the convolution on f . From
the explicit formula (4.3), it is clear that K(⟨f,Π⟩) can still be written
as a finite linear combination of basis germs. But does it correspond
to an actual modelled distribution? The answer is affirmative, see [16,
Theorem 5.12], and takes the following form in general.

Theorem 4.25 (Multi-level Schauder estimates, see [16, 3]). Let K be
a β-regularising kernel, M = (Π,Γ) ∈ M be a model and f ∈ Dγ

M be a
modelled distribution, where γ ∈ R. Assume that γ + β /∈ N0, then there
exists an explicit new model M̂ = (Π̂, Γ̂) on a possibly larger set of symbols,
and an explicit new modelled distribution Kf ∈ Dγ+β

M̂
relatively to this new

model such that

⟨Kf, Π̂⟩ = K(⟨f,Π⟩), and thus (see (4.4)): R(Kf) = K ∗ R(f).
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In this theorem, the convention for γ < 0 is the same as in Theorem 4.12
above, see Remark 4.13.

Furthermore, this operation is linear and continuous with the following
bound: there exists C > 0 and K ⊂ Rd compact such that

∥K(f)∥Dγ+β

M̂

≤ C∥Π∥Mα(K)∥f∥Dγ
M
.

In the context of the model M ϵ = (Πϵ,Γϵ) defined by Table 4.1 and
(4.7) above, and for the kernel K defined at the beginning of Section 4.2,
the theorem simplifies slightly: since M ϵ is admissible, recall Remark 4.21,
then it follows from the proof of Theorem 4.25 that the new model and
the new set of symbols remain M ϵ and I respectively, as long as we accept
to truncate the resulting modelled distribution Kf just above homogeneity
1. More precisely:

Corollary 4.26 (Multi-level Schauder in our context). Let K be the 2-
regularising kernel defined at the beginning of Section 4.2. Let ϵ > 0 and
M ϵ = (Πϵ,Γϵ) be the model defined by Table 4.1 and (4.7). Assume that
0 < κ < 1/3 and fix γ0 ∈ (1 + κ, 2 − 2κ). Let 0 < γ ≤ γ0, then there exists
a continuous linear map

K : Dγ
Mϵ → Dmin(γ+2,γ0)

Mϵ ,

such that

⟨Kf,Πϵ⟩ = K(⟨f,Πϵ⟩), R(Kf) = K ∗ R(f),

along with the continuity estimate

∥K(f)∥Dmin(γ+2,γ0)
Mϵ

≤ C∥Πϵ∥Mα(K)∥f∥Dγ
Mϵ
.

Remark 4.27 (Parsimony). Let us illustrate a non-trivial use of Theo-
rems 4.7 and 4.25 for negative exponents γ ≤ 0 (this was communicated
to us by Hendrik Weber). In concrete situations such as Corollary 4.26,
there are two ways of constructing the convolution operator K on modelled
distributions when γ + 2 ≥ γ0.
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The first approach is to apply Theorem 4.25 to f and then truncate the
resulting modelled distribution at order γ0. One downside is that applying
Theorem 4.25 automatically creates new symbols of homogeneity larger
than γ0, only to instantly discard them by truncation, thus artificially
enriching the symbol set with unused new symbols.

The second approach is to truncate f at order γ0 − 2 before applying
Theorem 4.25. This might sound problematic, because the definition of
the map K contains the reconstruction map (recall Theorem 4.12) which is
not uniquely defined when γ0 − 2 < 0. That turns out not to be a problem:
it suffices to construct K with the canonical data of R(f) as input, rather
than the non-canonical R(f≤γ0−2). This way, no artificial symbol has to
be added.

Let us also mention that a similar idea of using multi-level Schauder
estimates for negative exponents was recently implemented in [18], although
in a slightly different context.

Note that in order to fully perform the convolution with the funda-
mental solution G of (2.1), we need to take into account the remainder
R, recall the decomposition G = K + R. But because R, being in the
Schwartz class, is regularising of any order, we can simply define its lift by
considering the corresponding Taylor germ: the following proposition is a
straightforward consequence of the second item in Theorem A.20, along
with the Definition 4.22 of a modelled distribution.

Proposition 4.28 (Lifting of R). Let R ∈ S be any function in the
Schwartz class and γ, γ′ > 0 be any exponents, then the map

KR : Dγ
Mϵ −→ Dγ′

Mϵ

f 7−→
∑

|k|≤γ′

∂k(R∗(Rf))(·)
k! Xk,

is well-defined, linear, and satisfies

R(KRf) = R ∗ R(f),
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along with the following continuity estimate: there exist C > 0,K ⊂ Rd

such that
∥KR(f)∥Dγ′

Mϵ
≤ C∥Πϵ∥Mα(K)∥f∥Dγ

Mϵ
.

4.3.3 Multiplication

Since there exists a formal multiplication at the level of symbols (recall
e.g. that = ), it turns out that it is possible to multiply modelled
distributions. For instance, in the particular case where one wants to
multiply a modelled distribution f by , it is straightforward to check that
the following proposition is a simple consequence of the definition of a
modelled distribution.

Proposition 4.29 (Multiplication by the noise). Let M ∈ M be a model
and f = f11 + f2 + f3X1 + f4X2 ∈ Dγ

M ;fp for some γ > 1 + κ. Set

f := f1 + f2 + f3 X1 + f4 X2.

Then f ∈ Dγ−1−κ
M with the continuity bound

∥ f∥Dγ−1−κ
M

= ∥f∥Dγ
M
.

Note that when M = M ϵ is the model defined by Table 4.1 and (4.7),
then by multiplicativity, recall Remark 4.15, one has

⟨ f ,Πϵ⟩ = ⟨f,Πϵ⟩ξϵ,

as a product of smooth functions, and thus from Example 4.10:

R( f) = R(f)ξϵ,

as a product of smooth functions. Note that the reconstruction operators
above are uniquely defined because γ − 1 − κ > 0 (recall Theorem 4.7).

Remark 4.30. It is in fact possible to multiply modelled distributions, say
f and g, in a general way and under mild assumptions, see [16, Theorem 4.7].
Proposition 4.29 corresponds to the particular case where g = .
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4.3.4 Composition with smooth functions

We finally remark that one can also define the composition F (f) for
modelled distributions f ∈ Dγ

M ;fp and sufficiently smooth functions F : R →
R.

Proposition 4.31. Let M ∈ M be a model and f = f11 + f2 + f3X1 +
f4X2 ∈ Dγ

M ;fp for some γ ∈ (1 + κ, 2(1 − κ)). Let F ∈ C
γ

1−κ and set

F (f) := x 7→ F (f1(x))1 + F ′(f1(x))
(
f2(x) + f3(x)X1 + f4(x)X2

)
.

Then F (f) ∈ Dγ
M and if furthermore F ∈ C

γ
1−κ

+1, then the map f 7→ F (f)
is locally Lipschitz continuous. Note also that if Πx(τ) for τ ∈ {1, , X1, X2}
are all continuous functions, then by Example 4.10, R(F (f)) = F (R(f)).

The proof is a straighforward calculation from the assumptions and the
Definition 4.22 of a modelled distribution. We refer to [16, Theorem 4.16]
for a more general discussion.

4.4 Back to the PDE

Let us show how the above results allow to study the elliptic singular
PDE (E). Given the model M ϵ = (Πϵ,Γϵ) constructed in sections 4.2.1
and 4.2.2, if we set (recall (3.12))

Uϵ(x) := uϵ(x)1 + (a+ buϵ(x)) +
2∑

i=1
∂ifx(x)Xi

then Uϵ ∈ D1+2κ
Mϵ for a κ > 0 small. This Uϵ is such that ⟨Πϵ, Uϵ⟩x(x) =

uϵ(x), namely R⟨Πϵ, Uϵ⟩ = uϵ. Now we have

R⟨Πϵ, Uϵ⟩ = uϵ = K ∗ ((a+ buϵ)ξϵ).

Can we find a modelled distribution whose reconstruction gives the right-
hand side as well? Let us recall that

Πϵ
x( ) = ξϵ, Πϵ

x( ) = (K ∗ ξϵ − K ∗ ξϵ(x)) ξϵ, Πϵ
x( Xi) = (·i − xi)ξϵ.
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Then by Proposition 4.29 (note the product rule = ), recalling (3.9),

Vϵ := (a+ bUϵ)(x)

:= (a+ buϵ(x)) + b(a+ buϵ(x)) + b ∂iK ∗ ((uϵ − uϵ(x))ξϵ)(x) Xi

defines a modelled distribution in Dκ
Mϵ with κ > 0 small and

R⟨Πϵ, Vϵ⟩ = (a+ buϵ)ξϵ.

Then we have by Corollary 4.26

K ∗ ((a+ buϵ)ξϵ) = K ∗ R⟨Πϵ, (a+ bUϵ)⟩ = R ◦ K⟨Πϵ, (a+ bUϵ)⟩

where K : Dκ
Mϵ → D1+2κ

Mϵ is the convolution operator on coherent germs
defined in Theorem 4.12. It turns out that in this case we have (see below)

KVϵ(x) = K ∗ ((a+ buϵ)ξϵ)(x) 1 + (a+ buϵ(x))

+
2∑

i=1
b ∂iK ∗ ((uϵ − uϵ(x))ξϵ)(x)Xi.

In a classical setting we would like to find uϵ as the fixed point of a
map

z 7→ K ∗ ((a+ bz)ξϵ) , (4.12)

in such a way moreover that the (deterministic) map ξϵ 7→ uϵ is continuous
in a (distributional) C−1−κ topology. This is however impossible, as we
have seen at the beginning of Section 3.

Regularity structures give an alternative approach, by lifting the equa-
tion to a space of modelled distributions. Given any model M = (Π,Γ),
for a Z ∈ D1+2κ

(Π,Γ) of the form

Z(x) = z(x)1 + Z (x) +
2∑

i=1
ZXi(x)Xi, z = RZ, (4.13)

where z(x), Z (x) and ZXi(x) are real numbers, we write

Z(x) = z(x) + Z (x) +
2∑

i=1
ZXi(x) Xi.
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Then by Proposition 4.29 we have Z ∈ Dκ
(Π,Γ) and therefore (a+ bZ) ∈

Dκ
(Π,Γ). By Corollary 4.26 we can apply the integration operator K defined

in (4.3) and obtain a modelled distribution K( (a+ bZ)) ∈ D1+2κ
(Π,Γ), which

has the form
K( (a+ bZ))(x) = K ∗ T (x) 1 + (a+ bz(x))

+
2∑

i=1
b ∂iK ∗ ((z − z(x))ξ)(x)Xi,

where the distribution T is defined as R( (a+ bZ)). Therefore we have
lifted the map (4.12) to a map Z 7→ K( (a+ bZ)) in the space of modelled
distributions D1+2κ

(Π,Γ).
The main analytical idea is that, while the product (u, ξ) 7→ uξ is

ill-defined in this context, the map D1+2κ
(Π,Γ) ∋ Z 7→ Z ∈ Dκ

(Π,Γ) is perfectly
well-defined and continuous, once the model (Π,Γ) is constructed. Moreover
suitable estimates give continuity with respect of the model of all the above
objects. We recall that the crucial term Πx( ) in the model fixes a value
for the ill-defined product (K ∗ ξ)ξ, which is the missing information to
give a sense to the map (4.12) for ξ ∈ C−1−κ.

Now the fixed point equation U = K( (a + bU)) is equivalent to the
system of equations

u = K ∗ (R( (a+ bU))),

U (x) = a+ bu(x),

UXi(x) = b ∂iK ∗ ((u− u(x))ξ)(x).

It is interesting to see that in this system the first equality is still the
equation (now for a general model), while the next two equalities merely fix
the remaining coefficients of U in (4.13). We recall that such coefficients
of U are the constitutive elements of the semi-norms ∥U∥D1+2κ

(Π,Γ)
defined in

(4.11). Therefore, lifting the PDE to a space of modelled distributions does
not modify the equation but imposes a stronger topology on the solutions.
This is the key element of the crucial continuity property (Π,Γ) 7→ U , which
associates to a model the solution to the fixed point U = K( (a+ bU)).

In the next subsection we explore this fixed point equation more closely.
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4.4.1 Fixed point

Fix γ ∈ (1 + κ, 2 − 2κ) and consider the following iteration map, which
is the equivalent of (2.3) in the space of modelled distributions:

Φϵ : Dγ
Mϵ;fp −→ Dγ

Mϵ;fp
f 7−→ (K + KR)(a + b f).

By Corollary 4.26 and Proposition 4.29, Φϵ is well defined, and combin-
ing all the corresponding continuity bounds, there exist constants C, k0 > 0
and a compact set K ⊂ Rd such that

∥Φϵ(f) − Φϵ(g)∥Dγ
Mϵ

≤ bC∥M ϵ∥k0
M(K)∥f − g∥Dγ

Mϵ
,

whence the existence of a unique fixed-point fϵ ∈ Dγ
Mϵ;fp after choosing b

small enough in function of M ϵ.
Note that, because ξϵ is smooth, and because the operations constructed

above are compatible with the reconstruction, applying the reconstruction
operator to the fixed point equation shows that uϵ := R(fϵ) is a solution to

uϵ = G ∗ ((a+ buϵ)ξϵ) i.e. by Theorem A.17: (1 − ∆)uϵ = (a+ buϵ)ξϵ,

where all concerned modelled distributions can be uniquely reconstructed
because γ > 1 + κ (recall that fϵ ∈ Dγ−1−κ).

Now the reader may wonder why we spent so much effort solving (E) for
a smooth ξϵ: surely we could have done this by more elementary methods.
The advantage of the approach presented above is that we have in fact
exhibited a factorisation

C−1−κ −→ Madm −→
⊔

M∈Madm
Dγ

M
R−→ C1−κ

ξϵ 7−→ M ϵ 7−→ fϵ 7−→ uϵ,

(4.14)

of the solution map, where the last two arrows are continuous with respect
to the natural topologies involved. Thus, studying the convergence of
(uϵ)ϵ>0 as ϵ → 0 amounts to studying the convergence of (M ϵ)ϵ>0 in the
space M of models: this is particularly nice, because M ϵ consists in a
finite number of explicit objects, recall Table 4.1.
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The purpose of the following Section 5 is to study the family (M ϵ)ϵ>0.
As it turns out, recall Remark 4.16, this is a divergent family as ϵ → 0:
however, there will be a natural way of “curing” the divergence via a
suitable renormalisation procedure, so that the family of corresponding
renormalised solutions ûϵ will converge, to what we will call the solution
to (E).

Remark 4.32. Note that the continuity of the second arrow in (4.14) does
not immediately follow from Theorem 4.25 and Proposition 4.29, because
the continuity estimates in those theorems compare modelled distributions
on the same model.

However, it is possible to provide “enhanced” continuity estimates in
Theorem 4.25 and Proposition 4.29, i.e. comparing modelled distributions
on different models. We refer the reader to [16] for more details.

5 The equation in dimension d = 2: probabilistic
aspects

We now consider the (lack of) convergence as ϵ → 0 of the random
family

(
M ϵ = (Πϵ,Γϵ)

)
ϵ>0 defined by Table 4.1 and (4.7), in the set of

admissible models Madm. We proceed in three steps:

1. we consider a “Kolmogorov-type criterion” on the convergence of a
family of models (Section 5.1),

2. we modify in a natural way the family of models defined by Table 4.1
and (4.7), in order to make it convergent (Sections 5.2 and 5.3),

3. we study the effect of this renormalisation on the equation and its
solution (Sections 5.4 and 5.5).
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5.1 A Kolmogorov criterion for the convergence of random
models

A sufficient condition for the convergence of a family of random models,
on the structure considered here, is provided by the following result, see
[16, Theorem 10.7].

Theorem 5.1 (Kolmogorov continuity for models). Let (M ϵ = (Πϵ,Γϵ))ϵ>0

be a family of stationary admissible models in Madm (recall Section 4.2 for
the corresponding definitions), defined on the probability space (Ω,F ,P).
We assume that there exist θ, θ′ > 0 such that for all symbols τ ∈ I of
negative homogeneity ατ < 0, all test-functions φ ∈ C∞

c , and all p ≥ 1,
ϵ, ϵ1, ϵ2, λ ∈ (0, 1),

E
[
|Πϵ

0(τ)(φλ)|p
]

≤ Cτ,φ,pλ
p(ατ +θ),

E
[
|(Πϵ1

0 (τ) − Πϵ2
0 (τ))(φλ)|p

]
≤ Cτ,φ,p(ϵ1 + ϵ2)pθ′

λp(ατ +θ).

Then for all p ≥ 1, the family (M ϵ)ϵ>0 converges in Lp
(
(Ω,F ,P); Madm

)
.

Remark 5.2. Since we work here with Gaussian variables, we can generally
exploit results of the type “equivalence of moments”. Indeed, all the random
variables we will consider in fact belong to a Wiener chaos of some finite
order, where such a result is known, see e.g. [16, Lemma 10.5]. Thus, for
convenience, in what follows we will only check the bounds for p = 2, i.e.
that (renaming 2θ, 2θ′ as θ, θ′)

E
[
|Πϵ

0(τ)(φλ)|2
]

≤ Cτ,φλ
2ατ +θ, (5.1)

E
[
|(Πϵ1

0 (τ) − Πϵ2
0 (τ))(φλ)|2

]
≤ Cτ,φ(ϵ1 + ϵ2)θ′

λ2ατ +θ. (5.2)

Recall from Table 4.1 that the symbols of negative homogeneity are
here:

{ , , X1, X2}.

In the remainder of this section, we check the bounds (5.1)-(5.2) for
τ ∈ { , X1, X2}. The last symbol τ = is more delicate to treat – this
is due to the noise appearing twice – and will require more advanced
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techniques such as Wick calculus: we delay the corresponding discussion
to Section 5.2.

Example 5.3. Let us establish (5.1)-(5.2) for the symbol τ = . Since
has homogeneity α = −1 − κ it suffices to establish for some θ′ > 0,

E
[
|Πϵ

0( )(φλ)|2
]

≤ Cτ,φλ
−2−κ,

E
[
|(Πϵ1

0 ( ) − Πϵ2
0 ( ))(φλ)|2

]
≤ Cτ,φ(ϵ1 + ϵ2)θ′

λ−2−κ,

which corresponds to taking θ = κ in (5.1)-(5.2). We will use Young’s
convolution inequality in Rd:

∥f ∗ g∥Lr ≤ ∥f∥Lp∥g∥Lq , if 1
p

+ 1
q

= 1
r

+ 1, 1 ≤ p, q, r ≤ +∞.

Recall that by definition,

Πϵ
0( )(φλ) = ξϵ(φλ) = ξ(ρϵ ∗ φλ),

so that by the isometry property of the Gaussian white noise ξ, recalling
that fk(·) := f(· − k),

E
1
2
[
|Πϵ

0( )(φλ)|2
]

= ∥(ρϵ ∗ φλ)per∥L2([0,1]2)

= ∥
∑

k∈Zd

(ρϵ ∗ φλ)k∥L2([0,1]2)

≤
∑

k∈Zd

∥(ρϵ ∗ φλ)k∥L2([0,1]2).

Since ρ and φ have compact support, the function ρϵ ∗ φλ is supported
in a region of Rd which is bounded uniformly in ϵ, λ ∈ (0, 1]. Thus, after
taking into account the recentering by k, the sum above admits a bounded
number of non-zero terms, which depends only on the support of φ (and of
ρ). Applying Young’s convolution inequality to each of those terms leads
to

E
[
|Πϵ

0( )(φλ)|2
]
≲φ ∥ρϵ∥2

L1∥φλ∥2
L2 = ∥ρ∥2

L1∥φ∥2
L2λ−2,
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as wanted. For the second bound, we have similarly after periodization
and for reasons of support

E
1
2
[
|(Πϵ1

0 ( ) − Πϵ2
0 ( ))(φλ)|2

]
≤
∑

k

∥(ρϵ1 − ρϵ2) ∗ φλ
k∥L2([0,1]2).

over a finite sum whose size depends only on the support of φ. By definition
of the convolution, and using the fact that ρϵ1,ϵ2 := ρϵ1 − ρϵ2 has vanishing
integral, we express

(ρϵ1 − ρϵ2) ∗ φλ
k(x) =

∫
ρϵ1,ϵ2(z)(φλ

k(x− z) − φλ
k(x)) dz.

Thus,(
(ρϵ1 − ρϵ2) ∗ φλ

k(x)
)2

=
∫
ρϵ1,ϵ2(z1)ρϵ1,ϵ2(z2)(φλ

k(x− z1) − φλ
k(x))(φλ

k(x− z2) − φλ
k(x)) dz1 dz2,

and integrating against x,

∥ρϵ1,ϵ2 ∗ φλ
k∥2

L2 =
∫∫

ρϵ1,ϵ2(z1)ρϵ1,ϵ2(z2)Fλ(z1, z2) dz1 dz2, (5.3)

where (recall that d = 2)

Fλ(z1, z2) :=
∫

(φλ
k(x− z1) − φλ

k(x))(φλ
k(x− z2) − φλ

k(x)) dx

= λ−2
∫ (

φk

(
u− z1

λ

)
− φk(u)

)(
φk

(
u− z2

λ

)
− φk(u)

)
du.

Since φ has compact support, the domain of the integral above is of
bounded size, and using the fact that φ is θ′-Hölder for any θ′ ∈ (0, 1):

|Fλ(z1, z2)| ≤ Cφ,θ′λ−2
∣∣∣z1
λ

∣∣∣θ′ ∣∣∣z2
λ

∣∣∣θ′

= Cφ,θ′λ−2−2θ′ |z1|θ′ |z2|θ′
,

so that plugging this estimate in (5.3) gives

∥(ρϵ1 − ρϵ2) ∗ φλ
k∥2

L2 ≤ Cφ,θ′λ−2−2θ′( ∫ |(ρϵ1 − ρϵ2)(z)||z|θ′ dz
)2
,

whence the announced bound after taking θ′ sufficiently small, because∫
|(ρϵ1 − ρϵ2)(z)||z|θ′ dz ≤

∫ (
|ρϵ1(z)| + |ρϵ2(z)|

)
|z|θ′ dz ≤ (ϵ1 + ϵ2)θ′

.
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Example 5.4. Let us establish (5.1)-(5.2) for the symbol τ = X1 (a slight
variant of the same argument also treats τ = X2). Since τ = X1 has
homogeneity α X1 = −κ, it suffices to establish

E
[
|Πϵ

0( X1)(φλ)|2
]

≤ Cτ,φλ
−κ,

E
[
|(Πϵ1

0 ( X1) − Πϵ2
0 ( X1))(φλ)|2

]
≤ Cτ,φ(ϵ1 + ϵ2)θ′

λ−κ.

We appeal to the calculations of Example 5.3: define η(·) := ·1φ(·) so
that ·1φλ(·) = ληλ(·). Then by definition,

Πϵ
0( X1)(φλ) = ξϵ(·1φλ(·)) = ξ(ρϵ ∗ (·1φλ(·))) = λξ(ρϵ ∗ ηλ),

so that the announced estimates follow directly from those of Example 5.3.

5.2 Elements of Wick calculus

The last remaining symbol to tackle is . Recall that its homogeneity
is α = −2κ so that the goal is to establish

E
[
|Πϵ

0( )(φλ)|2
]

≤ Cτ,φλ
−θ, (5.4)

E
[
|Πϵ1

0 ( )(φλ) − Πϵ2
0 ( )(φλ)|2

]
≤ Cτ,φ(ϵ1 + ϵ2)θ′

λ−θ, (5.5)

where

Πϵ
0( )(φλ) =

∫ (
K ∗ ξϵ(x) − K ∗ ξϵ(0)

)
ξϵ(x)φλ(x) dx

=
∫
ξ
(
Kϵ(· − x) − Kϵ(·)

)
ξ
(
ρϵ(· − x)

)
φλ(x) dx, (5.6)

and where we denote for simplicity Kϵ := K ∗ ρϵ. The difficulty is that this
is not a Gaussian variable anymore, and in particular we can not apply the
same strategy as in the section above. Still, (5.6) retains some stochastic
structure: crucially, the expression (5.6) is bilinear in ξ, which makes it
natural to express it in tensor product notation, as

Πϵ
0( )(φλ) = ⟨ξ ⊗ ξ,

∫ (
Kϵ(· − x) − Kϵ(·)

)
⊗
(
ρϵ(· − x)

)
φλ(x)dx⟩

= ⟨ξ ⊗ ξ,

∫ (
Kper

ϵ (· − x) − Kper
ϵ (·)

)
⊗
(
ρϵ,per(· − x)

)
φλ(x)dx⟩,
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where the right-hand term in the bracket is deterministic, explicit, and
1-periodic. This motivates that we should study the behaviour of ξ ⊗ ξ on
the tensor product L2(Td)⊗2. On simple tensors, i.e. of the form f ⊗ g for
f, g ∈ L2(Td), observe that

⟨ξ ⊗ ξ, f ⊗ g⟩ = ⟨ξ, f⟩⟨ξ, g⟩,

is the product of two Gaussian variables, with expectation

E[⟨ξ ⊗ ξ, f ⊗ g⟩] = ⟨f, g⟩,

by definition of Gaussian white noise. Now we may also estimate its
variance with Isserlis’ theorem [19]-[2, Theorem 4.2.2] on the product of
the entries of a centered Gaussian vector (X1, · · ·Xn), stating that

E[X1 · · ·Xn] = 1{n is even}
∑

Pairings P of {1,··· ,n}

∏
{i,j}∈P

E[XiXj ],

yielding in our case

Var[⟨ξ ⊗ ξ, f ⊗ g⟩] = ⟨f, f⟩⟨g, g⟩ + ⟨f, g⟩2 ≤ 2∥f∥2
L2∥g∥2

L2 = 2∥f ⊗ g∥2
L2 ,

where we used the Cauchy–Schwarz inequality. More generally, setting

Î2(f ⊗ g) := ⟨ξ ⊗ ξ, f ⊗ g⟩ − ⟨f, g⟩, (5.7)

and extending Î2 by linearity on L2(Td)⊗2 one finds for h ∈ L2(Td)⊗2,

E[Î2(h)] = 0, E[Î2(h)2] ≤ 2∥h∥2
L2 . (5.8)

We wil exploit the properties (5.7)-(5.8) in the following way: we
rewrite by definition of Î2,

Πϵ
0( )(φλ) =

∫
⟨Kper

ϵ (· − x) − Kper
ϵ (·), ρϵ,per(· − x)⟩φλ(x) dx (5.9)

+ Î2
( ∫ (

Kper
ϵ (· − x) − Kper

ϵ (·)
)

⊗
(
ρϵ,per(· − x)

)
φλ(x)dx

)
,

(5.10)

where the first term is deterministic and explicit, while the second one is
random but controlled by (5.8). Note that the operation we have performed
corresponds to a “renormalisation” since we have isolated the expectation
in (5.7).
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Remark 5.5. Let us mention that the approach sketched above can be
widely generalised. In particular, it is well-known that there exists an
isometric isomorphism

I :
⊕
n≥0

(
L2(Td)

)⊗sn → L2(Ω,F ,P),

called Wiener isometry, which is explicit (in terms of Hermite polynomi-
als): denoting In the restriction of I to the symmetrized tensor product(
L2(Td)

)⊗sn, then

I1(f) = ξ(f), I2(f ⊗ f) = 1√
2
Î2(f ⊗ f) = 1√

2
(ξ(f)2 − ∥f∥2), etc.

Furthermore, products of the form In(f)Im(g) can be expressed via an
explicit multiplication formula, see [16, Lemma 10.3]-[24, Proposition 1.1.3].

The decomposition of a random variable along ⊕n≥0
(
L2(Td)

)⊗sn via
I, such as in (5.9)-(5.10), is called its Wiener chaos decomposition: one
advantage is that each of these terms can be bounded separately by the
isometry property of I.

5.3 Renormalisation of M ϵ

Recalling (5.9)-(5.10), we rewrite (assuming without loss of generality
that

∫
φ = 1):

Πϵ
0( )(φλ) = Î2

(∫
R2
Wϵ(x; ·1, ·2)φλ(x) dx

)
+
∫
Rd
W̃ϵ(x)φλ(x) dx+ cϵ,

where

Wϵ(x; z1, z2) :=
(
Kper

ϵ (z1 − x) − Kper
ϵ (z1)

)
ρϵ,per(z2 − x),

W̃ϵ(x) := −⟨Kper
ϵ (·), ρϵ,per(· − x)⟩ = −Kper

ϵ ∗ ρϵ,per(x)

cϵ := ⟨Kper
ϵ (· − x), ρϵ,per(· − x)⟩ = ⟨Kper

ϵ , ρϵ,per⟩, (5.11)

are deterministic and explicit in function of K. Now, recalling (5.9)-(5.10),
the following proposition implies that the desired estimate (5.4) fails, but
in a “renormalisable” way:

E
[
|Πϵ

0( )(φλ)|2
]

→ϵ→0 ∞ but E
[
|Πϵ

0( )(φλ) − cϵ|2
]

≤ Cτ,φλ
−θ.
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Proposition 5.6 (See [16, Theorem 10.19]). In the context described just
above,

1. For ϵ > 0 small enough,

cϵ = − 1
2π log |ϵ| +Oϵ→0(1).

2. For any θ > 0 sufficiently small,∣∣∣ ∫
R2
W̃ϵ(x)φλ(x) dx

∣∣∣2 ≤ Cφ,θλ
−θ.

3. For any θ > 0 sufficiently small,∥∥∥∥ ∫
R2
Wϵ(x; ·1, ·2)φλ(x) dx

∥∥∥∥2

L2([0,1]2)
≤ Cφ,θλ

−θ.

For convenience, we will prove only the first two points, as the third one
can be obtained with similar techniques but the corresponding calculations
are more tedious. We refer to [16, Theorem 10.19] for more details.

Proof (of Items 1 and 2). Recall that by construction,

K(x) = − 1
2π log |x| +Ox→0(1). (5.12)

Proof of Item 1. For ϵ small enough in function of ρ, the periodization
ρϵ,per coincides with ρϵ on [−1

2 ,
1
2 ]2 which is our region of integration, thus

we may write

cϵ = ⟨Kper
ϵ , ρϵ,per⟩L2(T2)

=
∫∫

[− 1
2 , 1

2 ]2
K(z)ρϵ(x− z)ρϵ(x) dx dz

=
∫∫

[− 1
2ϵ

, 1
2ϵ

]2
K(ϵz)ρ(x− z)ρ(x) dx dz,

so using (5.12), the fact that ρ integrates to 1, and the integrability of log
at the origin,

cϵ = −
∫∫

[− 1
2ϵ

, 1
2ϵ

]2

1
2π log |ϵz|ρ(x− z)ρ(x) dx dz +Oϵ→0(1)

= − 1
2π log |ϵ| +Oϵ→0(1),
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which establishes the claim.
Proof of Item 2. By definition,∫

R2
W̃ϵ(x)φλ(x) dx = −

∫
R2

K ∗ ρϵ,per ∗ ρϵ,per(x)φλ(x) dx

= −
∑

k,l∈Z2

∫
R2

(K ∗ (ρk ∗ ρl)ϵ)(λu)φ(u) du, (5.13)

over a finite sum whose number of terms depends only on φ and K (for
reasons of support).

Fix θ > 0, then from the logarithmic estimate (5.12) and the fact that
K is compactly supported (by construction), one can estimate

|K(x)| ≤ C|x|−θ,

and thus it suffices to prove that for any given mollifier η ∈ C∞
c (we will

choose η = ρk ∗ ρl), the convolution K ∗ ηϵ still satisfies such a bound
uniformly in ϵ: this is done in [16, Lemma 10.17], but let us replicate the
argument here. Without loss of generality, assume supp(η) ⊂ B(0, 1). Let
x ∈ Rd. If |x| ≤ 2ϵ, we write

K ∗ ηϵ(x) =
∫

K(z)ηϵ(x− z) dz,

so that for reasons of support, |z| ≤ 3ϵ in this integral. We bound
|ηϵ(x− z)| ≤ Cϵ−2, hence,

|K ∗ ηϵ(x)| ≤ Cϵ−2
∫

B(0,3ϵ)
|K(z)| dz

≤ Cϵ−2
∫

B(0,3ϵ)
|z|−θ dz

≤ Cϵ−θ ≤ C|x|−θ.

On the other hand, if |x| ≥ 2ϵ we write

K ∗ ηϵ(x) =
∫

K(x− z)ηϵ(z) dz,

so that for reasons of support, |z| ≤ ϵ in this integral and |x − z| ≥
|x| − |z| ≥ |x| − ϵ ≥ |x| − |x|/2 = |x|/2, thus

|K ∗ ηϵ(x)| ≤ C

∫
|x− z|−θ|ρϵ(z)| dz ≤ C|x|−θ,
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and combining this estimate with (5.13) yields the announced bound.

Remark 5.7. One can tackle in the same way the second bound (5.5).
We admit this fact without proof because the corresponding calculations
become technical. We refer to [16, Theorem 10.19] where the calculations
are fully carried out.

5.4 The renormalised model

The discussion of the previous section showed that the model M ϵ

diverges, because of the logarithmically divergent term cϵ. However, con-
vergence holds for the renormalised model M̂ ϵ defined for τ ∈ I by

Π̂ϵ
x(τ) :=

Πϵ
x( − cϵ1) if τ = ,

Πϵ
x(τ) else,

and Γ̂ϵ := Γϵ. (5.14)

where cϵ defined in (5.11) diverges as

cϵ = − 1
2π log |ϵ| +Oϵ→0(1).

Remark 5.8. The renormalised model Π̂ϵ is not multiplicative, contrary
to Πϵ, recall Remark 4.15. Indeed, we have Π̂ϵ( ) ̸= Π̂ϵ( )Π̂ϵ( ).

Remark 5.9. The definition (5.14) shows that for a model (Π,Γ) the
collection of basis germs Π is not uniquely determined by Γ in general,
even for admissible models.

Remark 5.10. The fact that the renormalised expansion operator Γ̂ϵ

coincides with Γϵ is not true for general equations, as the renormalisation
terms may be propagated into Γ̂ϵ by convolution.

5.5 The renormalised equation

The situation at this point is the following: we have a model Πϵ and
a renormalised model Π̂ϵ, but only the latter converges (in the space of
admissible models) as ϵ → 0. Let us recall that the reconstruction and
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convolution operator on modelled distributions depend on the underlying
model, so that we note Rϵ,Kϵ resp. R̂ϵ, K̂ϵ those operators for the model
Πϵ resp. Π̂ϵ (where we include both the singular part K and the remainder
R of the kernel G in the convolution operators).

By the discussions above, if we fix a (random) b > 0 small enough,
there exist modelled distributions fϵ ∈ Dγ

Mϵ;fp, f̂ϵ ∈ Dγ

M̂ϵ;fp solving the
fixed point problem

fϵ = Kϵ(a + b fϵ ), f̂ϵ = K̂ϵ(a + b f̂ϵ ), (5.15)

and we denote their reconstruction

uϵ := Rϵ(fϵ), ûϵ := R̂ϵ(f̂ϵ),

so that by continuity of (4.14), the family (ûϵ)ϵ>0 converges as ϵ → 0. We
now show that ûϵ is also the solution to a renormalised equation, see also
[16, Section 9.3].

By construction, recall Section 4.4.1, the modelled distribution f̂ϵ is of
the form

f̂ϵ(x) = f1,ϵ(x)1 + f2,ϵ(x) + f3,ϵ(x)X1 + f4,ϵ(x)X2, (5.16)

for some functions f1,ϵ, f2,ϵ, f3,ϵ, f4,ϵ. In fact, expressing the fixed-point
identity (5.15), one observes that

f2,ϵ(x) = a+ bf1,ϵ(x), (5.17)

Now, on the one hand, since the reconstruction commutes with the
convolution operator,

ûϵ = R̂ϵ(f̂ϵ) = R̂ϵ(K̂ϵ(a + bf̂ϵ )) = G ∗
(
R̂ϵ(a + bf̂ϵ )

)
. (5.18)

On the other hand, since Πϵ, Π̂ϵ are constituted of (smooth) functions
which in fact coincide except on the symbol which does not appear in
the decomposition (5.16), one deduces (recall Example 4.10) that

ûϵ(x) = R̂ϵ(f̂ϵ)(x) = Π̂ϵ
x(f̂ϵ(x))(x) = Πϵ

x(f̂ϵ(x))(x) = f1,ϵ(x). (5.19)
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Similarly, the right-hand side of (5.18) can be expressed as

R̂ϵ(a + bf̂ϵ )(x)

= Π̂ϵ
x(a + bf̂ϵ(x) )(x)

= Π̂ϵ
x

(
(a+ bf1,ϵ(x)) + bf2,ϵ(x) + bf3,ϵ(x) X1 + bf4,ϵ(x) X2

)
(x)

= Πϵ
x

(
(a+ bf1,ϵ(x)) + bf2,ϵ(x)( − cϵ1) + bf3,ϵ(x) X1 + bf4,ϵ(x) X2

)
(x)

= Πϵ
x

(
a − cϵbf2,ϵ(x)1 + bf̂ϵ(x)

)
(x).

Now we plug in (5.17)-(5.19), and use the multiplicativity property of
Πϵ,

R̂ϵ(a + bf̂ϵ )(x)

= aΠϵ
x( )(x) + bΠϵ

x(f̂ϵ(x))(x)Πϵ
x( )(x) − cϵbf2,ϵ(x)Πϵ

x(1)(x)

= aξϵ(x) + bûϵ(x)ξϵ(x) − cϵb(a+ bf1,ϵ(x))

= aξϵ(x) + bûϵ(x)ξϵ(x) − cϵb(a+ bûϵ(x))

= (a+ bûϵ(x))(ξϵ(x) − bcϵ),

whence replacing in (5.18) gives

ûϵ = G ∗
(
(a+ bûϵ)(ξϵ − bcϵ)

)
,

i.e. recalling Theorem A.17, ûϵ is the unique (smooth) 1-periodic solution
to

(1 − ∆)ûϵ =
(
a+ bûϵ

)(
ξϵ − bcϵ

)
.

This concludes the proof of Theorem 1.2.

Remark 5.11 (Family of solutions). For any constant c ∈ R, we could
replace cϵ by cϵ + c in the calculations above and still obtain a limiting
solution û = û(c) ∈ C1−κ. Thus, we have in fact obtained a whole family
of solutions (û(c))c∈R to the equation (E), indexed by R.

5.6 Adding a non-linearity

In this section we discuss the more general equation

(1 − ∆)u = (a+ bF (u))ξ on Td=2, (5.20)
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for some non-linarity F : R → R of suitable regularity.
More precisely, fix κ > 0 sufficiently small, γ ∈ (1 + κ, 2 − 2κ) and

F ∈ C
γ

1−κ
+1. Then from the discussion of Section 4.3.4, it is still possible

to lift (5.20) to the following fixed-point problems in spaces of modelled
distributions Dγ , for the same models Πϵ and Π̂ϵ which we introduced
above:

fϵ = Kϵ(a + bF (fϵ) ), f̂ϵ = K̂ϵ(a + bF (f̂ϵ) ),

where F : Dγ → Dγ is the operation defined in Proposition 4.31.
Note, however, that it is not clear whether such fixed points now

uniquely exist: this is because the corresponding map

Φϵ : Dγ
Mϵ;fp −→ Dγ

Mϵ;fp
f 7−→ K(a + bF (f) ),

might not be a contraction anymore for some choice of b sufficiently small:
indeed, the map f 7→ F (f) is only locally Lipschitz in general, recall
Proposition 4.31, and thus the continuity constants may depend on the
norm of f .

Arguing exactly as in Section 5.5, one may write the corresponding
renormalised equation satisfied by ûϵ := R(f̂ϵ) (assuming such a fixed-point
f̂ϵ has been found):

(1 − ∆)ûϵ = (a+ bF (ûϵ))(ξϵ − bcϵF
′(ûϵ)).

A A useful toolbox: distributions, Hölder regu-
larity, Gaussian white noise

A.1 Distributions

One of the central ingredients in equation (E) is the Gaussian white
noise ξ, which we define in Appendix A.5 below. Its sample paths turn
out to be so irregular that they can not be understood as functions; they
rather live in the world of distributions.
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We fix some d ∈ N and recall some notations and definitions. For
r ∈ N0, we will denote Cr = Cr(Rd) the space of r-times continuously
differentiable functions, and note correspondingly

∥f∥Cr := sup|k|≤r ∥∂kf∥∞,

where the supremum is taken over multi-indices k = (k1, · · · , kd) and
|k| =

∑d
i=1 ki.

Definition A.1 (Test-functions and distributions). A test-function is a
compactly supported smooth function φ ∈ C∞

c (Rd). A distribution is a
linear functional

f : C∞
c (Rd) → R,

which is continuous in the following sense: for every compact set K ⊂ Rd,
there exists r ∈ N0 and C > 0 such that for all test-functions φ supported
in K,

|f(φ)| ≤ C∥φ∥Cr .

We will denote D′(Rd) the space of distributions.

Note that any locally integrable function f : Rd → R defines a distribu-
tion through

f(φ) :=
∫
Rd
f(x)φ(x) dx, (A.1)

which corresponds to the prototypical way of understanding the pairing
between a distribution f and a test-function φ. Another well-known
distribution is the Dirac δ defined by

δ(φ) := φ(0).

One advantage of the “distributional point of view” is that linear
transformations on test-functions can usually be automatically transferred
to distributions by duality (on the other hand, nonlinear operations such
as products can typically not be extended to distributions). Let us list
some examples which will be used throughout this article:
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Definition A.2 (Some operations on distributions). Let f ∈ D′(Rd).

1. (Derivation) Let k ∈ Nd
0 be a multi-indice, then we define the deriva-

tive ∂kf ∈ D′(Rd) by

∂kf(φ) := (−1)|k|f(∂kφ),

which extends the usual integration by parts formula, recall (A.1).

2. (Multiplication with C∞) Let χ ∈ C∞, then we define the product
χf ∈ D′(Rd) by (χf)(φ) := f(χφ).

3. (Translation) For a ∈ Rd, let τa : Rd → Rd be the translation by a

i.e. τa(x) = x+ a. We define (f ◦ τa)(φ) := f(φ ◦ τ−a).

In what follows it will be convenient to consider periodic distributions.

Definition A.3 (Periodic distributions). We say that a distribution f ∈
D′(Rd) is periodic of period a ∈ Rd if f ◦ τa = f .

Notation A.4. We will denote D′(Td) the vector space of periodic distri-
butions of period ei for all i ∈ {1, . . . , d}, where ei denote the i-th vector
of the canonical basis of Rd. We will also just write D′ when it is clear
whether we mean D′(Rd) or D′(Td).

Remark A.5. This may seem like an abuse of notation, since it would be
more natural to define D′(Td) as the space of continuous linear functionals
f : C∞(Td) → R. However, it is possible to see that those two construc-
tions actually result in isomorphic vector spaces, hence we will stick with
Notation A.4 in the remainder of this article.

A.2 Hölder regularity

We have already mentioned above that Gaussian white noise ξ is par-
ticularly irregular. Of course, it is now natural to look for a quantification
of this irregularity. Recall the classical notion of Hölder continuity for
functions:
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Definition A.6 (α-Hölder regularity, 0 < α < 1). Let α ∈ (0, 1). A
function f : Rd → R is said to be locally α-Hölder if for every compact
K ⊂ Rd there exists C > 0 such that for x, y ∈ K,

|f(y) − f(x)| ≤ C|y − x|α. (A.2)

Hölder regularity is widely used in stochastic analysis: for instance, it
is well-known that the sample paths of brownian motion are α-Hölder for
any α ∈ (0, 1/2).

When α > 1, it can be checked that only constant functions satisfy
condition (A.2), which indicates the need to adapt the definition. A natural
generalisation consists in substracting further terms of the Taylor expansion
of f in (A.2):

Definition A.7 (α-Hölder regularity, α ∈ R+ \ N0). Let α ∈ R+ \ N0. A
function f ∈ C⌊α⌋(Rd;R) is said to be locally α-Hölder if for every compact
K ⊂ Rd there exists C > 0 such that for x, y ∈ K,∣∣∣f(y) −

∑
|k|≤α

f (k)(x)
k! (y − x)k

∣∣∣ ≤ C|y − x|α. (A.3)

Of course, Definitions A.6 and A.7 are suitable only for functions, while
white noise turns out to be a distribution: we now discuss how to generalise
the notion of Hölder regularity to negative exponents and distributions.
For this purpose, let us understand how (A.3) transforms under the pairing
(A.1). We will need to control the position and scale of test-functions,
which can be modulated as follows:

Definition A.8 (Recentering and rescaling). Let φ be a test-function,
x ∈ R and λ > 0. We define a new test-function φλ

x by setting, for z ∈ Rd,

φλ
x(z) := λ−dφ

(z − x

λ

)
.

We say that φλ
x is recentered at the point x and rescaled with the scale λ.

Observe that φλ
x is concentrated around x with a scale λ. Thus, f(φλ

x)
naturally describes the behaviour of f in the ball centered around x with
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radius λ. More precisely, let f be an α-Hölder function for some α ∈ R+\N0,
φ be a test-function, and x ∈ Rd, λ > 0. Applying (A.1) and the natural
change of variable in the integral, observe that

f(φλ
x) =

∫
Rd
f(z)φλ

x(z) dz =
∫
Rd
f(x+ λu)φ(u) du,

is a O(1) as the localisation scale λ goes to 0. Crucially, this estimate is
improved if we further assume that φ annihilates polynomials, in the sense
that

∫
Rd φ(x)xk dx = 0 for all multi-indices |k| ≤ α. Indeed, in this case

we may substract the Taylor expansion in the integral:

f(φλ
x) =

∫
Rd

(
f(z) −

∑
|k|≤α

f (k)(x)
k! (z − x)k

)
φλ

x(z) dz,

yielding after applying the assumption of Hölder regularity, f(φλ
x) =

O(λα). It turns out that “reversing” those observations yields a satisfactory
definition of Hölder regularity for distributions: to give precise statements,
let us introduce the following notation.

Definition A.9 (Balls of test-functions). Let r ∈ N0, δ ∈ R, and denote

Br := {φ ∈ C∞
c : suppφ ⊂ B(0, 1), ∥φ∥Cr ≤ 1},

Bδ := {φ ∈ C∞
c : suppφ ⊂ B(0, 1),

∫
Rd
φ(x)xk dx = 0 for 0 ≤ |k| ≤ δ},

Br
δ := Br ∩ Bδ.

We can now define the notion of Hölder regularity for distributions.

Definition A.10 (α-Hölder regularity, α ∈ R). Let α ∈ R, and let
r = rα ∈ N0 be the smallest integer such that α+ r > 0. A distribution
f ∈ D′(Rd) is said to be locally α-Hölder if for every compact K ⊂ Rd,

∥f∥Cα(K) := sup
x∈K,
φ∈Br

|f(φx)| + sup
x∈K,

λ∈(0,1]
φ∈Br

α

|f(φλ
x)|

λα
< +∞. (A.4)

We will note:
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1. Cα
loc(Rd) the Fréchet space topologized by the collection of seminorms

(A.4) over any (countable) exhaustion of Rd by compacts.

2. Cα(Td) the Banach space of α-Hölder 1-periodic distributions, normed
by (A.4) for K = [0, 1]d.

It is a good exercise in mollification to prove that when α ∈ R+ \ N0,
Definition A.10 actually coincides with Definition A.7.

Remark A.11. Note that Definition A.10 also covers integer exponents
n ∈ N0. Perhaps surprisingly, the corresponding space Cn

loc(Rd) is strictly
larger than the space Cn of n-times continuously differentiable functions
(whence our use of the calligraphic letter C in the notation for Hölder
spaces). As an example, note that the distribution x 7→ log |x| belongs to
C0

loc(Rd) but is not continuous at the origin.

A.3 Multiplication in Hölder spaces

One advantage of the Hölder spaces is their general stability with respect
to usual operations. For instance, while it is known [26] that it is impossible
to multiply two distributions in general, it is in fact possible to multiply
two Hölder distributions as long as the regularity of one compensates the
irregularity of the other.

Theorem A.12 (“Young” multiplication). Let α, β ∈ R with α+ β > 0.
Then there exists a canonical continuous bilinear “multiplication” map

Cα(Td) × Cβ(Td) −→ Cmin(α,β)(Td)
(f, g) 7−→ f · g,

which coincides with the usual pointwise multiplication on periodic smooth
functions.

The assumption α+ β > 0 in this theorem is crucial: when α+ β ≤ 0,
such a canonical map does not exist anymore.
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A.4 Integration in Hölder spaces

Another important operation is that of integrating against singular
kernels. To motivate this, recall the notion of a fundamental solution to a
differential operator.

Definition A.13 (Fundamental solution). Let L be a differential operator
on Rd. A fundamental solution to L is any distribution G ∈ D′(Rd) such
that LG = δ.

This notion is not void, as fundamental solutions can be explicitly
provided for many differential operators of interest.

Example A.14. This paper is motivated by the example L = 1 − ∆ in
Rd for d = 1, 2, which admits a fundamental solution given by:

G(x) = 1
2e

−|x| (for d = 1), G(x) = 1
2πK0(|x|) (for d = 2),

where K0 : R∗
+ → R+ denotes the modified Bessel function of the second

kind with index 0, which is a smooth function with known asymptotic
behaviour:

At 0: K0(x) = − log(x) +Ox→0(1), and ∂kK0(x) = Ox→0(x−k), k ≥ 1,

At ∞: for k ≥ 0, ∂kK0(x) ∼x→+∞ (−1)k

√
π

2xe
−x.

A fundamental solution allows to “invert” the differential operator L
by convolution: this is because δ is the neutral element for convolution.
We now recall and clarify the properties of convolution of distributions.
We will use the following notations:

Notation A.15. We will denote:

1. E ′(Rd) the space of compactly supported distributions i.e. of distribu-
tions f ∈ D′(Rd) such that there exists a test-function χ ∈ C∞

c such
that χf = f .
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2. S(Rd) the Schwartz class of rapidly decreasing smooth functions i.e.
the space of smooth functions f : Rd → R such that for all multi-
indices α, β ∈ Nd

0, supx∈Rd |xα∂βf(x)| < ∞.

Definition A.16 (Convolution). Convolution products may be defined
on various spaces of functions and distributions.

1. The convolution ∗ : C∞
c ×C∞ → C∞ is defined for φ ∈ C∞

c , ψ ∈ C∞,
x ∈ Rd, by

φ ∗ ψ(x) :=
∫
Rd
φ(y)ψ(x− y)dy.

2. The convolution ∗ : C∞
c × D′(Rd) → C∞ is defined by duality: for

φ ∈ C∞
c , f ∈ D′(Rd), and x ∈ Rd, set

φ ∗ f(x) := f(φ(x− ·)).

It turns out that the operation defined in item 2 can further be extended:

3. to a map ∗ : E ′(Rd) × D′(Td) → D′(Td),

4. to a map ∗ : S(Rd) × D′(Td) → C∞(Td),

and all definitions above are compatible and guarantee the relations: ∂k(f ∗
g) = (∂kf) ∗ g = f ∗ (∂kg).

The importance of the notion of fundamental solution is reflected by
the following “well-posedness” result.

Theorem A.17. For d ∈ {1, 2} and f ∈ D′(Td), then the equation of
unknown u ∈ D′(Td),

(1 − ∆)u = f,

admits a unique solution given by u = G ∗ f , where G is given by (2.1) and
the convolution is well-defined because G can be decomposed as the sum of
a compactly supported distribution and a Schwartz function.
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If L is a differential operator of order r ∈ N0, we expect that applying
L to a function or to a distribution will reduce its regularity by r. Looking
at Theorem A.17, we conversely expect that the operation of convolution
against the corresponding kernels should have a regularising effect of degree
r: such statements are known as Schauder estimates.

The smoothing effect of convolution is well-known: as recalled in
Definition A.16, the convolution of any distribution with any compactly
supported smooth function always results in a smooth function. Note
however that we can not directly apply this fact here because the kernels
in (2.1) are not smooth at the origin. It turns out that they still display
a regularising effect, to a degree which depends on the order of their
singularity at the origin.

Definition A.18 (Regularising kernel). Let β > 0. We say that a function
K : Rd → R ∪ {±∞} is a β-regularising kernel if it is C∞ on Rd \ {0} and
if there exists a constant ρ > 0 such that for all multi-indices k ∈ Nd

0, there
exists a constant Ck > 0 such that

|∂kK(x)| ≤

Ck|x|β−d−|k|1{|x|≤ρ} if β ̸= d,

Ck|x|−|k| log
(
1 + |x|−1)1{|x|≤ρ} if β = d.

Remark A.19 (Truncation). Note that the functions in (2.1) do not
satisfy Definition A.18 because they are not compactly supported.

However, it is straightforward to see that one can decompose them
as G = K + R, where K is 2-regularising, and R ∈ S(Rd) is a Schwartz
function.

The regularisation properties of convolution are made precise in the
following theorem, see e.g. [11, Section 14.3] for a discussion.

Theorem A.20 (Regularisation by convolution). The following properties
hold:

1. Let R ∈ S(Rd) be a Schwartz function. Then for any α, α′ ∈ R the
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convolution map

Cα(Td) −→ Cα′(Td)
f 7−→ R ∗ f,

is well-defined, linear, and continuous.

2. (“Classical Schauder estimates”) Let K be a β-regularising kernel for
some β > 0. Then for any α ∈ R, the convolution map

Cα(Td) −→ Cα+β(Td)
f 7−→ K ∗ f,

is well-defined, linear, and continuous.

A.5 Gaussian white noise

We now turn to the definition of our main probabilistic object. As
for the usual definition of brownian motion (and Gaussian processes in
general), we define Gaussian white noise in two steps:

1. we first prescribe a Gaussian covariance structure;

2. then we show that – up to modification – we can impose suitable
regularity assumptions on the sample paths.

The prescription of covariance is contained in the following definition.

Definition A.21 (Gaussian white noise). We call (periodic) Gaussian
white noise any linear isometry

ξ : L2(Td) −→ L2(Ω,F ,P)
h 7−→ ξ(h),

on some complete probability space (Ω,F ,P), such that for all h ∈ L2(Td),
ξ(h) is a real-valued centered Gaussian variable.

Remark A.22 (Existence). These conditions characterize the marginals of
ξ in a consistent way, so that Kolmogorov’s extension theorem guarantees
the existence of such a ξ.
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Remark A.23 (Covariance). The assumption of isometry means that
for h1, h2 ∈ L2(Td), E[ξ(h1)ξ(h2)] = ⟨h1, h2⟩L2(Td). In particular, for
h ∈ L2(Td) this gives the variance of the centered Gaussian variable ξ(h),
and thus its law: ξ(h) ∼ N (0, ∥h∥2). Thus, Definition A.21 provides a
rigorous formulation of the (nonrigorous) intuition that the covariance
function of ξ is the Dirac: “E[ξ(x1)ξ(x2)] = δ(x2 − x1)”.

Remark A.24 (Periodization). In Definition A.21, the map ξ is defined
against periodic functions. In the remainder of this article, we will see
such a map as a random periodic distribution, where the pairing against
an arbitrary test-function φ ∈ C∞

c is defined by ξ(φ) := ξ(φper) where
φper(x) :=

∑
k∈Zd φ(x + k) defines the periodization of φ. In this con-

text, the covariance of ξ is thus given for φ,ψ ∈ C∞
c by E[ξ(φ)ξ(ψ)] =

⟨φper, ψper⟩L2([0,1]d).

We are now interested in the regularity properties of ξ, which we study
up to modification, as usual in stochastic analysis:

Definition A.25 (Modification). Let f : L2(Td) → L2(Ω,F ,P). A modifi-
cation of f is a map f̃ : L2(Td) × Ω → R such that for each h ∈ L2(Td),
f̃(h) : Ω → R is a random variable almost surely equal to f(h).

For this purpose, we will apply the following version of Kolmogorov’s
continuity theorem:

Theorem A.26 (Kolmogorov continuity for distributions). Let (Ω,F ,P)
be a complete probability space, and let f : L2(Td) → L2(Ω,F ,P) be a
continuous linear map. Assume that there exist α < 0, p ≥ 1 and φ ∈
C∞

c (Rd) with
∫
φ ̸= 0, such that for all k ∈ N0, x ∈ Rd,

E
[∣∣f(φ2−k

x

)∣∣p] ≤ Cp,φ2−kαp. (A.5)

Then f admits a modification f̃ such that for all ω ∈ Ω, and α′ < α− d/p,

f̃(ω) ∈ Cα′(Td).
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Proof. It is known that from only the assumptions of linearity and continu-
ity, the mapping f has a modification (which we still call f for simplicity)
which is in D′(Td) for all ω ∈ Ω: we refer the reader e.g. to [28, Corol-
lary 4.2] for the (technical) proof.

It remains to obtain the Hölder regularity: for this purpose, we will use
an improved characterisation of the Definition A.10 of Hölder regularity
for distributions. Namely, in order to show that a distribution f ∈ D′ is in
Cα′

loc for some α′ < 0, it suffices to exhibit one test-function ρ ∈ C∞
c (Rd)

with
∫
ρ ̸= 0, such that for all compacts K ⊂ Rd,

sup
x∈K∩Qd

sup
n∈N0

2nα′ |f(ρ2−n

x )| < ∞.

See [6, Theorem 12.5] for an elementary proof of this fact. We choose
ρ := φ ∗ φ ∈ C∞

c , where φ ∈ C∞
c is the test-function provided in the

statement of the theorem. By the usual properties of convolution in D′,
we have for all ω ∈ Ω, x ∈ K, n ∈ N0,

f(ρ2−n

x ) = f(φ2−n ∗ φ2−n

x ) =
∫

K′
φ2−n

x (y)f(φ2−n

y )dy.

where K ′ is a suitable enlargement of K, e.g. K ′ := K ⊕ suppφ. Applying
Hölder’s inequality to the exponent p from the statement of the theorem
and its conjugate q := p

p−1 ,

|f(ρ2−n

x )| ≤
(∫

Rd
|φ2−n

x (y)|qdy
) 1

q
(∫

K′
|f(φ2−n

y )|pdy
) 1

p

.

The integral on the left evaluates to 2
nd
p ∥φ∥Lq . Now we bound(

sup
x∈K∩Qd

sup
n∈N0

2nα′ |f(ρ2−n

x )|
)p

≤ sup
x∈K

∑
n∈N0

(
2nα′ |f(ρ2−n

x )|
)p

≤
∑

n∈N0

2n(α′p+d)∥φ∥p
Lq

∫
K′

|f(φ2−n

y )|pdy.

For each n ∈ N0, the map (ω, y) 7→ f(φ2−n

y ) is jointly measurable,
because it is measurable in ω and continuous in y. Thus by Tonelli’s
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theorem the map ω 7→
∫

K′ |f(φ2−n

y )|pdy is measurable and

E
[∫

K′
|f(φ2−n

y )|pdy
]

=
∫

K′
E
[
|f(φ2−n

y )|p
]
dy ≲p,φ,K 2−nαp.

This implies

E
[(

sup
x∈K∩Qd

sup
n∈N0

2nα′ |f(ρ2−n

x )|
)p]

≲p,φ,K

∑
n∈N0

2np(α′+ d
p

−α)
,

which is finite as soon as α′ < α− d/p. Thus, f ∈ Cα′ on an event E ∈ F
of measure 1: the result follows after setting f̃ := f on E and f̃ := 0
outside.

Other proofs of such Kolmogorov statements can also be found in the
literature with techniques from wavelet theory [12] or Littlewood–Paley
decompositions [23, Lemma 5.2], [27].

Application A.27 (Regularity of Gaussian white noise). Let ξ be a
Gaussian white noise, as per Definition A.21, then ξ satisfies (A.5) for
α = −d/2 and any p ≥ 1. Indeed, let φ ∈ C∞

c (Rd) then

E
[∣∣ξ(φ2−k

x )
∣∣p] ≤ CpE

[∣∣ξ(φ2−k

x )
∣∣2]p/2

(Gaussian moments)

= Cp

∥∥(φ2−k

x

)per∥∥p

L2 (isometry and Remark A.24)

≤ Cp,supp(φ)∥φ∥p
L22kdp/2 (Definition A.8 of scaling),

where in the first inequality we have used the following general property
of Gaussian variables: for all p ≥ 1, there exists Cp > 0 such that for
all real Gaussian centered random variables X, E[|Xp|] ≤ CpE[X2]

p
2 .

Thus applying Theorem A.26, ξ admits a modification with sample paths
belonging in Cα(Td) for any α < −d/2.

Remark A.28 (Besov regularity). Looking back to Application A.27, we
have only used the gaussianity assumption in the form of the equivalence
of moments. In fact, by exploiting more precise properties of Gaussian
processes, it is possible to prove that any Gaussian white noise admits a
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modification with sample paths belonging to the Besov space B− d
2

p,∞(Td) for
all p ∈ [1,+∞), see e.g. [27]. This is a slight improvement because of the
classical embedding of function spaces

B− d
2

p,∞(Td) ⊂ C− d
2 − d

p (Td).
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