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1 Introduction

Geometry is one of the most beautiful and ancient forms of mathematics.
Inspired by Professor Romain Murenzi’s speech at the 2022 TWAS TYAN Vir-
tual Workshop on Differential Geometry, we will present the Geometric Analysis
that leads a very young and active branch of Geometry called Manifold Learn-
ing. Manifold Learning is a form of machine learning that has applications in
biology, computer vision, natural language processing, and data mining. It is
built upon half a century of Geometric Analysis. Here we review the history
from Varadhan’s theorem relating the heat kernel and the distance on a Rieman-
nian manifold, to the study of eigenfunctions and eigenvalues in relation to the
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heat kernel, to convergence of Riemannian manifolds, to embeddings of Rie-
mannian manifolds using the heat kernel, to the modern notions of eigenmaps
and dimension reduction through manifold learning. Throughout we provide
detailed examples demonstrating the ideas. We assume only knowledge of Pro-
fessor Manfredo P. do Carmo’s Riemannian Geometry and we provide a guide
to both the original papers and various useful textbooks.

2 Heat Kernels and Distances on Riemannian Manifolds

We will begin with a 1967 theorem of TWAS Fellow and Abel Laureate,
Srinivasan Varadhan, who earned his doctorate at the Indian Statistical Institute
in 1963:

Theorem 2.1. [93] The distance between two points, x and y in a compact Rie-
mannian manifold, M, satisfies

d(x, y)2 = lim
t→0
−4t log ht(x, y) (2.1)

where ht(x, y) is the heat kernel. This convergence is uniform on bounded re-
gions, U, in the sense that: ∀ε > 0 ∃TU,ε > 0 such that ∀t ∈ (0,TU,ε) we have

|d(x, y)2 + 4t log(ht(x, y))| < ε (2.2)

which is equivalent to saying that

e−d2(x,y)/(4t) · e−ε/(4t) < ht(x, y) < e−d2(x,y)/(4t) · eε/(4t). (2.3)

Recall that the heat kernel

ht : M × M → (0,∞) defined for t > 0 (2.4)

is defined to be the unique function such that

u(x, t) =
∫

M
f (y)ht(x, y) dvoly, (2.5)

for any solution, u : M × (0,∞)→ [0,∞) of the heat equation,

∆xu(x, t) = ∂tu(x, t) with initial data lim
t→0+

u(x, t) = f (x). (2.6)

As a consequence, for any x ∈ M,∫
M

ht(x, y) dvoly = 1. (2.7)



36 C-Y Lin and C Sormani

Furthermore, it is easy to verify the heat semigroup property holds:∫
M

ht(x, y)hs(y, z) dvoly = ht+s(x, z). (2.8)

For a good resource with the details as to why the heat kernel exists on a
compact Riemannian manifold and proofs of its various properties, we refer the
reader to Chavel’s textbook Eigenvalues in Riemannian Geometry [22]. For
more theorems about the heat kernel see Schoen-Yau’s text Lectures on Differ-
ential Geometry [83].

Varadhan proved his theorem by estimating the heat kernel on normal neigh-
borhoods using the Euclidean heat kernel and then built his estimate on ht(x, y)
for x far from y by applying the heat semigroup property as well as the proper-
ties of the exponential map based at x near the minimizing geodesic from x to
y. This proof appeared in [93] and is quite readable for geometers. He wrote a
probabilistic proof in [92].

2.1 The Heat Kernel on a Circle

On a circle, S1 parametrized by θ ∈ [0, 2π) with gS1 = dθ2, then the Laplacian
is ∆ = ∂2

θ and the heat kernel is the following sum which converges due to the
exponential decay:

ht(θ1, θ2) =
∑
m∈Z

1√
4πt

e−(θ1−θ2+2πm)2/(4t). (2.9)

Notice that as t → 0, the term in the sum which dominates because it decays the
least quickly, is the term with

e−(θ1−θ2+2πm)2/(4t) = e−d2
S1

(θ1,θ2)2/(4t) (2.10)

where dS1(θ1, θ2) is the Riemannian distance between the points in S1:

dS1(θ1, θ2) = min{|θ1 − θ2 + 2πm| : m ∈ Z} (2.11)

which is the length of the smaller arc between θ1 and θ2.

2.2 The Heat Kernel on a Rescaled Circle

On a circle, S1
R, we rescale the circle by a factor R > 0 so that x = Rθ ∈

[0, 2πR) with gR = dx2 = R2dθ2. Then the Laplacian rescales ∆R = ∂
2
x = R−2∂2

θ

and the heat kernel is

hR
t (θ1, θ2) =

∑
m∈Z

1√
4πt

e−(θ1−θ2+2πm)2R2/(4t). (2.12)
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Note that the heat kernel of S1
R can be related to the heat kernel of S1 with

dilated time:
hR

t (θ1, θ2) = R−1 ht/R2(θ1, θ2) (2.13)

because∑
m∈Z

1√
4πt

e−(θ1−θ2+2πm)2R2/(4t) = R−1
∑
m∈Z

1√
4π(t/R2)

e−(θ1−θ2+2πm)2/(4(t/R2)) (2.14)

2.3 The Heat Kernel on Tori

Next let us consider the flat torus formed by taking the isometric product of
rescaled circles,

S1
A × S

1
B = (S1 × S1, A2 dθ2 + B2 dφ2). (2.15)

Its heat kernel is

hA,B
t ((θ1, φ1), (θ2, φ2)) =

∑
n,m∈Z

1
(4πt) e−((θ1−θ2+2πn)2A2+(φ1−φ2+2πm)2B2)/(4t). (2.16)

Notice that

4t log hA,B
t ((θ1, φ1), (θ2, φ2)) = 4t log hA

t (θ1, θ2) + 4t log hB
t (φ1, φ2). (2.17)

Since the distances squared also add, we have

d2
S1

A×S
1
B
((θ1, φ1), (θ2, φ2)) = d2

S1
A
(θ1, θ2) + d2

S1
B
(φ1, φ2) (2.18)

which matches what Varadhan’s limit predicts in this setting.

2.4 The Heat Kernel on Spaces of Constant Curvature

In general on a homogeneous manifold, Mn, the heat kernel will be a function
only of distance and time:

hM
t (x, y) = hM

t (s) where s = d(x, y). (2.19)

The heat kernel on a sphere was first computed by Minakshisundaram [76].
The heat kernel on hyperbolic space was first computed in dimension 2 to be

hH
2

t (s) =

√
2

(4πt)3/2 e−t/4
∫ ∞

s

ue−u2/(4t)

(cosh(u) − cosh(s))1/2 du (2.20)
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by McKean [74]. In three dimensions it was shown to be

hH
3

t (s) =
(−1)
2π

1
√

4πt

(
1

sinh(s)
∂

∂s

)
e−te−s2/4t (2.21)

by Davies-Mandouvalos in [41]. They applied an unpublished recurrence rela-
tion proved by Millson:

hH
m+2

t (s) = −
e−mt

2π sinh(s)
∂

∂s
hH

m

t (s) (2.22)

to provide the formula for the heat kernel in all dimensions. See also the alter-
native proof by Grigor’yan-Noguchi in [54].

When Mn
κ is the simply connected Riemannian manifold of constant curva-

ture κ, we write
hκ,nt (s) = hMn

κ
t (s). (2.23)

Since Mn
κ is just a rescaled sphere Sn

κ−1/2 when κ > 0 and is just rescaled hyper-
bolic space Hn

κ−1/2 when κ < 0, we know

hκ,nt (s) = κn/2hS
n

κt (κ1/2s) for κ > 0 (2.24)

and
hκ,nt (s) = |κ|n/2hH

n

|κ|t(|κ|
1/2s) for κ < 0. (2.25)

2.5 Estimating the Heat Kernel on Families of Manifolds

In 1976 Debiard-Gaveau-Mazet [42] estimated the heat kernel uniformly
from above and below.

Theorem 2.2. For simply connected manifolds, M, with negative sectional cur-
vature between bounds

κ ≤ sectM ≤ κ
′ < 0, (2.26)

the heat kernel satisfies

hκ
′,n

t (s) ≥ hM
t (x, y) ≥ hκ,nt (s). (2.27)

where hκ,n(t)(s) is defined as in (2.23) and where s = dM(x, y).

Applying this theorem, we thus have

s2 + 4t log hκ,nt (s) ≥ dM(x, y)2 + 4t log hM
t (x, y) ≥ s2 + 4t log hκ

′,n
t (s). (2.28)
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So
∣∣∣dM(x, y)2 + 4t log hM

t (x, y)
∣∣∣ is bounded above by

max
{
|s2 + 4t log hκ,nt (s)|, |s2 + 4t log hκ

′,n
t (s)|

}
. (2.29)

Thus the uniform convergence in Varadhan’s Theorem is uniform even allowing
the Riemannian manifold to vary within this class of Riemannian manifolds M
such that (2.26) holds.

In 1981, Cheeger and Yau [27] proved the following estimate that only re-
quires uniform lower bounds on the Ricci curvature.

Theorem 2.3. If Mn has Ricci ≥ (n − 1)H for any H ∈ (−∞,∞), then we still
have a lower bound

hM
t (x, y) ≥ hH,n

t (dM(x, y)). (2.30)

So if M is also simply connected with sectM ≤ κ
′ we still have (2.27) and its

consequences.

In 1982, Cheeger-Gromov-Taylor found an upper bound on the heat kernel
for points x, y ∈ B(p,D) depending on D, on the injectivity radius and the vol-
umes of balls in the manifold (See Theorem 1.4 in [26]). In 1984 Chavel found
an upper bound on the heat kernel which depends on isoperimetric constants of
balls (See Theorems 8 and 9 in Chapter VIII of [22]) thus there is a uniform
bound on the Varadhan time for manifolds with same isoperimetric profile func-
tions and the same lower bound on Ricci curvature. These bounds may also be
used to provide uniform control on the heat kernel.

Cheng-Li-Yau studied complete manifolds and discussed some of the diffi-
culties proving upper bounds before finding an upper bound on the growth of the
heat kernel [30]. Cheng and Li found upper bounds on the heat kernel depending
on the Sobolev constant of the manifold [29]. Additional bounds on the heat ker-
nel and also a Harnack Inequality for Riemannian manifolds is proven by Li and
Yau in 1986 [67]. This was then applied by Li in [66] to estimate the behavior of
the heat kernel as t → ∞. For more details see the text of Schoen and Yau [83].

It should be noted that Varadhan’s original proof of his limit in [92] was
completed using probabilistic methods and there has been much work done us-
ing these methods that we do not present here. These results would require an
expertise in probability and would better be presented elsewhere.
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3 Eigenfunctions and Eigenvalues

One of the most beautiful properties of the heat kernel on a compact Rie-
mannian manifold is its Sturm-Liouville decomposition:

ht(x, y) =
∞∑
j=0

e−λ jtϕ j(x)ϕ j(y) (3.1)

where 0 = λ0 < λ1 ≤ λ2 ≤ · · · are eigenvalues and ϕ j are an L2 orthonormal
collection of eigenfunctions of the Laplacian:

∆ϕ j(x) = −λ jϕ j(x) (3.2)

For a quick hint at why this expansion gives the heat kernel, note that each term
satisfies the heat equation:

∂te−λ jtϕ j(x) = −λ je−λ jtϕ j(x) = ∆e−λ jtϕ j(x). (3.3)

It is also symmetric ht(x, y) = ht(y, x). We will explain in more detail below.
Note that Sturm-Liouville theory is named for Jacques Charles Francois

Sturm (1803-1855) and Joseph Liouville (1809-1882). From the age of 16,
Sturm supported his mother and siblings as a mathematics tutor: he moved to
Paris to serve as a tutor to a student of his that continued on to study there. He
became a secondary school teacher after the Revolution of 1830 and by 1834
had published his work developing Sturm-Liouville Theory with Joseph Liou-
ville. Joseph Liouville was the son of an army officer in France and had studied
engineering at Ecole Polytechnique, but was working as a mathematics assistant
at various institutions at the time. After the publication of this important work
and other theorems, both became professors of mathematics at Ecole Polytech-
nique in 1838.

See also work of Miranda [78] applying Sturm-Liouville Theory to Rieman-
nian manifolds. This is well explained in Chavel’s textbook [22] and Schoen-
Yau’s text [83]. For a survey of earlier results, the text of Berger, P. Gauduchon
and E. Mazet, [17] is often recommended. This last book includes many ex-
plicit computations of eigenvalues and eigenfunctions for a variety of Rieman-
nian manifolds.
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3.1 Finding Eigenfunctions using the Rayleigh Quotient

Let us begin this section by reviewing how to find the eigenfunctions. Recall
that L2(M) is the Hilbert space of square Lebesgue integrable functions:

L2(M) =
{
ϕ : M → R |

∫
M
ϕ2(x) dvolx < ∞

}
(3.4)

with the L2-inner product and L2-norm,

< ϕ , ϕ̃ >L2(M)=

∫
M
ϕ(x)ϕ̃(x) dvolx and ||ϕ||2L2 =

∫
M
ϕ2(x) dvolx. (3.5)

To find the eigenfunctions, we begin with λ0 = 0 and its constant eigenfunction,
ϕ0(x) = ϕ0, which is normalized by

1 = ||ϕ0||
2
L2(M) =

∫
M
ϕ2

0 dvol = ϕ2
0 Vol(M) =⇒ ϕ0(x) = Vol(M)−

1
2 . (3.6)

We find the rest of the eigenvalues iteratively using Rayleigh’s Quotient:

λ j = inf
∫

M
|∇ϕ(y)|2 dvol (3.7)

where the infimum is taken over all ϕ ∈ L2(M) such that

||ϕ||L2 = 1 and < ϕ , ϕk >L2= 0 for k = 0, ..., ( j − 1). (3.8)

Let us review why the above Rayleigh’s Quotient method works. Observe
first that the conditions on ϕ in (3.8) are designed to guarantee an L2 orthonormal
collection. Next recall Green’s Theorem∫

M
g(∇ϕ(y),∇ϕ̃) dvol = −

∫
M
ϕ(y)∆ϕ̃ dvol. (3.9)

Observe that any ϕ j such that ∆ϕ j = −λ jϕ j with λ j > 0 has < ϕ j , ϕk >L2= 0 for
λk < λ j because

< ϕ j , ϕk >L2 =

∫
M
ϕ j(x)ϕk(x) dvolx =

1
λ j

∫
M
∆ϕ j(x)ϕk(x) dvolx

= 1
λ j

∫
M
ϕ j(x)∆ϕk(x) dvolx

=
λk
λ j

∫
M
ϕ j(x)ϕk(x) dvolx =

λk
λ j
< ϕ j , ϕk >L2 .
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If we rescale ϕ j so that ||ϕ j||L2 = 1, then it achieves the infimum in (3.7):∫
M
|∇ϕ j(y)|2 dvoly = −

∫
M
ϕ j(y)∆ϕ j(y) dvoly = λ j

∫
M
ϕ j(y)ϕ j(y) dvoly = λ j.

It is not difficult to prove that the collection of ϕ : M → R which achieve the
infimum in (3.7) is exactly the finite dimensional eigenspace for λ j. We then
choose an L2 orthonormal basis of eigenfunctions for each eigenspace.

Finally we see that a complete collection of eigenfunctions found using this
method forms a basis for L2(M) by proving that they span L2(M). That is, every
f ∈ L2(M) has a Fourier Expansion:

f (x) = lim
N→∞

fN(x) where fN(x) =
N∑

j=0

< ϕ j , f >L2(M) ϕ j(x) (3.10)

which converges in L2(M). See for example the Chavel textbook [22] for more
details.

3.2 The Sturm-Liouville Decomposition of the Heat Kernel

If we wish to solve the heat equation with initial data from (3.10),

∂tuN(x, t) = ∆uN(x, t) and lim
t→0+

uN(x, t) = fN(x), (3.11)

we can solve one term at a time as in (3.3) to see that

uN(x, t) =
N∑

j=0

< ϕ j , f >L2 e−λ jtϕ j(x)

=

N∑
j=0

∫
M
ϕ j(y) f (y) dvolye−λ jtϕ j(x)

=

∫
M

f (y)
N∑

j=0

e−λ jtϕ j(x)ϕ j(y) dvoly

=

∫
M

f (y)hN
t (x, y) dvoly

where

hN
t (x, y) =

N∑
j=0

e−λ jtϕ j(x)ϕ j(y). (3.12)
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To complete the proof of the Sturm-Liouville Decomposition, we must cau-
tiously take N → ∞, and show uN(x, t) converges to a solution u(x, t) of the
heat equation

∂tu(x, t) = ∆u(x, t) and u(x, 0) = f (x). (3.13)

and
u(x, t) =

∫
M

f (y)( lim
N→∞

hN
t (x, y)) dvoly (3.14)

so that
lim

N→∞
hN

t (x, y) = ht(x, y) (3.15)

with convergence in L2(M × M). See Chavel’s text [22] for details.
The trace of the heat kernel is then defined naturally as follows:∫

x∈M
ht(x, x) dvolx =

∞∑
j=0

e−λ jt. (3.16)

3.3 Truncating the Sturm-Liouville Expansion of the Heat Kernel

Let us consider how large we must take N in order to estimate the heat kernel
with the truncated sum

hN
t (x, y) =

N∑
j=0

e−λ jtϕ j(x)ϕ j(y). (3.17)

We will define the uniform Sturm-Liouville number, Nt,ϵ to be the smallest natu-
ral number such that

|ht(x, y) − hN
t (x, y)| < ϵ ∀N ≥ Nt,ϵ . (3.18)

We also define the L2 Sturm-Liouville number, Nt,ϵ,L2 to be the smallest natural
number such that ∀N ≥ Nt,ϵ,L2 we have

||ht(x, y)−hN
t (x, y)||L2(M×M) =

∫
M×M

(ht(x, y)−hN
t (x, y))2 dvolxdvoly < ϵ. (3.19)

The L2 Sturm-Liouville number is easy to estimate because ||ϕ j(x)||L2(M) = 1 and

||ϕ j(x)ϕ j(y)||2L2(M×M) =

∫
M

∫
M

(ϕ j(x)ϕ j(y))2 dvolxdvoly

=

∫
M
ϕ2

j(x) dvolx ·

∫
M
ϕ2

j(y) dvoly

= ||ϕ j||
2
L2(M) · ||ϕk||

2
L2(M) = 1.
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So, by the L2 triangle inequality,

||ht(x, y) − hN
t (x, y)||L2(M×M)≤

∞∑
j=N+1

e−λ jt||ϕ j(x)ϕ j(y)||L2(M×M)=

∞∑
j=N+1

e−λ jt. (3.20)

This last sum is the “tail of the trace of the heat kernel" so it converges to 0 as
N → ∞ and can even be estimated knowing only information about the eigen-
values of the manifold.

3.4 Eigenvalues and Eigenfunctions on a Standard Circle

On a circle, S1 parametrized by θ ∈ [0, 2π) with Laplacian is

∆ = ∂2
θ . (3.21)

The zeroeth eigenvalue is λ0 = 0 with ϕ0 = (2π)−
1
2 by (3.6). The first eigenvalue

is λ1 = 1 and the eigenspace for this eigenvalue consists of periodic eigenfunc-
tions of the form A sin(θ − θ0) where θ0 ∈ [0, 2π). This eigenspace is 2 dimen-
sional λ2 = λ1 = 1 and we say this eigenvalue has multiplicity 2. We can choose
two orthonormal eigenfunctions

ϕ1(θ) = A1 sin(θ) and ϕ2(θ) = A1 sin(θ − π/2) = A1 cos(θ) (3.22)

where

1 =
∫ 2π

0
A2

1 sin2(θ) dθ = ( 1
2 )

∫ 2π

0
A2

1 dθ = ( 1
2 )2πA2

1, so A1 = π
−

1
2 . (3.23)

Continuing forward we find that λ2 j = λ2 j−1 = j2 with

ϕ2 j−1(θ) = A j sin( jθ) and ϕ2 j(θ) = A j cos( jθ) (3.24)

where

1 =
∫ 2π

0
A2

j sin2( jθ) dθ = ( 1
2 )

∫ 2π

0
A2

j dθ = πA2
j so A j = π

−
1
2 . (3.25)

So following (3.1), the truncated Sturm-Liouville expansion for the heat kernel
S1 is

h2N+1
t (θ1, θ2) = 1

2π +
1
π

N∑
j=1

e−t j2 (sin( jθ1) sin( jθ2) + cos( jθ1) cos( jθ2)) . (3.26)
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The trace of the heat kernel on S1 is∫ 2π

θ=0
ht(θ, θ) dθ = 1 + 2

∞∑
j=1

e− j2t. (3.27)

Since the eigenfunctions of S1 are uniformly bounded, |ϕ j(x)| ≤ π−1/2 , the
Sturm-Liouville expansion converges as quickly as the trace of heat kernel and
we can use the same estimates to compute the uniform and the L2 Sturm-Liouville
numbers.

If we try to apply Varadhan’s formula to the truncated Sturm-Liouville ex-
pansion for the heat kernel, we see that as t → 0, the truncated heat kernels,
h2N+1

t (θ1, θ2), converge to

(2π)−1 + (π)−1
N∑

j=1

(sin( jθ1) sin( jθ2) + cos( jθ1) cos( jθ2)) . (3.28)

So we end up with nothing:

lim
t→0
−4t log h2N+1

t (θ1, θ2)) = 0. (3.29)

In order to estimate Varadhan’s formula using the Sturm-Liouville expansion
with an error less than ε > 0, we would have to first fix tε small enough that

|(−4t log ht(θ1, θ2)) − d2
S1(θ1, θ2)| < ε/2 (3.30)

and then for fixed t = tε take Nt large enough that

|(−4t log hN
t (θ1, θ2)) − (−4t log ht(θ1, θ2))| < ε/2. (3.31)

This would then give us

|d2
S1(θ1, θ2) + 4t log hN

t (θ1, θ2)| < ε (3.32)

for θ1, θ2 ∈ S
1, t = tε/2, and N = Ntε,ε/2. To get a better estimate, we need to

take t smaller first and then N larger.

3.5 Eigenvalues and Eigenfunctions on a Rescaled Circle

Let us consider a circle, S1
R, where x = Rθ ∈ [0, 2πR) with gR = dx2 = R2dθ2.

The Laplacian rescales
∆R = ∂

2
x = R−2∂2

θ (3.33)
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and the volume is 2πR. We find that λ0 = 0 with ϕ0 = (2πR)−1/2 by (3.6). The
rest of the eigenvalues come with multiplicity two:

λ2 j = λ2 j−1 = j2/R2 (3.34)

with L2 orthonormal eigenfunctions

ϕ2 j−1(θ) = A j sin( jθ) = A j sin( jx/R)

ϕ2 j(θ) = A j cos( jθ) = A j cos( jx/R)

where

1=
∫ 2π

0
A2

j sin2( jθ) Rdθ = 1
2

∫ 2π

0
A2

j Rdθ = 2πA2
jR/2 so A j = (πR)−

1
2 . (3.35)

So the Sturm-Liouville expansion for S1
R is

hR
t (θ1, θ2) = 1

2πR +
1
πR

∞∑
j=1

e−t j2/R2
(sin( jθ1) sin( jθ2) + cos( jθ1) cos( jθ2)) . (3.36)

Note that this rescales like (2.13). The trace of the heat kernel is then∫ 2π

θ=0
hR

t (θ, θ) Rdθ = 1 + 2
∞∑
j=1

e−t j2/R2
. (3.37)

Observe that as R→ 0 this converges to 0 as expected.

3.6 Eigenvalues and Eigenfunctions on Tori

Given any A ≤ B, the flat torus formed by taking the isometric product of
rescaled circles,

S1
A × S

1
B = (S1 × S1, dx2 + dy2), (3.38)

where x = Aθ and y = Bφ has the following Laplacian,

∆A,B = ∂
2
x + ∂

2
y = A−2∂2

θ + B−2∂2
φ. (3.39)

Its volume is 4π2AB so, by (3.6), for λ0 = 0 the eigenfunction is ϕ0 = (4π2AB)−
1
2 .

The rest of the eigenfunctions come in sets of four as follows:

{cos( jθ) cos(kφ), cos( jθ) sin(kφ), sin( jθ) cos(kϕ), sin( jθ) sin(kφ)} (3.40)
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which we can rescale by constants A j,k to be L2 orthonormal. Each set has the
same eigenvalue

λ j,k = j2/A2 + k2/B2. (3.41)

The ordering of these eigenvalues depends on the values of A and B, so first lets
examine the values of A j,k.

When j = 0 and k = 0, we recover λ0,0 = λ0 = 0 and see by (3.6) that there
is a single L2-orthonormal eigenfunction,

λ0,0 = 0 with V0,0 = {A0,0 cos(0) cos(0)} (3.42)

where A0,0 =
1√

(2πA)(2πB)
= 1

2π
√

AB
.

When j > 0 and k = 0, we also get λ j,0 = j2/A2 with two L2-orthonormal
eigenfunctions,

λ j,0 =
j2

A2 with V j,0 = {A j,0 cos( jθ) cos(0), A j,0 sin( jθ) cos(0)} (3.43)

where A j,0 =
1

π
√

2AB
because

1 =
∫ 2π

0

∫ 2π

0
A2

j,0 sin2( jθ)AB dθdφ = A2
j,0( 1

2 )(2πA)(2πB). (3.44)

When j = 0 and k > 0, we get λ0,k = k2/B2 with two L2-orthonormal
eigenfunctions,

λ0,k =
k2

B2 with V0,k = {A0,k cos(0) cos(kφ), A0,k cos(0) sin(kφ)} (3.45)

where A0,k =
1

π
√

2AB
.

When both j, k > 0, we get λ j,k = j2/A2 + k2/B2 with four L2-orthonormal
eigenfunctions as in (3.40),

λ j,k =
j2

A2 +
k2

B2 with V j,k = {A j,k cos( jθ) cos(kφ), ..., A j,k sin( jθ) sin(kφ)} (3.46)

where A j,k =
1

π
√

AB
, because

1 =

∫ 2π

0

∫ 2π

0
A2

j,k sin2( jθ) sin2(kφ)AB dθdφ

= A2
j,k ·

∫ 2π

0
sin2( jθ)A dθ ·

∫ 2π

0
sin2(kφ)B dφ

= A2
j,k · (2πA( 1

2 )) · (2πB( 1
2 )) = A2

j,kπ
2AB.
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When A = B = 1, the eigenvalues are ordered as follows with the eigenspaces:

λ0,0 = 02 + 02 = 0 V0,0 of multiplicity 1

λ1,0 = λ0,1 = 12 + 02 = 1 V1,0 ∪ V0,1 of multiplicity 2 + 2 = 4

λ1,1 = 12 + 12 = 2 V1,1 of multiplicity 4

λ2,0 = λ0,2 = 22 + 02 = 4 V2,0 ∪ V0,2 of multiplicity 2 + 2 = 4

λ2,1 = λ1,2 = 22 + 12 = 5 V2,1 ∪ V1,2 of multiplicity 4 + 4 = 8

λ2,2 = 22 + 22 = 8 V2,2 of multiplicity 4

λ3,0 = λ0,3 = 32 + 02 = 9 V3,0 ∪ V0,3 of multiplicity 2 + 2 = 4.

When A = 1 and B = 1
2 , the eigenvalues λ j,k = j2 + 4k2 are ordered quite

differently with different multiplicities:

λ0,0 = 02 + 02 = 0 V0,0 of multiplicity 1

λ1,0 = 12 + 4 · 02 = 1 V1,0 of multiplicity 2

λ0,1 = λ2,0 = 02 + 4 · 12 = 4 V0,1 ∪ V2,0 of multiplicity 2 + 2 = 4

λ1,1 = 12 + 4 · 12 = 5 V1,1 of multiplicity 4

λ2,1 = 22 + 4 · 12 = 8 V2,1 of multiplicity 4

λ3,0 = 32 + 4 · 02 = 9 V3,0 of multiplicity 2.

This ordering of the eigenfunctions becomes important when we try to apply
these eigenfunctions to Manifold Learning.

3.7 Eigenvalues and Eigenfunctions on a Thin Torus

Let us consider a thin torus, S1
A × S

1
B with A = 1 and B = 1/10. Here the

eigenvalues are λ j,k = j2 + 100k2. Following our method from Section 3.6 we
have the following first 23 eigenvalues (counting multiplicity) and their eigenspaces:

λ0,0 = 02 + 02 = 0 V0,0 of multiplicity 1

λ j,0 = j2 + 100 · 02 = j2 V j,0 of multiplicity 2 for j = 1, ..., 9

λ0,1 = λ10,0 = 100 V0,1 ∪ V10,0 of multiplicity 2 + 2 = 4.

Note that the eigenspaces V j,0 as in (3.43) do not have functions depending on φ.
Thus the truncated Sturm-Liouville expansion with N = 19 for the heat kernel
of this thin torus does not depend on φ:

h19
t ((θ1, φ1), (θ2, φ2)) = 1

4π2B +
1

2π2B

9∑
j=1

e− j2t(sin( jθ1) sin( jθ2)+cos( jθ1) cos( jθ2))
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because (1/(2π
√

AB))2 = 1/(4πB2) when A = 1.
Note that this N = 19 truncated Sturm-Liouville expansion for the heat ker-

nel of a thin torus is equal to the N = 19 truncated Sturm-Liouville expansion for
the heat kernel of a circle, S1, that we found in (3.26) rescaled by 1/(2πB). In-
tuitively the truncated heat kernel views this thin torus as almost the same space
as a circle. This becomes important when using eigenfunctions for Manifold
Learning: sometimes it can be advantageous to view a thin torus as almost the
same as a circle and other times it is better to distinguish them.

3.8 Eigenvalues and Eigenfunctions on a Sphere

The eigenfunctions of the sphere, S2 are called Laplace’s spherical harmon-
ics. They are explained beautifully in many sources including wikipedia: Spher-
ical Harmonics. The eigenvalues take the form can be written as

ℓ(ℓ + 1) with eigenfunctions Ym
ℓ = cos(mφ)Pm

ℓ (cos(θ)) (3.47)

where m = −ℓ,−ℓ + 1, ..., 0, ..., ℓ − 1, ℓ and Pm
ℓ

is a Legendre Polynomial where
here we are using the coordinates φ ∈ [0, π] and θ ∈ [0, 2π] so that

gS2 = dφ2 + sin2(φ)dθ2. (3.48)

The first eigenvalue λ0 = 0(1) = 0 with ϕ0 = (4π)−1/2 by (3.6). The next
eigenvalue is λ1 = 1(2) = 2 with eigenfunction

ϕ1(θ, φ) = A1 cos(φ) = A1 Z(θ, φ) (3.49)

where Z(θ, φ) is the Z coordinate of the standard Riemannian isometric embed-
ding of the sphere into Euclidean space,

X(θ, φ) = sin(φ) cos(θ) Y(θ, φ) = sin(φ) sin(θ) Z(θ, φ) = cos(φ). (3.50)

By symmetry we can see that X(θ, φ) and Y(θ, φ) also give eigenfunctions, so

ϕ2(θ, φ) = A1X(θ, φ) and ϕ3(θ, φ) = A1Y(θ, φ) (3.51)

with λ2 = λ3 = λ1 = 2. To compute A1, we can use the symmetry and the fact
that X2 + Y2 + Z2 = 1 to see by (3.49) and (3.51) that

1 =

∫
S2
ϕ2

1 dvol = 1
3

∫
S2

(ϕ2
1 + ϕ

2
2 + ϕ

2
3) dvol

= 1
3

∫
S2

A2
1(X2 + Y2 + Z2) dvol = 1

3

∫
S2

A2
1(1) dvol =

4πA2
1

3
.

https://en.wikipedia.org/wiki/Spherical_harmonics#Laplace's_spherical_harmonics
https://en.wikipedia.org/wiki/Spherical_harmonics#Laplace's_spherical_harmonics
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Thus A1 =
√

3/(4π). It is an exercise to check that these are orthonormal.
The N = 4 truncated Sturm-Liouville expansion of the heat kernel for S2 can

be viewed as a dot product of the embedding map (3.50):

h4
t (x1, x2) = 1

4π +
3

4πe−2t (X(x1)X(x2) + Y(x1)Y(x2) + Z(x1)Z(x2))

= 1
4π +

3
4πe−2t cos

(
dS2(x1, x2)

)
.

This dependence on the distance is a consequence of the symmetry of S2 and is
unrelated Varadhan’s formula because it holds without taking N → ∞ and t → 0.

3.9 Estimates on the First Eigenvalue

In 1969, Cheeger found the following lower bound for the first nonzero
eigenvalue of the Laplacian:

Theorem 3.1. Let M be a compact manifold with no boundary. Then,

λ1 ≥
1
4 h2(M). (3.52)

Here h(M) is Cheeger’s Constant:

h(M) = inf
{

Voln−1(∂U)
min{Voln(U),Voln(M \ U)}

}
(3.53)

where the infimum is taken over all domains U ⊂ M.

This was proven using Rayleigh’s Quotient and coarea formulas in a clever
way. See, for example, the proof in [83].

In 1975 S-T Yau extended Cheeger’s result and applied it to prove a lower
bound on this eigenvalue in terms of the Ricci curvature on the manifold in [96].

Theorem 3.2. When Ricci ≥ (n − 1)H, then

λ1 ≥
1
4 I2(M) (3.54)

where

I(M)−1 ≤ ωn−1
Diam(M)
Vol(M)

∫ Diam(M)

0

(
|H|−

1
2 sin(|H|

1
2 r

)n−1

dr when H > 0,

I(M)−1 ≤ ωn−1
Diam(M)
Vol(M)

∫ Diam(M)

0
(r)n−1dr when H = 0,

I(M)−1 ≤ ωn−1
Diam(M)
Vol(M)

∫ Diam(M)

0

(
|H|−

1
2 sinh(|H|

1
2 r

)n−1

dr when H < 0.
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In 1980 Buser proved Cheeger’s inequality is sharp by showing that any
manifold has a Riemannian metric tensor which achieves this inequality [20]. In
1982, Buser [21] proved the following uniform estimate:

Theorem 3.3. If Mn has Ricci ≥ (n − 1)H where H < 0 then

λ1(M) ≤ c(n)
(
h(M) |H|1/2 + h2(M)

)
. (3.55)

Buser presented two proofs in [21], the second of which has a Jacobi field ar-
gument which is especially nice to read for those who enjoy do Carmo’s textbook
[46]. Buser also studied a variety of examples in these papers as well.

3.10 Estimating Eigenvalues on Families of Manifolds

Explicit computations of the eigenfunctions and eigenvalues for many Rie-
mannian manifolds can be found in the French text of Berger, Gauduchon, and
Mazet [17]. See also Chavel for many examples with constant negative curvature
[22].

S.Y. Cheng gave upper estimates on all the eigenvalues of a Riemannian
manifold with Ricci ≥ (n − 1)H [28]. In 1980, Li and Yau improved this result,
proving many results including

λk ≤ CH,D,n
(

H+1
V

)2/n
+C′H,n (3.56)

for any n dimensional Riemannian manifold Mn with Ricci ≥ (n − 1)H,
Diam(M) ≤ D and Vol(M) ≥ V [68].

There are also lower bounds found by Cheng-Li in [29] depending on the
Sobolev constant. See also the work of Debiard in [42] and of Hess-Schrader-
Uhlenbrock in [57]. For more details see the text of Schoen and Yau [83].

4 Classes of Riemannian Manifolds and Convergence

In Sections 2.5 and 3.10 we have seen that entire classes of families of Rie-
mannian manifolds have uniform bounds on their heat kernels and eigenvalues.
This is closely related to the various notions of convergence of Riemannian man-
ifolds, their corresponding compactness theorems, and how the heat kernels and
eigenvalues behave on converging sequences. To be more clear, suppose we
have a notion of convergence of Riemannian manifolds, M j → M∞, then we say
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a class, M, of Riemannian manifolds is compact with respect to this notion of
convergence if the following holds:

M j ⊂ M =⇒ ∃ a subseq M jk s.t. M jk → M∞ ∈ M. (4.1)

The classM is only precompact if the subsequence converges to M∞ that is not
inM.

For many notions of convergence, M j → M∞, given any pair of points in the
limit space, p, q ∈ M∞, there are p j, q j ∈ M j that have p j → p∞ and q j → q∞.
We say a notion of convergence preserves distances if M j → M∞ implies

d j(p j, q j)→ d∞(p, q). (4.2)

We say a notion of convergence preserves the heat kernel if M j → M∞ implies

∀t > 0, hM j
t (p j, q j)→ hM∞

t (p, q). (4.3)

We say there is continuity of the eigenvalues if M j → M∞ implies

∀k ∈ N λk(M j)→ λk(M∞). (4.4)

Sometimes we only have semicontinuity of the eigenvalues.
If we have a family of manifolds, M, and a notion of convergence which

makes this family compact and this notion of convergence implies continuity of
the eigenvalues, then we have uniform bounds on the eigenvalues. Otherwise, we
could take a sequence of M j ∈ M whose eigenvalues are diverging, find the con-
verging subsequence and use continuity of the eigenvalues on the subsequence
to reach a contradiction. Similarly, if the notion of convergence preserves the
heat kernel, then it has uniform bounds on the heat kernel.

Below we will discuss various notions of convergence and their relationship
with heat kernels and eigenvalues.

4.1 Smooth, C0, Ck,α, and Ck Convergence

Recall that a function h : U ⊂ Rn → R is in C0(U) if it is continuous and the
C0 norm is

|h|C0 = sup
x∈U
|h(x)|. (4.5)

We say that h ∈ C0,α(U) if it’s Holder norm is bounded:

|h|C0,α(U) = sup
x,y∈U

|h(x) − h(y)|
|x − y|α

< ∞. (4.6)
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We say that h ∈ Ck(U) if

|h|Ck(U) = sup
x∈U

∑
|∂
β1
x1 · · · ∂

βn
xn h(x)| < ∞, (4.7)

where the sum is over (β1, ..., βn) such that β1 + · · · + βn ≤ k. We say that
h ∈ Ck,α(U) if

|h|Ck,α(U) = |h|Ck(U) +
∑
|∂
β1
x1 · · · ∂

βn
xn h(x)|C0,α(U) < ∞, (4.8)

where the sum is over (β1, ..., βn) such that β1 + · · · + βn = k.
We say an atlas, {φi}, of charts on M is Ck or Ck,α if the transition maps are

Ck or Ck,α respectively. If we fix a Ck or Ck,α atlas, {φi}, of charts on M, then
with respect to that atlas we can define:

|h|Ck(M),{φ} = sup |h ◦ φ|Ck(U) or |h|Ck,α(M),{φ} = sup |h ◦ φ|Ck,α(U) (4.9)

where the sup is over all coordinate charts φ : U → M in the atlas.
A function between compact manifolds, H : M1 → M2 is Ck, if there exists

a Ck atlas of charts on M1 and on M2 such that the function composed with these
charts is Ck respectively. It is a Ck diffeomorphism if it is invertible and both it
and its inverse are Ck. It is a Ck,α diffeomorphism if everything here is Ck,α. It is
a smooth or C∞ diffeomorphism if it is Ck for all k ∈ N.

We say (M j, g j) → (M∞, g∞) in the Ck sense if H j : M∞ → M j is a Ck+1

diffeomorphism (which means it has (k + 1) continuous derivatives) and if there
exists a Ck atlas on M∞ such that for all g∞-unit length u, v ∈ T M∞ we have

|H∗j g j(u, v) − g∞(u, v)|Ck(M),{φi}
< ϵ j → 0. (4.10)

We say (M j, g j) → (M∞, g∞) in the Ck,α sense if H j : M∞ → M j is a Ck+1,α

diffeomorphism and if there exists a Ck,α atlas on M∞ such that for all g∞-unit
length u, v ∈ T M∞ we have

|H∗j g j(u, v) − g∞(u, v)|Ck,α(M),{φi}
< ϵ j → 0. (4.11)

It converges smoothly in the C∞ sense if all the diffeomorphisms are C∞ and if
there exists a C∞ atlas on M∞ such that for all g∞-unit length u, v ∈ T M∞ we
have

|H∗j g j(u, v) − g∞(u, v)|C∞(M),{φi} < ϵ j → 0. (4.12)
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4.2 Smooth Convergence of Tori and Warped Tori

Note that if we consider tori S1
A j
× S1

B j
and A j → A∞ > 0 and B j → B∞ > 0

then we have C∞ convergence to S1
A∞
× S1

B∞
. This can be seen by taking θ, φ ∈

[0, 2π) and writing the metric tensors,

gS1
A×S

1
B
= A2dθ2 + B2dφ2, (4.13)

and taking H j : S1
A∞
× S1

B∞
→ S1

A j
× S1

B j
preserving θ and φ. Then

|H∗j g j(u, v)−g∞(u, v)|C0 = |(A2
j−A2

∞)u(θ)v(θ)+(B2
j−B2

∞)u(φ)v(φ)|C0 → 0 (4.14)

It is easy to see there is Ck convergence as well.
A sequence of warped product metric tensors on a torus converges in the Ck

sense
g j = dφ2 + f j(φ)2dθ2 → g∞ = dφ2 + f∞(φ)2dθ2 (4.15)

if and only if | f j − f∞|Ck → 0. On tori we must assume the warping factors
are periodic, f j(φ) = f j(φ + 2π), and positive, f j > 0 and f∞ > 0, to have a
diffeomorphism. If we only have f j(0) = f j(π) without requiring the derivatives
to match as implied by periodicity, then we only have a C0 metric tensor and C0

convergence. To have a Ck metric tensor, we need k derivatives to match:

f j(0) = f j(π) f ′j (0) = f ′j (π) f ′′j (0) = f ′′j (π) ... f (k)
j (0) = f (k)

j (π). (4.16)

To have Ck convergence, we need all these derivatives to converge

f (i)
j (0)→ f (i)

∞ (0) for i = 0, ..., k.

A sequence of warped product metric tensors on a sphere will have (4.15)
with f j(0) = f j(π) = 0 and f∞(0) = f∞(π). To have a Ck metric tensor across the
poles, we need k derivatives to match that of the standard sphere:

f j(0) = f j(π) = sin(0) = 0

f ′j (0) = f ′j (π) = sin′(0) = 1

f ′′j (0) = f ′′j (π) = sin′′(0) = 0

...

f (k)
j (0) = f (k)

j (π) = sin(k)(0).

To have Ck convergence, these derivatives must converge

f (i)
j (0)→ f (i)

∞ (0) for i = 0, ..., k.
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4.3 Convergence of Distances between Points

Distances are preserved under C0 convergence of M j → M∞. To see this,
first we show that for any curve C : [0, 1] → M such that C(0) = p∞ and
C(1) = q∞ we have C j = C ◦H−1

j : [0, 1]→ M j with C j(0) = p j and C j(1) = q j.
Since

Lg j(C j) =
∫ 1

0
g j(C′j(s),C′j(s))1/2 ds =

∫ 1

0
(H∗j g j)(C′(s),C′(s))1/2 ds→ Lg∞(C).

we see that |Lg j(C j)− Lg∞(C)| < ϵ1/2
j . Since the distance d j is the infimum of the

length, L j, of all curves from p j to q j, we have

d j(p∞, q∞) ≤ Lg j(C j) ≤ Lg∞(C) + ϵ1/2
j . (4.17)

Since the distance, d∞, is the infimum of the length, L∞, over all curves, C, as
above

d j(p∞, q∞) ≤ d∞(p∞, q∞) + ϵ1/2
j (4.18)

Applying this entire argument in reverse we get the desired convergence:

|d∞(p∞, q∞) − d j(p j, q j)| ≤ ϵ
1/2
j → 0. (4.19)

4.4 Lipschitz Convergence

Lipschitz convergence of Riemannian manifolds is defined by viewing a Rie-
mannian manifold, (M, g), as a metric space (M, dg) where dg is the Riemannian
distance. We say two Riemannian Manifolds are biLipschitz if there exists a
bijection H : M1 → M2 such that

Lip(H) = sup
x,y

d2(H(x),H(y))/d1(x, y) < ∞

Lip(H−1) = sup
x,y

d1(H−1(x),H−1(y))/d2(x, y) < ∞.

The Lipschitz distance between them is:

dLip((M1, d1), (M2, d2)) = log min{Lip(H),Lip(H−1) : H : M1 → M2}. (4.20)

It is easy to verify that M j → M∞ in the C0 sense implies dLip(M j,M∞)→ 0.
Consider the class of smooth Riemannian manifolds which are biLipschitz

to a standard sphere, S2 with Lipschitz bounds in both directions ≤ 2. By the
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Arzela-Ascoli Theorem, this class is precompact with respect to Lipschitz con-
vergence. However, the limit spaces need not be a smooth Riemannian mani-
folds.

In fact M∞ could have a conical singularity. This can be seen by considering
the following sequence of functions:

g j = dφ2 + f j(φ)2 dθ2 (4.21)

where f j are smooth functions such that

f j(φ) = sin(φ) on [0, δ j] ∪ [π − δ j, π]

f j(φ) = sin(φ)/2 on [0, 5δ j] ∪ [π − 5δ j, π]

and monotone on [δ j, 5δ j]∪[π−5δ j, π−δ j]. Taking δ j → 0, the Lipschitz limit is
an American-football-shaped C0 Riemannian manifold with conical singularities
at the poles where φ = 0 and φ = π.

This sequence has Ricci and sectional curvature bounded from below by 0
but not from above and has no lower bound on the injectivity radius. However
we can still apply Cheeger-Yau’s theorem in (2.30) to say that the heat kernels of
these manifolds are bounded from below by the heat kernel on Euclidean space.
On balls which avoid the poles, the heat kernels are bounded on both sides. In
fact as we shall soon see, the heat kernels converge to a function on the limit
space which has many of the properties of a heat kernel.

4.5 C2 convergence preserves ∆ and ht(x, y)

If (M j, g j) → (M∞, g∞) in the C2 sense, then it is easy to see that their
curvatures and Laplacians are preserved,

|∆M j(h ◦ H−1
j ) − ∆M∞h |C0 → 0 for any C2 function h : M∞ → R. (4.22)

because Laplacians depend only on first and second derivatives of the metric
tensor.

Since solutions to the heat equation depend smoothly on the Laplace opera-
tor, the heat kernel on M j can be shown to converge to the heat kernel on M∞,

|hM j
t (H−1

j (x),H−1
j (y)) − hM∞

t (x, y)|C2 → 0, (4.23)

and similarly the eigenfunctions can be shown to converge

|ϕ
M j

k (H−1
j (x)) − ϕM∞

k (x)|C2 → 0 and |λk(M j) − λk(M∞)| → 0 (4.24)

where as usual the λk are counted with multiplicity.
What is quite surprising is that heat kernels and eigenvalues can converge

even with far weaker notions of convergence.
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4.6 Diffeomorphic Compactness Theorems

With the above definitions of convergence of manifolds we require that the
sequence of manifolds be diffeomorphic in order to compare their metric tensors.
So if we are studying a class or family of Riemannian manifolds,M, and wish
to prove a compactness theorem stating that given a sequence M j ∈ M a subse-
quence converges to M∞ ∈ M, we first need to show a subsequence is pairwise
diffeomorphic to one another. This can be achieved using the pigeonhole prin-
ciple if we know there are only finitely many diffeomorphism types in the class
M.

In his 1967 doctoral dissertation [23, 24], Cheeger observed that there were
only finitely many diffeomorphism types in

M
K2,D
K1,V
= {Mn |K1 ≤ sect ≤ K2,Vol(M) ≥ V,Diam(M) ≤ D} (4.25)

by proving a uniform lower bound on injectivity radius based on K1, K2, V , and
D. He also found other classes of Riemannian manifolds with similar controls.

Note that the tori

S1
A × S

1
B ∈ M

K2,D
K1,V

for any K1 ≤ 0 ≤ K2 (4.26)

if and only if
4π2AB ≥ V and (πA)2 + (πB)2 ≤ D2 (4.27)

because they are flat with sectional curvature = 0. Notice that (4.27) implies
A, B ≤ D/π which implies A, B ≥ V/(4πD) > 0. So we do not have arbitrarily
thin tori with B j → 0 in this class.

Once Cheeger had a uniform lower bound on injectivity radius, he proved

M
K2,D
K1,V
⊂ M

K2,D
K1i0

(4.28)

where

M
K2,D
K1i0
= {Mn |K1 ≤ sect ≤ K2, in jrad ≥ i0,Diam(M) ≤ D}. (4.29)

Note that any manifold Mn in this second family can be covered by at most NK2,D
K1i0

charts as follows. About any point p ∈ Mn, we can take a chart defined by the
exponential map, expp, which covers a ball about p of radius r = i0. To choose a
finite collection, we take a maximal collection of disjoint balls of radius r/2, so
that the balls of radius r cover Mn. Let

N(M, r) = max number of disjoint balls of radius r/2 in M. (4.30)
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To find a uniform bound on this number, note that Vol(B(p, r/2)) ≥ Vn
K2

(r/2)
which is the volume of a ball is a simply connected space of constant sectional
curvature K2, so

N(M, r)Vn
K2

(r/2) ≤
N(M,r)∑

i=1

Vol(B(pi, r/2)) ≤ Vol(M) ≤ Vn
K1

(D). (4.31)

Thus
N(M, r) ≤ N(r) = Vn

K1
(D)/Vn

K2
(r/2). (4.32)

Note that the lower bound on the Vol(B(p, r/2)) here strongly uses the fact that
r ≤ i0 ≤ injrad(p). Clearly such a uniform lower bound on volume does not hold
on increasingly thin tori with B j → 0.

Once we have a uniform bound on the number of charts, we see that we
have only finitely many homeomorphism types bounded by all the possible ways
these charts can overlap. If we have a sequence of M j in a class M with a
uniform bound N(M, r) ≤ N(r) then we can apply the pigeon hole principle to
choose a subsequence, M j, such that they are all homeomorphic and such that
N(M j, r) is constant and such that the same pairs of balls of radius r intersect.
To complete the proof of Cheeger’s Compactness Theorem, we would then only
need to show uniform bounds on the sequence of metric tensors within these
charts. We recommend Petersen’s textbook for a discussion of the many ways
that metric tensors can be bounded within the charts [79]. See also Gromov’s
textbook [55].

4.7 Injectivity Radius, Heat Kernels, and Eigenvalues

We have seen above in Sections 2.5 and 3.10 there are entire classes of mani-
folds which share the same bounds on their heat kernels and on their eigenvalues.
In particular there was the class

Mn
H , i0 = {M

n |RicciM ≥ (n − 1)H and injradM ≥ i0}. (4.33)

The injectivity radius bound here is essential. The Ricci curvature bound in also
a key step.

Consider for example the rescaled circles S1
R that we studied in Section 2.2

and 3.5. Their injectivity radii

injradS1
R
= πR→ 0 as R→ 0. (4.34)
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We saw in Section 2.2 that their heat kernels,

hR
t (θ1, θ2) = R−1 ht/R2(θ1, θ2) (4.35)

are not uniformly bounded above for sequences as R→ 0. We saw in Section 3.5
that their eigenvalues diverge

λ2 j = λ2 j−1 = j2/R2 → ∞ as R→ 0. (4.36)

Sequences of rescaled spheres, S2
R, have nonnegative Ricci curvature and the

same problems with their injectivity radii, heat kernels, and eigenvalues as the
S1

R as R→ 0.

4.8 Harmonic Coordinates and Harmonic Radius

In [43], DeTurck and Kazdan proved that whenever an atlas exists covering
M with charts such that h ◦ φi ⊂ Ck(Ui), then the same is true if we chose the
atlas of harmonic coordinate charts. A coordinate chart φ : U ⊂ Rm → M is
harmonic if the components of φ−1 are harmonic functions:

φ−1(p) = (x1(p), x2(p), ..., xn(p)) where ∆xi = 0. (4.37)

A manifold M has harmonic radius rh > 0 if it can be covered by a collection
of harmonic coordinate charts, each of which covers a ball of radius rh.

In 1990, Anderson [7] proved a C1,α precompactness theorem for

MD
H,i0 = {M

n : |Ricci| ≤ (n − 1)H, injrad(M) ≥ i0 > 0,Diam(M) ≤ D} (4.38)

using harmonic coordinate charts by finding a uniform lower bound on the har-
monic radius, which is a lower bound on the radius of harmonic coordinate
charts. Building upon this work, Anderson-Cheeger proved a Cα compactness
theorem for a larger class of manifolds in [8].

The harmonic radius can also be used to control eigenfunctions as is seen
for example in the work of Portegies [81] that we will present at the end of this
paper.

4.9 Gromov-Hausdorff Convergence

In 1983 Gromov introduced the notion of the Gromov-Hausdorff distance
between compact metric spaces [55]. Since a compact Riemannian manifold,
(M, g) can be viewed as metric space, (M, dg), his notion allowed him to define
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the Gromov-Hausdorff convergence of Riemannian manifolds to limits which
may only be metric spaces. The notion allowed him to study sequences of col-
lapsing manifolds (like increasingly thin tori) whose limits have lower dimension
as well as sequences of noncollapsing manifolds.

Before we define Gromov-Hausdorff distance we review that the Hausdorff
distance between two compact sets, K1 and K2, in a metric space, Z, is defined

dZ
H(K1,K2) = inf{R : K1 ⊂ TR(K2) and K2 ⊂ TR(K1) (4.39)

where TR(Ki) is the tubular neighborhood about Ki:

TR(Ki) = {z ∈ Z : ∃x ∈ Ki s.t. dZ(x, z) < R}. (4.40)

This is an extrinsic way of measuring the distance between K1 and K2 which
depends very much on the extrinsic space, Z, in which they both sit.

To define an intrinsic distance between two compact metric spaces, (X1, d1)
and (X2, d2), which are not sitting in a common metric space, Gromov considered
all distance preserving maps,

Fi : Xi → Z such that dZ(Fi(p), Fi(q)) = dXi(p, q) ∀p, q ∈ Xi (4.41)

and all possible compact metric spaces, (Z, dZ). He defined the
Gromov-Hausdorff distance by taking the infimum over all such possibilities:

dGH(X1, X2)) = inf dZ
H(F1(X1), F2(X2)). (4.42)

He called this an intrinsic Hausdorff distance because it depends only on intrinsic
information about the pair of metric spaces, (X1, d1) and (X2, d2), and is defined
using the Hausdorff distance.

Gromov proved that if a sequence (X j, d j → (X∞, d∞) in the
Gromov-Hausdorff sense then there exists a common compact metric space, Z,
and distance preserving maps F j : X j → Z such that

dZ
H(F j(X j), F∞(X∞))→ 0. (4.43)

In particular, for all p∞ ∈ X∞ there exists p j ∈ X j such that F j(p j) → F∞(p∞).
Although this is not uniquely assigned, this is how

p j ∈ X j converges to p∞ ∈ X∞ (4.44)

is defined.
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Gromov’s Compactness Theorem: A sequence of Riemannian manifolds

Mn
j ∈ M

n
H,D = {M

n | RicciMn ≥ (n − 1)H, Diam(Mn) ≤ D}. (4.45)

has a subsequence which converges in the Gromov-Hausdorff sense to a compact
metric space.

Gromov proved this in [55] by first proving the following theorem:
Bishop-Gromov Volume Comparison Theorem: for any Mn ∈ Mn

H,D, and any
p ∈ Mn and any R > r > 0, the volumes of balls satisfy the following:

Vol(B(p, r))/Vol(B(p,R)) ≥ Vn
H(r)/Vn

H(R) (4.46)

where Vn
H(s) is the volume of a ball of radius s in an n dimensional simply con-

nected manifold of constant sectional curvature, H.
This allowed Gromov to uniformly count the number, N(r), of balls of any

given radius in Mn
j ∈ M

n
H,D space. He applied this to create uniformly dense

countable collection points, p j,i ∈ M j and matrices of distances between these
points,

d j,i,k = dM j(pi, pk) ∈ [0,D]. (4.47)

For each, (i, k), a subsequence of j (that we still denote by j) has

d j,i,k → d∞, j,k ∈ [0,D]. (4.48)

Gromov diagonalized the sequence to obtain this convergence for all pairs of
points and then built a limit space out of the countable collection of points as-
signing them

X = {p j : j ∈ N} and d∞(p j, pk) = d∞, j,k. (4.49)

He used the triangle inequality and the uniform density of the points to take a
metric completion, X̄, and prove M j → X̄ in the Gromov-Hausdorff sense for
this subsequence. See [55] and see also the text of Burago-Burago-Ivanov [18]).

4.10 Increasingly Thin Tori GH-Converge to Circles

An example of a collapsing sequence of M j ⊂ M
n
H,D which converges in the

Gromov-Hausdorff sense is the sequence of increasingly thin tori

S1
A × S

1
1/ j

GH
−→ S1

A. (4.50)

This can be seen by observing that for any fixed j, we can take

Z = S1
A × S

1
1/ j (4.51)
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and distance preserving maps

F1 : S1
A × S

1
1/ j → Z to be F2(θ, φ) = (θ, φ). (4.52)

and
F2 : S1

A → Z to be F2(θ) = (θ, 0). (4.53)

The Hausdorff distance between

F2(S1
A) = {(θ, 0) : θ ∈ [0, 2π]} ⊂ Z and F1(S1

A × S
1
1/ j) = Z (4.54)

is easily seen to be π/ j. Thus

dGH
(
S1

A × S
1
1/ j,S

1
A

)
< π/ j→ 0. (4.55)

In Section 3.7, we saw that for each i the ith eigenfunctions of increasingly
thin tori S1

A × S
1
B converge to the ith eigenfunctions of the circle, S1

A. Thus the
truncated heat kernels of thin tori S1

A × S
1
B rescaled by (2πB) converge as B→ 0

to

1
2π +

1
π

N∑
j=1

e− j2t(sin( jθ1) sin( jθ2) + cos( jθ1) cos( jθ2))

which is the truncated heat kernel on a circle S1
A. Indeed the full heat kernel of

S1
A × S

1
B rescaled by (2πB) converges to the heat kernel of S1

A as B→ 0.

4.11 Eigenvalues and Measured Gromov-Hausdorff Convergence

This nice behavior of the eigenvalues and heat kernels is not true in general.
Fukaya found examples of sequences of Riemannian manifolds which converge
in the Gromov-Hausdorff sense to lower dimensional manifolds such that the
eigenfunctions did not converge the eigenvalues of the limit manifold [53]. More
precisely, the eigenvalues, λk(M j), do not converge to eigenvalues, λk(M∞) of the
standard Laplace operator, ∆M∞ , on the limit manifold, M∞.

Fukaya studied collapsing warped tori:

(M j, g j) = (S1 × S1, dθ2 + f 2(θ)/ j2dϕ2 (4.56)

where f (θ) is a nonconstant positive periodic warping function, which converge
in the Gromov-Hausdorff sense to the standard (S1, dθ2). Since the Laplacian on
(M j, g j) has the form

∆M j = 1
1

f (θ)
∂

∂θ
f (θ)

∂

∂θ
−

1
j2 f 2(θ)

∂2

∂φ2 . (4.57)
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Fukaya explained that their eigenvalues, λk = λk(M j) converge as j→ ∞, to the
eigenvalues, λ′k, of the operator

1
1

f (θ)
d
dθ

f (θ)
d
dθ

(4.58)

on S1. This operator is not equal to the Laplace operator, ∆S1 = d2/dθ2, and has
different eigenvalues, λ′k , λk(S1).

In [53], Fukaya proposed the notion of measured Gromov-Hausdorff con-
vergence of metric measure spaces:

(X j, d j, µ j)→ (X∞, d∞, µ∞) (4.59)

where (X j, d j) → (X∞, d∞) in the Gromov-Hausdorff sense and if p j ∈ X j con-
verges to p∞ ∈ X∞ as in (4.44) then the volumes of balls about them converge:

µ j(B(p j, r))→ µ∞(B(p∞, r)) for all r > 0. (4.60)

Fukaya proved that with this notion of metric measure convergence, and a
natural kind of Laplacian defined in a way that depends on the measure, there is
semicontinuity of the eigenvalues:

lim sup
j→∞

λk(X j, d j, µ j) ≤ λk(X∞, d∞, µ∞). (4.61)

Fukaya conjectured that eigenvalues and other spectral properties will behave
well under metric measure convergence if the sequence is inMn

H,D and he proved
this conjecture in the case with two sided sectional curvature bounds. He found
counter examples without the lower bound on Ricci curvature.

In [25], Cheeger and Colding proved Fukaya’s conjecture for sequences of
M j ∈ M

n
H,D. In fact, they proved that any sequence M j ∈ M

n
H,D endowed with

measures defined using rescaled volumes has a subsequence which converges in
the metric measure sense to a metric measure space with a measure that satisfies
the Bishop-Gromov Inequality. They defined a natural notion of eigenfunction
on this limit space and proved the eigenfunctions converge as well. Building on
their work, Yu Ding proved the heat kernels converge as well [45].

More recently Sturm has defined the metric measure distance between Rie-
mannian manifolds is defined as the infimum over all compact metric spaces Z
and all distance preserving maps Fi : Mi → Z of the Wasserstein distance be-
tween the push forwards of their measures into Z [90]. This notion is useful
for studying CD(H, n) spaces. These CD(H, n) spaces were first introduced by
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Lott and Villani and by Sturm using optimal transport [72][90] and were shown
to include the limits of M j ∈ M

n
H,D. See also Villani’s text [94]. A stronger

class of spaces called RCD∗(H, n) spaces which were introduced by Ambrosio-
Gigli-Savare in [5] have all the properties of CD(H, n) spaces and also satisfy a
splitting theorem. They proved all limits of manifolds M j ∈ M

n
H,D are included

in this stronger class as well.
It is also of interest to study sequences of manifolds which do not have uni-

form bounds on their Ricci or sectional curvatures.

4.12 Barbells

In [53], Fukaya considered sequences of barbells which are pairs of spheres
of radius R1 and R2 attached by a cylinders of length L and radius r ≤ min{R1,R2}

that can be described by as warped products over a sphere:

(MR1,R2,L,r, gR1,R2,L,r) = (S2, ds2 + f 2(s)dθ2) (4.62)

where

f (s) = R1 sin((s + sR1)/R1) for s ∈ [−sR1 ,−L/2]

f (s) = r for s ∈ [−L/2, L/2] (4.63)

f (s) = R2 sin((sR2 − s)/R2) for s ∈ [L/2, sR2]]

where sRi are chosen so that we have a C0 metric:

R1 sin((L/2 + sR1)/R1) = r = R2 sin((sR2 − L/2)/R2). (4.64)

These are C0 Riemannian manifolds, but can easily be smoothed to be C∞ Rie-
mannian manifolds with metric tensors arbitrarily close in the C0 sense to the
given metric tensor in (4.63). However the Ricci curvature of the sequence ap-
proaching this decreases to negative infinity for any such sequence because these
spaces do not satisfy the Bishop-Gromov inequality.

Fukaya fixed R2 = R1 and fixed L > 0 and took r → 0. He explained that the
sequence of such barbells converges in the measured Gromov-Haudorff sense
to a metric measure space which is a pair of standard spheres joined by a line
segment of length L:

MR1,R2,L,r
mGH
−→ XR1,R2,L = S

1
R1
⊔ |∼[0, L] ⊔ |∼S1

R2
as r → 0 (4.65)

where one pole SR1 is identified to 0 ∈ [0, L] and one pole in SR2 is identified to
L ∈ [0, L]. See Figure 4.1.
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Figure 4.1: Here we see distance preserving maps F1 : MR1,R2,L,r → Z and
F2 : XR1,R2,L → Z that can be used to estimate the Gromov-Hausdorff distance,
dGH(MR1,R2,L,r, XR1,R2,L) ≈ πr.

Fukaya noted measure on this limit space is the standard measure on each
sphere and is 0 on the interval. He also studied sequences where the metric
on the cylinder was increasingly bumpy so its area would not converge to 0
and the measure on the interval would be nonzero. Furthermore he proved he
had strong enough control on this sequence, that the eigenvalues of the limit
space are found by taking all the eigenvalues of S1

R1
and all the eigenvalues of

S1
R2

and all the eigenvalues of the interval [0, L] and listing them in order with
multiplicity. Despite the lack of uniform control on Ricci curvature, he stated
that the eigenvalues of the barbells converge to these eigenvalues. It would be
interesting to investigate what the eigenfunctions and heat kernels look like on
this sequence.

Fukaya also studied that case where R1 is fixed and L → 0 and r → 0 and
R2 > r → 0 so that

MR1,R2,r,L
GH
−→ S2

R1
as r → 0, L→ 0, R2 → 0. (4.66)

By taking r → 0 faster than the other two, he can use his previous result to
estimate the eigenvalues. In particular for r sufficiently small,

MR1,R2,r,L ≈ XR1,R2,L (4.67)

and then

XR1,R2,L
GH
−→ S2

R1
as r → 0, L→ 0, R2 → 0. (4.68)

He studied the eigenvalues in this setting and it would be interesting to study the
eigenfunctions and heat kernels as well.
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4.13 Intrinsic Flat Convergence

The Sormani-Wenger intrinsic flat distance between a pair of oriented Rie-
mannian manifolds, (Mn

1 , g1) and (Mn
2 , g2), is essentially the filling volume be-

tween them. It is defined by taking the infimum over all complete metric spaces
Z and all distance preserving maps, Fi : (Mi, dgi) → (Z, dz) of the flat distance
between their images:

dS WIF(M1,M2)) = inf dZ
F(F1#[[M1]], F2#[[M2]]). (4.69)

As it requires Geometric Measure Theory and Ambrosio-Kirchheim Theory to
define the flat distance between two submanifolds, we instead state a simple
useful estimate:

dZ
F(F1#[[M1]], F2#[[M2]]) ≤ Voln(An) + Voln+1(Bn+1) (4.70)

where An is an n-dimensional submanifold of Z and the filling manifold, Bn+1,
is an (n + 1)-dimensional submanifold of Z such that the boundary of B is
F1#[[M1]], F2#[[M2]]) and A keeping track of the orientation:

∂B = F1#[[M1]] − F2#[[M2]]) − A. (4.71)

More generally, A and B are integral currents satisfying (4.71 and their volumes
are replaced by their Ambrosio-Kirchheim masses. In fact the intrinsic flat dis-
tance is defined between pairs of integral current spaces which are rectifiable
metric spaces with rectifiable boundaries that have a weighted orientation called
an integral current structure. The intrinsic flat limits of sequences of oriented
Riemannian manifolds are integral current spaces included possibly the 0 space
when the sequence collapses [89].

This notion of convergence was defined to study the noncollapsed limits of
sequences of Riemannian manifolds with nonnegative scalar curvature. It is de-
signed so that thin wells disappear in the limit.

Sormani-Wenger studied spheres with wells that our student research team
liked to call lollipops. These consist of a single sphere of radius R attached to a
capped cylinder of length L and radius r ≤ R in [89]. These manifolds

(MR,r,L, gR,r,L) = (S2, ds2 + f 2(s)dθ2) (4.72)

are defined using the following C0 warping functions:

f (s) = R sin((s + sR)/R) for s ∈ [−sR,−L/2]

f (s) = r for s ∈ [−L/2, L/2]

f (s) = r sin((sr − s)/R2) for s ∈ [L/2, sr]]



From Varadhan’s Limit to Eigenmaps 67

as in (4.63) with R1 = R and R2 = r. If we fix R = r > 0 and take L → 0 these
converge in the C0 sense to a rescaled sphere of radius R:

MR,r,L → S
2
R as L→ 0. (4.73)

If we fix R, L > 0 and take r j → 0, these have no C0 limit, but converge in the
mGH sense to a sphere of radius R attached to an interval of length L:

MR,r j,L
mGH
−→ XR,L = S

1 ⊔ [0, L] as r j → 0. (4.74)

See Figure 4.2. The measure on this limit space is the standard measure on the
sphere and is 0 on the interval. Sormani-Wenger showed intrinsic flat limit is just
the sphere by explicitly constructing distance preserving maps into a sequence of
complete spaces Z j and constructing fillings B j of one dimension higher between
the sphere and the lollipop that has very small volume. Portegies studied the
eigenvalues of this example in [80] and it would be interesting to know how the
eigenfunctions and heat kernels behave.

Figure 4.2: On the left we see distance preserving maps F1 : MR,L,r → Z and
F2 : XR,L → Z that can be used to estimate the Gromov-Hausdorff distance,
dGH(MR,L,r, XR,L) ≈ πr. On the right we see the same maps can be used to show
the intrinsic flat distance between MR,L,r and S2

R is small.

If the warping functions on the sequence are increasingly bumpy on the
cylindrical part instead of being constant, Sormani-Wenger showed the measured
Gromov-Hausdorff limit has a nonzero measure on the interval but the intrinsic
flat limit is still only the sphere [89].

Ilmanen created a sequence of spheres with increasingly many increasingly
thin capped cylinders with no Gromov-Hausdorff limit because such a sequence
cannot be embedded with distance preserving maps into a compact metric space,
Z. Sormani-Wenger showed that if the volume of the sequence is kept bounded
then the filling volumes between these manifolds and the sphere converges to 0,
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so that the intrinsic flat limit of Ilmanen’s Example is a standard sphere. The
Intrinsic Flat convergence was designed to handle sequences like these that have
no Gromov-Hausdorff limit. Wenger’s Compactness Theorem states that any
sequence of manifolds with Vol(M j) ≤ V and Diam(M j) ≤ D has a subsequence
which converges in the intrinsic flat sense to an integral current space.

In [80], Portegies introduced volume preserving intrinsic flat convergence,
M j → M∞ iff

M j → M∞ in the intrinsic flat sense and Vol(M j)→ Vol(M∞). (4.75)

Applying the work of Fukaya, he proved that under this convergence

lim sup
j→∞

λk(M j) ≤ λk(M∞). (4.76)

It would be interesting to study what happens to the heat kernels in this setting
as well.

4.14 VADB Convergence

Most recently the notion of VADB Convergence has been defined by Allen-
Perales-Sormani in [2] and they proved VADB convergence implies Intrinsic
Flat Convergence. Ilmanen’s Example converges to a sphere under VADB con-
vergence.

A sequence of diffeomorphic manifolds (M, g j) converge to (M, g0) in the
VADB sense if Volg j(M)→ Volg0(M), Diamg j(M) ≤ D, and g j ≥ (1 − 1/ j)g0.

This paper is building on prior work of All-Sormani concerning the Lp con-
vergence of the metric tensors which is not enough to achieve uniform, Gromov-
Hausdorff, or intrinsic flat convergence unless there are also uniform bounds on
the metric tensors from above and below as shown by Allen-Sormani in [3] and
[4].

A number of conjectures concerning VADB convergence as well as a survey
of results applying VADB convergence appears in a survey by the second author
[88]. It would be interesting to study how the eigenvalues, eigenfunctions, and
heat kernels behave under VADB convergence.

5 Embedding Riemannian Manifolds via the Heat Ker-
nel

In 1994 Bérard, Besson, and Gallot introduced the idea of embedding a Rie-
mannian manifold into ℓ2 using the heat kernel [16]. Recall that ℓ2 is the vector
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space of square summable sequences,

ℓ2 =

 {v j}
∞
j=0 = {v0, v1, v2, v3, ...} :

∞∑
i=0

v2
i < ∞

 , (5.1)

with the ℓ2-inner product and ℓ2-norm,

< {v j}
∞
j=0, {ṽ j}

∞
j=0 >ℓ2 =

∞∑
j=0

v j · ṽ j and ||{v j}
∞
j=0||

2
ℓ2 =

∞∑
j=0

v2
j . (5.2)

Given an L2(M) orthonormal basis of eigenfunctions

{ϕ0, ϕ1, ϕ2, ....} such that ∆ϕ j = −λ jϕ j with 0 = λ0 < λ1 ≤ λ2 ≤ ..., (5.3)

Bérard-Besson-Gallot define the family of maps Ψt : M → ℓ2 for t > 0 as

Ψt(x) =
{
e−λ jt/2ϕ j(x)

}∞
j=1

. (5.4)

They use the fact that

||Ψt(x) − Ψt(y)||2
ℓ2 =

∞∑
j=1

e−λ jt(ϕ j(x) − ϕ j(y))2 =

∞∑
j=0

e−λ jt(ϕ j(x) − ϕ j(y))2

=

∞∑
j=0

e−λ jt(ϕ j(x))2 +

∞∑
j=0

e−λ jt(ϕ j(y))2 − 2
∞∑
j=0

e−λ jtϕ j(x)ϕ j(y)

= ht(x, x) + ht(y, y) − 2ht(x, y)

to prove the map is continuous and thus the image is compact.
To prove this is an embedding, Bérard-Besson-Gallot use the fact that any

L2(M) basis of orthonormal eigenfunctions separates points:

∀p, q ∈ M ∃ϕ j such that ϕ j(p) , ϕ j(q). (5.5)

This is also used to prove that the L2(M) basis of orthonormal eigenfunctions
spans L2(M).

Note that the the eigenvalues, 0 = λ0 < λ1 ≤ λ2 ≤ · · · and the eigenspaces
of these eigenvalues are uniquely determined by M and these eigenspaces are
L2(M)-orthogonal to one another. There is a choice being made when select-
ing the L2(M)-orthonormal basis for each eigenspace, and thus the space L2(M)-
orthonormal eigenfunctions depend on this choice. For this reason Bérard, Besson
and Gallot label their eigenfunctions with an a.
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5.1 Rescaled Heat Kernel Embeddings

Bérard, Besson, and Gallot [16] defined rescaled heat kernel embeddings and
proved the following theorem:

Theorem 5.1. Given an n-dimensional closed Riemannian manifold, let the map
ψt : Mn → ℓ2 for t > 0 be defined by

ψt(x) =
√

2(4π)n/4t(n+2)/4Ψt(x). (5.6)

Then the pulled back metric tensor satisfies

(ψt)∗gℓ2 = g + t
3 ( 1

2 Scalg · g − Riccig) + O(t2) when t→ 0+ (5.7)

where the pulled back metric tensor is defined on a vector Vx ∈ T Mx by

(ψt)∗gℓ2(Vx,Vx) = ||dψtVx||
2
ℓ2 =

(√
2(4π)n/2t(n+2)/4

)2
∞∑
j=1

e−λ jt|dϕ jVx|
2. (5.8)

Bérard-Besson-Gallot proved (5.7) by observing that

∞∑
j=1

e−λ jt|dϕ jVx|
2 = ∂y1∂y2ht(y1, y2)|y1=y2=x. (5.9)

They were able to prove their theorem taking these partial derivatives on the heat
kernel using the Minakshisundaram-Pleijel expansion.

Minakshisundaram and Pleijel studied the heat kernel on an manifold M
within a normal neighborhood about a point x using the method of analytic con-
tinuation applied to the time variable [77]. They required that the metric tensor
g of M is an analytic function of the normal coordinates. They prove the heat
kernel is the Cω limit

ht(x, y) = lim
P→∞

h̃P
t (x, y) (5.10)

where

h̃P
t (x, y) = 1

(4πt)n/2 e−dM(x,y)2/(4t)
P∑

i=0

Ui(x, y) ti (5.11)

where Ui(x, y) satisfy an iterative set of partial differential equations (each de-
pending on the value of the previous Ui(x, y) and the metric tensor g). They
proved the Ui(x, y) are uniquely determined by the requirement that U0(x, x) = 1
and Ui(x, x) is finite. One advantage of Minakshisundaram-Pleijel’s expansion
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is that a Cω limit allows us to differentiate as many times as we wish and the
derivatives will converge to the derivatives of the limit. The proof of conver-
gence in [77] involves the decay of the eigenvalues. The disadvantage of this
formula is that it requires that x, y lie in a normal neighborhood.

Abdalla later applied Minakshisundaram and Pleijel to study Cω parametrized
families of Riemannian manifolds embedded via heat kernel maps in [1].

5.2 Truncated Heat Kernel Embeddings

It is much simpler to consider the truncated heat kernel embeddings into
Euclidean space ψN

t : Mn → EN for t > 0 such that

ψN
t (x) =

√
2(4π)n/4t(n+2)/4{e−λ jt/2ϕ j(x)}Nj=1 ∈ E

N . (5.12)

Note that we easily obtain continuity for the truncated heat kernel maps and they
are one-to-one as long as {ϕ1, ..., ϕN} separate points.

We can then rewrite Bérard-Besson-Gallot’s Theorem stated in (5.7) as

lim
t→0+

lim
N→∞

(ψN
t )∗gEN (Vx,Vx) = g(Vx,Vx), (5.13)

and

lim
t→0+

(3/t)
(

lim
N→∞

(ψN
t )∗gEN (Vx,Vx) − g(Vx,Vx)

)
= 1

2 Scalg · g − Riccig (5.14)

where

(ψN
t )∗gEN (Vx,Vx) =

(√
2(4π)n/4t(n+2)/4

)2
N∑

j=1

e−λ jt|dϕ jVx|
2. (5.15)

Note that these limits must be taken in the correct order. If we try to take the
limit as t → 0+ first in (5.13), then

lim
t→0+

(ψN
t )∗gEN (Vx,Vx) = lim

t→0+

(√
2(4π)n/4t(n+2)/4

)2
N∑

j=1

e−λ jt|dϕ jVx|
2 = 0 (5.16)

because limt→0+ t(n+2)/4e−λt = 0.
We can define a BBG time Tϵ such that

|(ψt)∗gℓ2(Vx,Vx) − g(Vx,Vx)| < ϵg(Vx,Vx) ∀t ∈ (0,Tϵ) (5.17)
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and a BBG number Nt,ε such that

|(ψN
t )∗gEN (Vx,Vx) − (ψt)∗gℓ2(Vx,Vx)| < εg(Vx,Vx) ∀N ≥ Nt,ε (5.18)

If we choose t < Tϵ first and then N > Nt,ε we have

|(ψN
t )∗gEN (Vx,Vx) − g(Vx,Vx)| < (ϵ + ε)g(Vx,Vx). (5.19)

These estimates are explored further in the work of Portegies [81] which we will
discuss below in Section 7.4.

Note that there is some lack of uniqueness when defining the truncated em-
beddings. If N has λN = λN+1, then ψN

t includes ϕN in the truncated embedding
but doesn’t include ϕN+1 although both are in the same eigenspace and could
have been listed in any order when first finding the L2(M) basis of eigenfunc-
tions. If N has λN < λN+1, then the truncated embedding is unique up to an
orthogonal transformation of EN , because we would be including a complete
L2(M) basis for each eigenspace with j ≤ N and choosing a different basis for
the m j dimensional eigenspace of λ j only transforms the basis by an O(m j) ac-
tion and thus transforms the image in EN by the same action.

5.3 Embedding Circles with a Truncated Heat Kernel

Let us consider ψt : S1 → ℓ2 for t > 0 using the eigenfunctions (which come
in pairs) that we found in the Section 3.4 . The truncated embedding is

ψ2N
t (x) =

√
2(4π)n/4t(n+2)/4

{
e− j2t/2π−

1
2 sin( jθ), e− j2t/2π−

1
2 cos( jθ))

}N

j=1
⊂ E2N .

In Figure 5.1, we have drawn some of the images of the truncated heat kernel
embeddings with T > t. Note that already with N = 2 we have an embedding,
but the circle is too short. With N = 4 we wind around ψ2

T (S1) twice, and with
N = 6 we wind around ψ4

T (S1) thrice. Taking limit as N → ∞ for fixed time
T , we moving to the right across the first row of Figure 5.1. The limit, ΨT (S1)
is a circle winding infinitely many times around itself. The same happens in the
second row.

Now consider the columns in Figure 5.1. If we take t small, for fixed N, we
see that the radius of winding is closer to the original radius, because e− j2t is
close to 1 for both j = 1 and j = 2. However, the whole image is scaled down
by
√

2(4π)n/2t(n+2)/4. So for fixed N taking t → 0 the images contract to a point.
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Figure 5.1: Here we look at the images of the heat kernel embeddings of the
circle for T > t. Image credit: Pen Chang (Student, Stony Brook).

To find the lengths of these curves, we use the homogeneity of S1 to see that

L
(
ψ2N

t (S1)
)
=

∫ 2π

0
(ψ2N

t )∗gE2N (∂θ, ∂θ)
1
2 dθ = 2π(ψ2N

t )∗gE2N (∂θ, ∂θ)
1
2 . (5.20)

We can evaluate this using (5.15) at any θ. So lets take θ = 0 where our eigen-

functions, ϕ2 j(0) = 0 and ϕ2 j−1(0) = π−
1
2 , to see that

(ψ2N
t )∗gE2N(∂θ, ∂θ) = 2(4π)

1
2 t3/2

2N∑
j=1

e−λ jtλ j|ϕ j(0)|2 = 4π−
1
2 t3/2

N∑
j=1

e− j2t j2.

(5.21)
So the lengths of the images of S1 are

L
(
ψ2N

t (S1)
)
= 2π

4π−1
2 t3/2

N∑
j=1

e− j2t j2


1
2

(5.22)

and the lengths of their limits as N → ∞ increase to

L
(
ψt(S1)

)
= 2π

4π− 1
2 t3/2

∞∑
j=1

e− j2t j2


1
2

(5.23)

and by (5.13) we have
lim
t→0+

L
(
ψt(S1)

)
= 2π. (5.24)
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However if we take t → 0, before N → ∞, we get

lim
t→0+

L
(
ψ2N

t (S1)
)
= lim

t→0+
2π

4π−1
2 t3/2

N∑
j=1

e− j2t j2


1
2

= 0(12 + 22 + · · · + N2) = 0.

Note that (5.24) can be independently verified using a Theta function as seen
in Edwards’ text [49]. Consider

Θ(x) =
∞∑

n=1

e−πn2 x. (5.25)

Then Θ(x) satisfies the equation

1 + 2Θ(x)
1 + 2Θ(1/x)

=
1
√

x
. (5.26)

Differentiating this equation, we obtain the following:

−4x3/2Θ′(x) = 1 + 2Θ(1/x) +
4
x
Θ′(1/x). (5.27)

That is,

4πx3/2
∞∑

n=1

n2e−πn2 x = 1 + 2Θ(1/x) +
4
x
Θ′(1/x). (5.28)

Setting t = πx, we get

4π−1/2t3/2
∞∑

n=1

n2e−n2t = 1 + 2Θ(π/t) +
4π
t
Θ′(π/t). (5.29)

Note that the right hand side approaches 1 as t → 0 due to exponential decay of
the Theta function. Hence, we have

lim
t→0+

L
(
ψt(S1)

)
= 2π. (5.30)

5.4 Embedding Spheres with a Truncated Heat Kernel

For a round sphere, S2 of dimension 2, the first 3 nonconstant eigenfunctions
all share the same eigenvalue (as we saw in 3.8). Due to the symmetry, the
truncated heat kernel ψ3

t (S2) is an embedding whose image is a round sphere in
E3 but its radius is smaller than that of the original sphere and decreases to 0 as



From Varadhan’s Limit to Eigenmaps 75

t → 0. In fact, for a round sphere, Sn of dimension n, the first n + 1 nonconstant
eigenfunctions all share the same eigenvalue. Thus for N = n + 1, the truncated
heat kernel, ψN

t (Sn), is an embedding whose image is a round sphere in En+1.
If a manifold (Mn, g) is C2 close to a round sphere Sn, then its eigenvalues

and eigenvectors will be close to that of the sphere. If they are sufficiently close
then ψN

t : Mn → EN will be an embedding for N = n + 1 as well.

In fact, if (Mn
j , g j) have Ricci ≥ (n − 1)H and Mn

j
GH
−→ Sn then by Cheeger-

Colding [25], their eigenfunctions and eigenvalues converge. So perhaps, for j
sufficiently large, ψN

j t : M j → E
N is an embedding for N = n + 1.

5.5 Embedding Tori with a Truncated Heat Kernel Map

For a flat torus of the form S1 × S1, we saw in Section 3.6 that the first four
nonconstant eigenfunctions are

A1,0 sin(θ), A1,0 cos(θ), A0,1 cos(φ), and A0,1 sin(φ) (5.31)

where A1,0 = A0,1 = 1/(π
√

2) with eigenvalue λ1,0 = λ0,1 = 1 because A = B =
1. So the truncated truncated heat kernel map, ψ4

t , maps the torus onto

S1
R × S

1
R ⊂ E

2 × E2 (5.32)

where R = 1/(π
√

2). Thus the pullback of the Euclidean metric tensor, ψ4∗
t gE4 ,

is just a rescaling of the flat torus metric tensor, gS1×S1 .
For a flat torus of the form S1 × S1

1/10 we saw in Section 3.7 that the first
twenty eigenfunctions only depend upon on the first parameter and so ψ4

t even
ψ19

t maps into a parametrized circle lying in E19 exactly as in the image of a
single S1 although it will be scaled differently. The pull back of the metric tensor,
ψ19∗

t gE19 will not be a positive definite metric tensor on the torus. On a thin torus,
we need to take N very large before the pull back becomes positive definite.

5.6 Embedding Tori with Selected Eigenfunctions

Here we embed the thin torus, S1 × S1
1/10, with its metric tensor of the form,

gS1×S1
1/10
= dθ2 + (1/10)2dφ2, (5.33)

into E4 using only four eigenfunctions. To do this, we select the four eigenfunc-
tions corresponding to

λ0,1 = λ10,0 = 100 (5.34)
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and define the map,

ψλ=100
t (θ, ϕ) =

( √
5
π sin(10 θ),

√
5
π cos(10 θ),

√
5
π sin(φ),

√
5
π cos(φ)

)
. (5.35)

We claim that(
ψλ=100

t

)∗
gE4 =

(
ψλ=100

t

)∗
(dx2

1 + dx2
2 + dx2

3 + dx2
4)

=
(
10
√

5/π
)2

(cos2(10 θ) + sin2(10 θ)) dθ2

+
(√

5/π
)2

(cos2(φ) + sin2(φ)) dφ2.

To see this, observe that((
ψλ=100

t

)∗
(dxi)

)
(∂θ) = dx1

(
(ψλ=100

t )∗∂θ
)
=

(
(ψλ=100

t )∗∂θ
)

xi

=
(
(ψλ=100

t )∗∂θ
)

xi = ∂θ
(
xi ◦ Ψ

λ=100
t

)
.

So we have((
ψλ=100

t

)∗
(dx1)

)
(∂θ) = ∂θ

( √
5
π sin(10 θ)

)
= 10

√
5
π cos(10 θ)(

(ψλ=100
t )∗(dx2))(∂θ

)
= ∂θ

( √
5
π cos(10 θ)

)
= −10

√
5
π sin(10 θ)(

(ψλ=100
t

)∗
(dx3))(∂ϕ) = ∂φ

( √
5
π sin(φ)

)
=
√

5
π cos(φ)(

(ψλ=100
t

)∗
(dx4))(∂ϕ) = ∂φ

( √
5
π cos(φ)

)
= −

√
5
π sin(φ)

and the other pullbacks of dxi acting on ∂θ and ∂ϕ are zero. Thus

(ψλ=100)∗gE4 =

(
10
√

5
π

)2
dθ2 +

( √
5
π

)2
dφ2 (5.36)

is a rescaling of
gS1×S1

1/10
= dθ2 + (1/10)2dφ2. (5.37)

This also works to embed S1 ×S1
1/2 into E4. We can take the four eigenfunc-

tions corresponding to λ0,1 = λ4,0 = 4 to define a selective embedding:

ψλ=4
t (θ, ϕ) = e−4t/2 (

A2,0 sin(2θ), A2,0 cos(2θ), A0,1 sin(φ), A0,1 cos(φ)
)
. (5.38)

Note that a selective embedding as described above is a well chosen projection
of the heat kernel embedding in carefully selected directions. This is our own
notion introduced vaguely here and is not mentioned in the literature elsewhere.
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This will not work for arbitrary S1
A × S

1
B with A > B as λ = (1/B)2 might

only have multiplicity 2 with a pair of eigenfunctions that only depend on φ. In
that case we might take a pair of eigenvectors depending on θ with an eigenvalue
near (1/B)2 to define an approximately selective embedding

ψλ near (1/B)2

t : S1
A × S

1
B → E

4. (5.39)

Although this would not be a rescaling, it would be biLipschitz close to one.
It would be easier to find a pair of eigenvectors depending on θwith an eigen-

value nearer to (k/B)2 for large k. We might then use these in conjunction with a
pair of eigenvectors depending on φ with λ = (k/B)2 to define an approximately
selective embedding

ψλ near (k/B)2

t : S1
A × S

1
B → E

4. (5.40)

We might even conjecture that that with appropriate rescaling by a well chosen
sequence, ζk ∈ (0,∞), the pullbacks of these approximately selective embedding
converge to the standard flat metric on the torus:

lim
k→∞

ζk(ψλ near (k/B)2
)∗gE4 = gS1

A×S
1
B
. (5.41)

This would be straightforward to check for tori. Could something like this work
for more general classes of manifolds? See Conjecture 8.2 at the end of this
paper.

5.7 Estimating Lengths vs Extrinsic Distances

Note that Bérard-Besson-Gallot heat kernel embeddings can be used to ap-
proximate the lengths of curves:

Lg(C) =
∫ 1

0
g(C′(s),C′(s))1/2 ds. (5.42)

If we choose t < Tϵ as in (5.17) then

|L(ψt)∗gℓ2 (C) − Lg(C)| < ϵLg(C). (5.43)

So
(1 − ϵ) Lg(C) < L(ψt)∗gℓ2 (C) < (1 + ϵ) Lg(C). (5.44)

The Riemannian distance between points x, y ∈ M is found by taking

dM(x, y) = inf{L(C) : C(0) = x, C(1) = y, C : [0, 1]→ M}. (5.45)
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So
(1 − ϵ) dM(x, y) < dψt(M)(ψt(x), ψt(y)) < (1 + ϵ) dM(x, y). (5.46)

So ψt is (1+ϵ)-biLipschitz with respect to the intrinsic metric of the image ψt(M)
but not with respect to the metric dℓ2 .

To make this more clear, lets use the truncated heat kernel embeddings. Tak-
ing N > Nt,ε so that we have (5.18), we can repeat the above to see that

(1 − ϵ − ε)Lg(C) < L(ψN
t )∗gEN

(C) < (1 + ϵ + ε)Lg(C) (5.47)

and

(1 − ϵ − ε) dM(x, y) < dψN
t (M)(ψt(x), ψt(y)) < (1 + ϵ + ε) dM(x, y). (5.48)

So ψt is (1 + ϵ + ε)-biLipschitz with respect to the intrinsic distance within the
image ψN

t (M) but not with respect to the extrinsic Euclidean distance.
In fact, the extrinsic Euclidean distance between the points in the image are

converging to 0. This can be seen as follows:

dEN (ψt(x), ψt(y)) ≤ dEN (ψt(x), 0) + dEN (0, ψt(y)) (5.49)

and

dEN (ψt(x), 0)2 =
(√

2(4π)n/4t(n+2)/4
)2

N∑
j=1

e−λ jt(ϕ j(x))2

=
(√

2(4π)n/4t(n+2)/4
)2

hN
t (x, x)

Taking N → ∞ first we get

dℓ2(ψt(x), ψt(x))2 =
(√

2(4π)n/4t(n+2)/4
)2

ht(x, x). (5.50)

By the Minakshisundaram-Pleijel expansion in (5.10)-(5.11), we can see that,

lim
t→0

(√
2(4π)n/4t(n+2)/4

)2
ht(x, x) = lim

t→0
2(4π)n/2tn/2+1 e−d2

M(x,x)/(4t)

(4πt)n/2 = 0. (5.51)

Thus
lim
t→0

lim
N→∞

dEN (ψN
t (x), ψN

t (y)) = lim
t→0

dℓ2(ψt(x), ψt(y)) = 0. (5.52)
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5.8 Other Rescalings of the Heat Kernel Embedding

Bérard-Besson-Gallot defined an embedding where they rescaled by volume

It(x) =
√

Vol(M)Ψt(x), (5.53)

in Part III of [16].
They also defined an embedding into an infinite dimensional sphere in Part

VIII of [16].
Kt(x) = Ψt(x)/|Ψt(x)|. (5.54)

They proved the pull back satisfies

K∗t gℓ2 = 1/(2t)
(
g − (t/3)Ricci + O(t2)

)
as t → 0+. (5.55)

5.9 Spectral Convergence of Riemannian Manifolds

Inspired by the work of Gromov [55] and of Fukaya [53], Bérard-Besson-
Gallot defined a spectral distance between Riemannian manifolds.

To define a spectral distance between two Riemannian manifolds, M1 and
M2, they took the Hausdorff distance between It(M1) and It(M2) of (5.53) and
considered a minmax over various reorderings of the eigenfunctions in Part IV
of [16]. They proved a compactness theorem for their spectral distance and they
prove that when sequences of manifolds converge with respect to this spectral
distance their eigenvalues converge.

Kasue and Kumura defined a different spectral convergence in [61] [62] [60].
Their notion is related to this one but is defined in a completely different way
using maps that almost preserve heat kernels rather than Hausdorff distances
between embeddings. They also proved that when sequences of manifolds con-
verge with respect to this spectral distance their eigenvalues converge.

6 Applications to Dimension Reduction of High Dimen-
sional Data Sets

Heat kernel embeddings have been applied to achieve dimension reduction:
the mapping of data sets of points in high dimensional spaces to lower dimen-
sional spaces. An example of such a data set would be a collection of pho-
tographs. Each photograph would be a point. See for example Figure 6.1. If the
photographs are in grey scale with 1, 000 × 1, 000 pixels, then their points lie in
X = R1,000,000. In general, the data set is described by {x1, ...xk} ∈ X, where X is
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the high dimensional space endowed with a distance, dX , that is meaningful to
the application.

Figure 6.1: Here we have 6 photos each of which has 9 pixels, so they may be
viewed as points in R9. For example, the leftmost photo is (2, 1, 2, 1, 2, 3, 2, 3, 4)
and the one above it is (2, 3, 4, 3, 4, 3, 4, 3, 2). The distance between these photos
measured using the Euclidean distance is then

√
24.

The distances between the points can be stored as a distance matrix, dX(i, j).
Sometimes the distances are just the extrinsic Euclidean distances. A neigh-
borhood graph can be created by joining some nearby points with edges. One
method is to select the k nearest neighbors (kNN) for each point to be connected
with an edge so the resulting graph has degree k: k edges per vertex. Another
method is to connect each point with every point in an ϵ neighborhood about it.
See Figure 6.2. A distance of shortest paths can then be found using an algorithm
by Dijkstra [44] or we can use the extrinsic Euclidean distance.

Figure 6.2: We have created a graph with a photo at each vertex. Here we have
connected photos that are within an ϵ = 5, so that there are edges between pairs
of photos that are a distance less than 5 apart. Note it turns out there are 4
edges per vertex, so this is also a kNN graph with k = 4. Note that the thick
lines connect vertices that are a distance 3 apart and the thinner lines are for the
vertices that are further apart.

In 2000, Tenenbaum-deSilva-Langford [91] created the ISOmap algorithm
combining these ideas with Multidimensional Scaling (MDS) which is a tech-
nique from Linear Algebra. Roweis-Saul [82] introduced Nonlinear Dimension-
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ality Reduction using the Locally Linear Embedding (LLE) algorithm which
eliminated the need to estimate pairwise distances between widely separated
points. These initial papers introduced algorithms and demonstrated their ef-
fectiveness in studying sample data sets but did not include proofs.

When we assume the data set of points lies on a submanifold of the high
dimensional space, the process of dimension reduction is called manifold learn-
ing. For example, we might have a collection of photos from a continuous film,
in which case they lie on a curve which is a 1 dimensional manifold. Or they
might be photos of the same scene taken from many directions at the same dis-
tances, in which case the underlying submanifold would be S O(3). Note that
the submanifold is not known: it is just presumed to exist, and then if the right
technique is used, its properties allow us to reduce the dimension.

The goal is to map the data points into a lower dimensional space and thus
discover the underlying structure. Ideally we might even preserve the distances
under this map (just as in a heat kernel embedding), although even just obtaining
an embedding is of interest. The heat kernel is also useful because it is robust
to noise. In 2001, Belkin and Niyogi introduced the idea of embedding data
sets using eigenmaps whose components are eigenfunctions [13]. In this sec-
tion we describe their approach and then later we describe the diffusion maps
of Coifman-Lafon whose components are weighted eigenfunctions [38]. See
Figure 6.3.

Figure 6.3: On the left is the image of the data set from Figure 6.1 after it has
been mapped into R2 by an eigenmap. We have placed each photo on top of
its image under the eigenmap of Coifman-Lafon and we then drew the edges
connecting them. We see that the data is now arranged symmetrically into a
circle. On the right, we have used the circular symmetry to glue the photos
together to form a panoramic image which is periodic. This symmetry was not
visible in the original disorganized data set.
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6.1 Belkin-Niyogi Eigenmaps of Data Sets

In 2001, Belkin and Niyogi introduced Laplacian eigenmaps [13] as a method
to provide dimension reduction for data sets that lie on submanifolds in a high
dimensional space, X. Their algorithm has three steps as follows:

Algorithm:

Step 1: Given k points, {x1, ..., xk} ⊂ X, they constructed an adjacency graph
connecting neighboring points, xi ∼ x j, either using an ϵ-neighborhood ap-
proach or the k nearest neighbors (kNN).

Step 2: They created an k × k heat kernel matrix,

W t
i, j = e−|xi−x j |

2/t for xi ∼ x j and W t
i, j = 0 otherwise. (6.1)

In particular, W t
i,i = e−02/t = 1 because xi ∼ xi. They define a diagonal degree

matrix

Di,i =

n∑
j=1

Wi, j where Wi, j = W t
i, j, (6.2)

a graph Laplacian matrix, L = D −W.

Step 3: Belkin-Niyogi define an eigenmap: VN
t : {x1, ..., xk} → R

N , for any
N ≤ k − 1 by

VN
t (xi) = (v1(i), v2(i), ..., vN(i)) ∈ RN where v j(i) is the ith component of v j.

(6.3)
where 0 = µ0 < µ1 ≤ · · · ≤ µk−1 are the eigenvalues and

v0, v1, ..., vk−1 ∈ R
k (6.4)

is an orthonormal collection of eigenvectors of the normalized graph Laplacian
D−1L:

D−1Lv j = µ jv j. (6.5)

Belkin and Niyogi leave out the 0th eigenvector v0 in the definition of their
eigenmap VN

t because all of its entries are the same. This can easily be seen by
observing that the sum of the entries in each row of D−1L is 0:

k∑
j=1

(D−1L)i, j =

k∑
j=1

D−1
i (D −W)i, j =

k∑
j=1

Ii, j − D−1
i

k∑
j=1

Wi, j = 1 − D−1
i Di = 0.

(6.6)
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In [13], Belkin and Niyogi explain that intuitively if {x1, ...xk} ⊂ X lie as a
uniformly distributed collection of points in a submanifold, Mn, of small dimen-
sion, n, in the high dimensional Euclidean space, X, then they can use eigenfunc-
tions, ϕ j : M → R, of the Laplacian, ∆, on M to define a smooth eigenmap,

ΦN : Mn → RN as ΦN(xi) = (ϕ1(xi), ϕ2(xi), ..., ϕN(xi)). (6.7)

Note that this smooth eigenmap,ΦN(x), is a truncation of an unweighted version
of Bérard-Besson-Gallot’s heat kernel embedding, Ψt(x), that we saw in (5.4)
[16].

Belkin and Niyogi’s three step algorithm defines an eigenmap, VN
t , on the

data set, {x1, ..., xk}, without knowing the ambient manifold, M, such that

ΦN(xi) = (ψ1(xi), ψ2(xi), ..., ψN(xi)) ≈ (v1(i), v2(i), ..., vN(i)) = VN
t (xi) (6.8)

The approximation ΦN(xi) ≈ VN
t (xi) was not proven rigorously in Belkin and

Niyogi’s early papers however they did provide some of intuition leading to their
algorithm.

The intuitive reasoning behind Belkin and Niyogi’s choice of matrix in (6.1)
was explained by Belkin roughly as follows in his doctoral dissertation [12].
Recall that given a function, f : M → R, then

u(x, t) =
∫

M
ht(x, y) f (y) dvoly (6.9)

satisfies
∂tu = ∆u and lim

t→0+
u(x, t) = f (x). (6.10)

Thus

(∆ f )(x) = (∆u)(x, 0) = (∂tu)(x, 0) = lim
t→0+

−1
t (u(x, 0) − u(x, t))

= lim
t→0+

−1
t

(
f (x) −

∫
M

ht(x, y) f (y) dvoly

)
Since they are studying a data set, Belkin and Niyogi ignored the limit as t → 0+

and consider integration to be summation:

(∆ f )(xi) ≈ f (xi) −
k∑

j=1

ht(xi, x j) f (x j) (6.11)

They decided to choose a weight matrix Wi, j so that

D−1
i,i Wi, j ≈ ht(xi, x j) (6.12)



84 C-Y Lin and C Sormani

so that

(∆ f )(xi) ≈ f (xi) −
k∑

j=1

(D−1W)i, j f (x j) = (I − D−1W)i, j f (x j). (6.13)

In this way, the eigenfunctions ϕ j(x) of the Laplace Beltrami operator, ∆ϕ j =

−λ jϕ j, seem to correspond with the eigenvectors, v j, of I − D−1W = D−1L as in
(6.5) so that

ϕ j(xi) ≈ v j(i) ∀i, j ∈ {1, ..., k} (6.14)

which intuitively justifies (6.8). Note that they made no claim that the eigenval-
ues match and in practice the eigenvalues, λ j and µ j are not close even as t → 0+

as we will see in upcoming sections.
Note that by (6.12) and the definition of the degree matrix (6.2). they achieve

the normalization of the heat kernel:

1 =
∫

M
ht(x, y) dy ≈

k∑
j=1

ht(xi, x j) =
k∑

j=1

D−1
i Wi, j = 1. (6.15)

Finally Belkin-Niyogi approximated the heat kernel as we’ve seen throughout
by

ht(xi, x j) ≈ 1
(4πt)n/2 e−|xi−yi |

2/(4t) (6.16)

to justify their choice of Wi, j in (6.1) although their choice has division by t
instead of 4t in the exponent. Since this just rescales time, it does not cause any
issues for them.

A more rigorous discussion appears in the 2006 papers of Belkin-Niyogi
using a probabilistic approach [11] [14] . See also Kondor-Lafferty work in [63].
See also their joint work with Sinddhwani in [15].

6.2 A Brief History of Graph Laplacians starting with Dodziuk

It should be noted that the graph Laplacian was first defined by Dodziuk in
1984 [47]. His graph Laplacian was on a simple graph without weighted edges.
He used the difference Laplacian,

“∆′′ f (xi) =
∑
x j∼xi

( f (x j) − f (xi)) = −Di f (xi) +
∑
x j∼xi

f (x j) (6.17)

that had been studied on square lattices in Euclidean space as early as 1928 by
Courant, Friedrichs and Lewy [40]. Here Di is the degree of vertex xi and is equal
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to the number of vertices x j such that x j ∼ xi. Defining W to be the adjacency
matrix such that Wi, j = 1 when xi = x j or there is an edge between xi and x j, and
0 otherwisse, we see that Dodziuk’s graph Laplacian satisfies,

“∆′′ f (xi) =
∑
x j∼xi

( f (x j) − f (xi)) =
k∑

j=1

(W − D)i, j f (x j) (6.18)

where D is the diagonal degree matrix Di,i = Di. Note the opposite sign on
this version. In his paper, Dodziuk proved the maximum principle, the Harnack
inequality, and Cheeger’s bound for the lowest eigenvalue all extend to the graph
setting in [47]. In 1988, he developed a Green’s formula with Karp in [48]. For
early applications of these ideas to Markov chains see the paper of Lawler and
Sokol [65].

6.3 Continuing the History of Graph Laplacians with work of Chung

A deep analysis of graph Laplacians appears in the work of Chung in [34]
where she studies weighted graphs with a symmetric weight matrix, W. The de-
gree of the vertex is then defined to be Di =

∑k
j=1 Wi, j Chung’s Graph Laplacian

matrix is defined L = D−W with the opposite sign used by Dodziuk. She defines
a normalized graph Laplacian matrix, D−1L, which might not be symmetric. So
she defines a normalized symmetrized graph Laplacian matrix,

L = D1/2 (D−1L) D−1/2 = D−1/2 LD−1/2 = I − D−1/2 WD−1/2 , (6.19)

which is a symmetric matrix. Taking a function f : {x1, ..., xk} → R, she defines
(L f ) : {x1, ..., xk} → R as follows:

(L f )(xi) =
k∑

j=1

(I − D−1/2 WD−1/2 )i, j f (x j), (6.20)

so that

(L f )(xi) = f (xi) −
k∑

j=1

D−1/2
i Wi, j D−1/2

j f (x j). (6.21)

Note that the eigenvalues µ j of the normalized graph Laplacian, D−1L, are
also the eigenvalues of L because

L(D1/2v j) = D−1/2 LD−1/2 (D1/2v j) = D1/2 D−1Lv j

= D1/2 (−µ jv j) = −µ j(D1/2v j).
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Because of this well known relationship, some people redefine Belkin-Niyogi’s
eigenmaps using the eigenvectors of the symmetrized normalized Laplacian L.

In 1995-1997 Chung completed joint work with Yau on Graph eigenvalues
and Sobolev inequalities [35] , joint work with Grigor’yan and Yau proving up-
per bounds on eigenvalues of finite graphs [32], and joint work with Yau on the
heat kernel and its trace for graphs [36]. She has applied these ideas in many
directions including developing a pagerank for web search engines [37].

Note that Belkin-Niyogi’s graph Laplacian is defined using their own weight
matrix W that was not studied by Chung. It does not agree with the adjacency
matrix of Dodziuk even when all edges have the same weight. Their graph Lapla-
cian only fits with Chung’s work in the sense that it uses her notion of a weighted
graph Laplacian (as in 1.4 of her textbook [31]). It is not the heat kernel matrix
defined in Chung’s work with Yau in [36] and explored further in the later chap-
ters of her textbook [31].

6.4 Graph Laplacians Approximating Smooth Laplacians

Hein, Audibert, and Luxburg provide a rigorous discussion of the relation-
ship between graph Laplacians to manifold Laplacians in [56]. Singer improves
the convergence rate from graph to manifold Laplacians in [84] by also assuming
uniformly distributed points.

In [95], Wardetzky, Mathur, Kalberer, and Grinspun study five different dis-
crete Laplacian and discuss which properties each shares with the continuous
Laplacian. They conclude that no discrete Laplacian can have all the properties
but that different ones may be used to achieve different properties.

Most recently, Burago-Ivanov-Kurylev have shown in [19] that eigenvalues
and eigenfunctions of the Laplace-Beltrami operator on a Riemannian manifold
are approximated by eigenvalues and eigenvectors of a (suitably weighted) graph
Laplace operator of a proximity graph on an epsilon-net. Earlier work by Fuji-
wara in [52] had also considered ϵ-nets but he only approximated the eigenvalues
and his estimates were not as strong. There is also unpublished work of Aubry
from 2014 providing estimates that depend only on the upper bounds on diameter
and sectional curvature of M and lower bounds on the injectivity radius.

6.5 An Eigenmap of a Hexagon

As a simple case let us work out an eigenmap of 6 points, {x1, x2, x3, x4, x5, x6},
where

x j = (cos(2π j/6), sin(2π j/6)) (6.22)
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lie on the unit circle. We can consider kNN with k = 2 nearest points or ϵ slightly
> 1 to determine the same collection of unit length edges, so that our graph is the
standard hexagon with two edges of length one attached at every vertex. Then
by (6.1), we have

W =



1 e−1/t 0 0 0 e−1/t

e−1/t 1 e−1/t 0 0 0
0 e−1/t 1 e−1/t 0 0
0 0 e−1/t 1 e−1/t 0
0 0 0 e−1/t 1 e−1/t

e−1/t 0 0 0 e−1/t 1


. (6.23)

and our diagonal matrix D has Di,i =
∑n

j=1 Wi, j = 1 + 2e−1/t. So

L = D −W =



2e−1/t −e−1/t 0 0 0 −e−1/t

−e−1/t 2e−1/t −e−1/t 0 0 0
0 −e−1/t 2e−1/t −e−1/t 0 0
0 0 −e−1/t 2e−1/t −e−1/t 0
0 0 0 −e−1/t 2e−1/t −e−1/t

−e−1/t 0 0 0 −e−1/t 2e−1/t


. (6.24)

Here D is a multiple of the identity, so we have L = D−1/2 LD−1/2 = D−1L, and

L = D−1L =
2e−1/t

1 + 2e−1/t



1 − 1
2 0 0 0 − 1

2
− 1

2 1 − 1
2 0 0 0

0 − 1
2 1 − 1

2 0 0
0 0 − 1

2 1 − 1
2 0

0 0 0 − 1
2 1 − 1

2
− 1

2 0 0 0 − 1
2 1


(6.25)

Thus we will get the same eigenmaps, VN
t : {x1, ..., xk} → R

N , defined using
Belkin-Niyogi’s D−1L as we get using the symmetrized L to compute the eigen-
vectors.

We know the λ0 = 0 eigenfunction is constant and quickly confirm the same
for eigenvectors of L:

2e−1/t

1 + 2e−1/t



1 − 1
2 0 0 0 − 1

2
− 1

2 1 − 1
2 0 0 0

0 − 1
2 1 − 1

2 0 0
0 0 − 1

2 1 − 1
2 0

0 0 0 − 1
2 1 − 1

2
− 1

2 0 0 0 − 1
2 1





1
1
1
1
1
1


=



0
0
0
0
0
0


= 0



1
1
1
1
1
1


(6.26)
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Ordinarily we would next compute the eigenvectors numerically, but here we
can quickly guess them using Belkin-Niyogi’s intuition as described in (6.8):
v j(i) ≈ ϕ j(xi).

In Section 5.3, we found the eigenfunctions

ϕ1(θi) = A1 cos(θi) and ϕ2(θi)) = A1 sin(θi). (6.27)

By (6.8), we can guess that the next two eigenvectors, v1 and v2, are



v1(1)
v1(2)
v1(3)
v1(4)
v1(5)
v1(6)


=



cos(2π/6)
cos(2π2/6)
cos(2π3/6)
cos(2π4/6)
cos(2π5/6)
cos(2π6/6)


=



1
2
−1

2
−1
−1

2
1
2
1


and



v2(1)
v2(2)
v2(3)
v2(4)
v2(5)
v2(6)


=



sin(2π/6)
sin(2π2/6)
sin(2π3/6)
sin(2π4/6)
sin(2π5/6)
sin(2π6/6)


=



√
3

2√
3

2
0
−
√

3
2

−
√

3
2

0


where

√
3 is needed to make them orthonormal. Checking the first we see:



1 −1
2 0 0 0 −1

2
− 1

2 1 −1
2 0 0 0

0 −1
2 1 −1

2 0 0
0 0 −1

2 1 −1
2 0

0 0 0 −1
2 1 −1

2
− 1

2 0 0 0 −1
2 1





1
2
−1

2
−1
−1

2
1
2
1


=



1
2 +

1
4 −

1
2

− 1
4 −

1
2 +

1
2

1
4 − 1 + 1

4
1
2 −

1
2 −

1
4

1
4 +

1
2 −

1
2

− 1
4 −

1
4 + 1


=



1
4
− 1

4
− 1

2
− 1

4
1
4
1
2


=

1
2



1
2
− 1

2
−1
− 1

2
1
2
1


so that

L v1 =
2e−1/t

1 + 2e−1/t

1
2

v1. (6.28)

Note that the eigenvalue itself does not match the eigenvalue of the Laplacian
even though the eigenvector matches the eigenfunction so well.

Next we see that the truncated eigenmap, with N = 2, is just a rescaling of
the heat kernel embedding, with N = 2:

V2
t (xi) = (v1(i), v2(i)) = (cos(2πi/6), sin(2πi/6)) = et Ψ2

t (xi). (6.29)

The fact that we have equality instead of an approximate equality is due to the
symmetry of the circle and the points lying on the circle.
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Figure 6.4: On the left is the data set in R9 with the points marked by their 3 × 3
photos and on the right is the image under the truncated eigenmap, V2

t , with the
image points marked by their 3 × 3 photos lying on S1 ⊂ R2.

6.6 Finding the Eigenmap of a Data Set of 3 × 3 Photos

At the beginning of this section we described the process of dimension re-
duction using a collection of six 3× 3 pixel photos. See Figure 6.4. We will now
describe exactly how this is done using a Belkin-Niyogi eigenmap.

We label the original collection of six 3 × 3 pixel photos on the left side of
Figure 6.4 starting with the rightmost and proceeding counter clockwise:

p1 =



1
2
3
2
3
4
3
4
3


p2 =



3
4
3
4
3
2
3
2
1


p3 =



2
3
4
3
4
3
4
3
2


p4 =



2
1
2
1
2
3
2
3
4


p5 =



3
2
1
2
1
2
1
2
3


p6 =



4
3
2
3
2
1
2
1
2


Evaluating the distances between these points we see that some have distance√

24 and others have every pixel off by 1 so their distance is
√

9 = 3. Taking
t = 1 and observing that e−24 ≈ 0 and e−3 ≈ .05 we get a 6 × 6 matrix

W =



1 0 .05 .05 0 0
0 1 .05 0 0 .05
.05 .05 1 0 0 0
.05 0 0 1 .05 0
0 0 0 .05 1 .05
0 .05 0 0 .05 1


(6.30)
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Thus our diagonal matrix has Di,i = 1 + .05 + .05 = 1.1 = 11/10 so

L = D −W =



.1 0 −.05 −.05 0 0
0 .1 −.05 0 0 −.05
−.05 −.05 .1 0 0 0
−.05 0 0 .1 −.05 0

0 0 0 −.05 .1 −.05
0 −.05 0 0 −.05 .1


(6.31)

and since D
−

1
2

i,i = (11/10)−1/2 =
√

10/11 we have

L = D−
1
2 LD−

1
2 =

10
11



1 0 −1/2 −1/2 0 0
0 1 −1/2 0 0 −1/2
−1/2 −1/2 1 0 0 0
−1/2 0 0 1 −1/2 0

0 0 0 −1/2 1 −1/2
0 −1/2 0 0 −1/2 1


(6.32)

It is easy to check that

v1 =



√
3

2

−
√

3
2

0
√

3
2
0
−
√

3
2


and v2 =



1/2
1/2
1
−1/2
−1
−1/2


(6.33)

are perpendicular eigenfunctions with eigenvalue = −10/22. Thus up to scaling,
Belkin-Niyogi’s eigenmap, V2

t (pi) = (v1(pi), v2(pi)), takes the following values:

V2(p1) = (
√

3/2, 1/2) V2(p2) = (−
√

3/2, 1/2) V2(p3) = (0, 1)

V2(p4) = (
√

3/2,−1/2) V2(p5) = (0,−1) V2(p6) = (−
√

3/2,−1/2)

which reveals the circular structure of the image seen on the right in Figure 6.4.

6.7 An Eigenmap of a Sphere

Our 2020 student research team (Maziar Farahzad, Julinda Pillati Mujo,
and Esteban Alcantara) tried out the Belkin-Niyogi method of eigenmaps using



From Varadhan’s Limit to Eigenmaps 91

MATLAB. Recall that in Section 3.8 we observed that the first three nonconstant
eigenfunctions of S2 up to scaling are

ϕ1(x) = X(x) ϕ2(x) = Y(x) ϕ3(x) = Z(x) (6.34)

so the image of the heat kernel embedding, Ψ3
t : S2 → E3, is a round sphere. So

this was a good example to test their code on an evenly distributed data set of
points in S2 to produce an eigenmap V3

t to E3.

Figure 6.5: Here we see a data set of evenly distributed points on a sphere
mapped to a sphere by a truncated eigenmap, V3

t , and we see that it agrees up to
scaling with the image under a heat kernel embedding, ψ3

t : S2 → E3. MATLAB
computation by Maziar Farahzad, Julinda Pillati Mujo, and Esteban Alcantara.

To get the image to look like a sphere, the points had to be evenly distributed.
Ultimately the team devised a collection of biLipschitz disjoint charts to cover a
sphere, used those charts to map a triangular lattice from a plane into the sphere,
and then added extra points along the edges of the charts, to distribute the points
as evenly as possible.

In Figure 6.5 we see the evenly distributed points on the sphere as our data
set on the left, and then we see the image under V3

t on the right. Since N = 3
this agrees up to scaling with the image under the truncation of the sphere’s
heat kernel embedding, ψ3

t , that we studied in Section 3.8. It has been rotated
because the eigenvectors were selected in a different order by MATLAB so that
up to scaling,

V3
t (x j) = (v1(i), v2(i), v3(i)) ↔ ψ3

t (x j) = (−Z(x j),−X(x j),Y(x j)). (6.35)

This captures the concern Bérard-Besson-Gallot mentioned regarding choice of
eigenfunctions leading to rotations of the image of the heat kernel embeddings
by elements of SO(N) that we discussed at the end of Section 5.2.
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6.8 Eigenmaps of Barbells

Our 2020 student research team (Maziar Farahzad, Julinda Pillati Mujo, and
Esteban Alcantara) next applied the the method of eigenmaps to study what
the images of heat kernel embeddings of deformed spheres shaped like barbells
might look like. In Figure 6.6, there are evenly distributed points on various bar-
bells: pairs of spheres of radius, 20, with caps removed and cylinders of radius,
5, of various lengths, L = 100, L = 10 and L = 1, glued between them.

Figure 6.6: Here we see a data set of evenly distributed points on various bar-
bells mapped by an eigenmap, V3

t , which gives some possible insight into the
image under a heat kernel embedding, Ψ3

t of these barbells. MATLAB compu-
tation by Maziar Farahzad, Julinda Pillati Mujo, and Esteban Alcantara.

When the cylinder is long, L = 100 as on the top of Figure 6.6, there is a first
nonzero eigenvalue corresponding to the full height of the manifold which has
an eigenfunction that looks something like cos(z). The next two eigenfunctions
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seem to correspond to Z and X. That is the points xi are mapped to V3
t (xi) =

(cos(Z(xi)),Z(xi), X(xi)) and so the image of ψ3
t is probably not an embedding. It

is flattened and then bent around a cosine curve. The students called this image
a headset .

In the second row of Figure 6.6, the cylinder only has L = 10 and yet the
same phenomenon has occurred. The image is once again not an embedding
and takes the form of a headset. The headset is rotated the points xi seem to be
mapped to

V3
t (xi) = (− cos(Z(xi)),−Z(xi), X(xi)) (6.36)

up to scaling because different eigenvectors were selected first by MATLAB.
In the bottom row of Figure 6.6, the cylinder is finally short enough that the

eigenfunctions correspond to something like X, Y and Z, so the image is not
flattened, and the eigenmap is an embedding.

Please note that these are images under the Belkin-Noyogi eigenmaps, V3
t ,

not the images under the smooth eigenmaps, Φ3
t , nor the heat embeddings, Ψ3

t
of Bérard-Besson-Gallot. Nevertheless there is an intuitive relationship between
these concepts.

It should be noted that, to save on computation time, the students did not con-
struct an adjacency graph but used the Euclidean distances to define their matrix
W (since points that were not close lead to very small entries in W anyway).
Note also that shortest paths cutting across lattices of points are not approximat-
ing the lengths of direct line segments, so it is not clear that these are better than
Riemannian lengths when trying to approximate the heat kernel of a Laplacian.

6.9 Eigenmaps of Lollipops

Our 2020 student research team (Maziar Farahzad, Julinda Pillati Mujo, and
Esteban Alcantara) next applied the the method of eigenmaps to study what the
heat kernel embeddings of deformed spheres shaped like lollipops might look
like. In Figure 6.7, they have evenly distributed points on various barbells: a
sphere of radius, 10, with a cap removed and cylinders of radius, 5, of various
lengths, L = 1, L = 10, L = 30, and L = 50, glued in, and then capped off with
a hemisphere of radius 5.

At the top, L = 1, so the data set lies on a shape which is almost a sphere
and the first three nonconstant eigenfunctions are close to the spherical eigen-
functions, (X,Y,Z) that we discussed in Section 3.8. The eigenmap seems to be
close to (−Z(xi), X(xi),−Y(xi), ) giving a rotated image of the original shape just
as in Section 6.7. In the second row, L = 10, we still see an embedding but one
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Figure 6.7: Here we see a data set of evenly distributed points on various lol-
lipops mapped by an eigenmap, V3

t , which gives some possible insight into the
image under a heat kernel embedding, ψ3

t of these lollipops. MATLAB compu-
tation by Maziar Farahzad, Julinda Pillati Mujo, and Esteban Alcantara.

direction is becoming more deformed. The rotationally symmetry is preserved
but changing the X axis to a Z axis.

In the third row, L = 30, and as with the long barbell, there is a first nonzero
eigenvalue corresponding to the full height of the manifold which has an eigen-
function that looks something like cos(Z). The next two eigenfunctions seem to
correspond to z and x. That is the points xi are mapped to (cos(Z(xi)),Z(xi), X(xi))
and so the image is not an embedding. It is flattened and then bent around a co-
sine curve.

In the bottom row, L = 100 and now the fact that there is a sphere on one end
seems to be undetectible. The first three eigenfunctions seem to all be functions
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of z alone causing the image under the eigenmap to be a parametrized curve.
This is similar to the effect that we saw with the thin torus in Section 3.7.

Please note again that these are images under the Belkin-Niyogi eigenmaps,
V3

t not the images under the smooth eigenmaps,Φ3
t , nor the heat embeddings,Ψ3

t
of Bérard-Besson-Gallot. It should be noted again that, to save on computation
time, the students did not construct an adjacency graph but used the Euclidean
distances to define their matrix W (since points that were not close lead to very
small entries in W anyway).

6.10 Coifman and Lafon’s Diffusion Maps of Data Sets

In 2004-2006 Coifman and Lafon extended this idea by introducing the no-
tion of diffusion maps (DM) of high dimensional data sets [64][39] [38]. They
allowed for data sets which are not uniformly distributed and discuss various
kernel operators, P, based on the Riemannian Laplacian, based on the weighted
graph Laplacian, and based on other linear operators. They studied the eigenval-
ues, λ̃ j, of these kernel’s operators.

In particular, Coifman and Lafon studied the heat kernel of the Riemannian
Laplacian, which they denoted as, Pτ = e−τ∆. To understand this notation, we
may use Taylor series,

Pτ = e−τ∆ =
∞∑

n=0

(−τ∆)n

n!
= I − τ∆ +

(τ∆)2

2!
−

(τ∆)3

3!
+ · · · . (6.37)

Note that e−τ∆ has the same eigenfunctions, ϕ j, as the Laplacian, ∆ϕ j = −λ jϕ j,
as seen by:

e−τ∆ϕ j =

∞∑
n=0

(−τ∆)n

n!
ϕ j =

∞∑
n=0

(−τλ j)n

n!
ϕ j = e−λ jτϕ j. (6.38)

Coifman and Lafon wrote their eigenvalues of Pτ as λ̃τj decreasing from λ̃τ0 = 1
so that

Pτϕ j = λ̃
τ
jϕ j. (6.39)

When Pτ = e−τ∆ we have

Pτϕ j = λ̃
τ
jϕ j ⇐⇒ ∆ϕ j = −λ jϕ j so λ̃ j = e−λ j . (6.40)

Coifman-Lafon’s diffusion map is a weighted eigenmap into Euclidean space:

Ψ̃N
τ (x) = {λ̃τjϕ j(x)}Nj=1 ⊂ E

N (6.41)
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Recall the heat kernel embedding of Bérard-Besson-Gallot we saw in (5.4) and
observe that by taking τ = t/2 and applying (6.40), Coifman-Lafon’s diffusion
map is a truncation of the heat kernel embedding of Bérard-Besson-Gallot:

Ψ̃N
t/2(x) = {e−λ jt/2ϕ j(x)}Nj=1 = Ψ

N
t (x). (6.42)

They did not directly cite [16] but they do cite other papers and textbooks that
cite the original article.

Coifman-Lafon demonstrated with graphics as in Figure 6.8 that this weighted
eigenmap captures the intrinsic geometry of a data set lying on a curve. In par-
ticular they demonstrated that collections of points lying on a long twisted and
knotted curve in the original space maps onto a perfectly round circle in E2 cap-
turing the intrinsic geometry of the original curve. In [38], Coifman and Lafon
proved rigorously how N must be large after τ is chosen to be small to justify the
good behavior of their method for any member of their class of kernels.

Figure 6.8: Coifman-Lafon demonstrate that the images of data sets of evenly
distributed points lying on closed curves under a truncated diffusion map, Ψ̃N

τ ,
with N=2 is round circle. This embedded circle recovers the intrinsic Rieman-
nian geometry of the 1 dimensional submanifolds containing the point sets. Im-
age Credit: Excerpt from Figure 4 in [38].

6.11 Diffusion Distance

In [38], Coifman and Lafon coined the term Diffusion Distance

Dτ(x, y)2 =

∞∑
j=1

λ̃2τ
1 (ϕ j(x) − ϕ j(y))2 =

∞∑
j=1

e−λ jt(ϕ j(x) − ϕ j(y))2 (6.43)
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which agrees with pull back of the ℓ2 distance of Bérard-Besson-Gallot when
applied to the heat kernel:

Dt/2(x, y) = ||Ψt(x) − Ψt(y)||ℓ2 = (Ψ∗t dℓ2)(x, y). (6.44)

While we have provided the relationship here between their work and that of
Bérard-Besson-Gallot, remember that Coifman and Lafon’s work applies to a
larger class of kernels. Once again we apologize for not including probability
references in this survey that inspired and helped justify the work of Coifman
and Lafon.

It is important to note that the Diffusion Distance is an extrinsic distance
measured using direct line segments in ℓ2. Even when studying the heat kernel,

Dt/2(x, y)2 =

∞∑
j=1

e−λ jt(ϕ j(x) − ϕ j(y))2. (6.45)

is an extrinsic distance between points and does not approximate dg(x, y). Even
with appropriate scaling and taking t → 0, the heat kernel map is not distance
preserving, but is only length preserving as we discussed in Section 5.7. Never-
theless Dt/2(x, y) is an interesting distance function on the original manifold M.
It induces rectifiable lengths of curves, C : [0, 1]→ M,

Lt(C) = sup

 n∑
i=1

Dt/2(C(si−1,C(si)) : 0 ≤ s0 < s1 < · · · < sn = 1

 , (6.46)

where the sup is taken over all partitions, 0 ≤ s0 < s1 < · · · < sn = 1. These
lengths agree with the lengths of curves defined using the pullback of the Eu-
clidean metric tensor. By the work of Bérard-Besson-Gallot in [16], with appro-
priate rescaling, these lengths converge

lim
t→0

Lt(C) = Lg(C). (6.47)

With that rescaling we have (5.52).
Memoli and Sapiro computed the intrinsic distance between points in data

sets lying on a manifold using related ideas in [75].

7 Spectral Embeddings and Embedding Dimensions

In this section we present various results on spectral embeddings of Rieman-
nian manifolds where we refer to an embedding as spectral if it is defined using
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eigenfunctions, eigenvalues, and/or heat kernels. There has been significant re-
search activity in this area inspired by the applications of spectral embeddings to
study high dimensional data sets. It is of particular interest to study the small-
est dimension, N, such that Mn can be embedded into RN and to find uniform
bounds on this dimension N. This is referred to as the embedding dimension of
Mn.

Note a truncated heat kernel map, ψN
t , as defined in (5.12) is an embedding

iff the corresponding smooth eigenmap, ΦN , as defined in (6.7) is also an em-
bedding. This is because the only distinction between these maps is the scaling
of the various entries using eigenvalues. Other spectral maps discussed above
have similar uniform bounds on N.

7.1 Deforming Manifolds and their Embeddings

As we saw in Section 5, Bérard, Besson, and Gallot proved that for any ϵ > 0
there is a tϵ > 0 sufficiently small such that for any t ∈ (0, tϵ), there is an Nt,ϵ

sufficiently large that for any N > Nt,ϵ we have

|(ψN
t )∗gEN − g| < ϵ (7.1)

where
ψN

t (x) =
√

2(4π)n/4t(n+2)/4{e−λ jt/2ϕ j(x)}Nj=1 ∈ E
N . (7.2)

In particular for t sufficiently small, and N sufficiently large, they can guarantee
that (ψN

t )∗gEN is close enough to g to be positive definite. In fact for sufficiently
large N the truncated eigenmap, ψN

t , is an embedding. We saw that for a thin
torus, we would need to take N very large to achieve this in Section 5.7. We also
saw that the extrinsic distances were not well controlled as t → 0 in Section 5.7.

If the manifold has computable eigenfunctions, like a sphere or a torus, then
we can compute tϵ and Nt,ϵ for that specific manifold. In fact, we know we only
need three eigenfunctions on a sphere and four on a torus to achieve an embed-
ding. Naturally it is of interest to have similarly strong controls on manifolds
that are close to these special manifolds.

In fact Bérard, Besson, and Gallot proved their embeddings are stable under
C0 perturbations of the metric with a uniform lower bound on Ricci curvature
(See Theorem 21 in [16]):

Theorem 7.1. [16] Let (M, g) be a closed n-dimensional Riemannian manifold,
ϵ0 > 0 and N0 be a positive integer. Let g′ be any metric on M such that

(1 − ϵ)g ≤ g′ ≤ (1 + ϵ)g, ϵ < ϵ0. (7.3)
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We assume that all metrics under consideration satisfy Ric(M,g′) ≥ −(n − 1)H for
some constant H ≥ 0. Then there exist constants ηg,i,H(ϵ), 1 ≤ i ≤ N0, which go
to 0 with ϵ, such that to any orthonormal basis {ϕ′i} of eigenfunctions of ∆g′ we
can associate an orthonormal basis {ϕi} of eigenfunctions of ∆g satisfying

∥ϕi − ϕ
′
i∥L∞ ≤ ηg,i,H(ϵ) (7.4)

for all i ≤ N0.

As a consequence, suppose we consider the standard sphere S2. We saw in
Section 5.4 that its first three nonconstant eigenfunctions map it to a rescaled
sphere in E3. If (M, g) is C2 close to S2 then it’s eigenfunctions are close to that
of the standard sphere and its truncated eigenmap will map it close to a sphere.
If (M, g) is only C0 close to S2 but has Ricci curvature bounded below, then this
works as well. This works for lollipops with fixed cylinder radius, r, and length
Li → 0. The increasingly thin lollipops with ri → 0 and L fixed are not C0

converging to a standard sphere and do not have Ricci curvature bounded from
below uniformly, so we cannot apply the Bérard, Besson, and Gallot C0 stability
theorem to study them.

7.2 Local Embeddings of Mn into En

In 2008, Jones, Maggioni, and Schul studied local properties of embeddings
using eigenfunctions. They showed that any smooth n-dimensional manifold ad-
mitting charts in which the metric is Cα can be locally embedded in En by eigen-
functions of the Laplace operator [58, 59]. These coordinates are bi-Lipschitz on
embedded balls of the domain or manifold, with distortion constants that depend
only on natural geometric properties of the domain or manifold.

7.3 Embedding Dimensions of Spectral Embeddings

In 2014 Bates considered the class

MV
H,i0 = {(M, g) : dim M = n,Ric ≥ −(n− 1)H, inj(M) ≥ i0,Vol(M) ≤ V} (7.5)

in [10]. Recall this is the class Anderson-Cheeger proved was Cα compact in
[8].

Bates proved that any closed, connected Riemannian manifold M can be
embedded using a smooth truncated eigenmap where the number of required
eigenfunctions is uniform on the class:
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Theorem 7.2. [10] Given any H ∈ R, any i0 > 0 and any V > 0, there is
a positive integer N = NH,n,i0,V and constant ϵH,n,i0,V > 0, such that, for any
Mn ∈ MV

H,i0
and for all z ∈ M,

ΦN : M → EN wherex 7→ (ϕ1(x), . . . , ϕN(x)) (7.6)

is a smooth embedding.

As a consequence there is a uniform upper bound on the embedding dimen-
sion of M on this class using eigenmaps as embeddings. Note that in his proof,
Bates applied the work of Jones, Maggioni, and Schul that we mentioned above.

7.4 Uniform Bounds on Spectral Embeddings by Portegies

In 2016, Portegies considered various spectral embeddings on the same class
MV

H,i0
. In particular he studied the truncated heat kernel map of Bérard-Besson-

Gallot,
ψN

t (x) =
√

2(4π)n/4t(n+2)/4{e−λ jt/2ϕ j(x)}Nj=1 ∈ E
N , (7.7)

that we reviewed in Section 5.2. Recall that Bérard-Besson-Gallot had proven
that the pull back of the metric tensor under their map is close to the original
metric tensor under the following limits:

lim
t→0+

lim
N→∞

(ψN
t )∗gEN (Vx,Vx) = g(Vx,Vx). (7.8)

Portegies proved this convergence is uniform onMV
H,i0

in [81]:

Theorem 7.3. Let ϵ > 0. Then there exists a t0 = t0(n, ϵ,H, i0) such that for all
0 < t ≤ t0 there exists an N0 = N0(n, ϵ, t,H, i0,V) such that if N ≥ N0, for all
(M, g) ∈ MV

H,i0
, the map

ψN
t (x) = (2t)(n+2)/4

√
2(4π)n/4(e−λ1tϕ1(x), ·, e−λN tϕN(x)) (7.9)

is an embedding of M into EN such that

1 − ϵ < |(dψN
t )p| < 1 + ϵ. (7.10)

In particular, the sequence of Riemannian manifolds (M, (ψN
t )∗gEN ) con-

verges in the C0 sense as N → ∞ to the original manifold (M, g). The speed
of this convergence is the same for any (M, g) ∈ MV

H,i0
. Note that the sequence

of Riemannian manifolds (M, (ΦN)∗gEN ) defined by pulling back metric tensors



From Varadhan’s Limit to Eigenmaps 101

using eigenmaps diverges. We need the rescaling by the eigenvalues prevent the
lengths from stretching to infinity in the limit.

Portegies proved this theorem by first obtaining a quantitative version of the
estimate on the harmonic radius found by Anderson-Cheeger in [8]. He then
studied the images under the map ψN

t restricted to these harmonic charts. In ad-
dition to proving the above theorem he proved bounds on other truncated spectral
embeddings defined using heat kernels [81].

7.5 Spectral Embeddings depending on the Connection Laplacian

There are other spectral embeddings based on other types of Laplacian oper-
ators, such as the connection Laplacian. The connection Laplacian is a Laplace
operator acting on the various tensor bundles of a manifold. Inspired by the cryo-
electron microscopy image problem for reconstructing macromolecular struc-
tures, Singer-Wu [85] introduced the vector diffusion maps (VDM). The VDM
method helped them with aligning images and finding similar images (nearest
neighbors) more effectively than the diffusion maps studied by Coifman-Lafon.

The VDM is a spectral embedding [70] that depends on the connection
Laplacian associated with a possibly nontrivial bundle structure. Its general goal
is to integrate local information and the relationship between these pieces of local
information in order to obtain the global information of the dataset; for example,
the ptychographic imaging problem [73], the synchronization problem [9], the
vector nonlocal mean/median [69], the orientability problem [87], etc. Numeri-
cally, the VDM depends on the spectral study of the graph connection Laplacian
[33, 50, 51, 85, 86] , which is a direct generalization of the graph Laplacian dis-
cussed in the spectral graph theory text by Chung [31].

In [70], Lin and Wu investigated estimates of eigenvector fields and trunca-
tions of heat kernels and its derivatives. In the end, they showed that an em-
bedding of a manifold can be constructed with finite eigenvector fields of the
connection Laplacian for a class of closed smooth manifolds

Mn,H,i0,V = {(M, g) : |Ricg| ≤ H, inj(M) ≥ i0,Vol(M) ≤ V}. (7.11)

Recall this is the class that Anderson proved was C1,α precompact in [7].
In [71], Lin proved that, in addition, we can ensure the pull back of the metric

tensor is close to the original metric tensor under a limiting process and this can
be done uniformly on the classMH

n,H,i0,V
obtaining the following theorem:

Theorem 7.4. [71] Given ϵ > 0, there exists t0 = t0(n,H, i0, ϵ) so that for all
t < t0 there exists N0 = N0(n,H, i0, ϵ, t,V) such that for all (M, g) ∈ Mn,H,i0,V ,
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there exist points p1, . . . , pN0 on M such that the mapH : (Mn, g)→ EN0 defined
by

H(p) =
A(2t)(3n+2)/4

Ve

(
∥KT M(p, t; p1)∥2HS , . . . , ∥KT M(p, t; pN0)∥2HS

)
(7.12)

is an embedding, where A = A(n,H, i0, ϵ, t,V) is a constant, KT M denotes the
heat kernel of the connection Laplacian on the tangent bundle T M, ∥·∥HS denotes
the Hilbert-Schmidt norm, and

Ve =

(∫
Rn

(∂x1∥K
En

T M(0,
1
2

; y)∥2HS )2dy
) 1

2
.

Here, KE
n

T M is the standard Euclidean heat kernel on En. In addition,

1 − ϵ < |(dH)p| < 1 + ϵ for all p ∈ M.

The same statements hold with every heat kernel KT M replaced by the truncated
version KN

T M. See [71].

The proof of this theorem also relies on a quantitative version of the estimate
on the harmonic. Since Lin must control the tangent bundle T M and the heat
kernel of the connection Laplacian action on sections of the tangent bundle in
[71], it is not surprising that Lin needs to study a class with C1,α compactness.

7.6 Lp Bounds on Pull Back Metrics

In 2021, Ambrosio, Honda, Portegies and Tewodrose considered the class

MD
H,V = {(M, g) : |Ricg| ≤ H, Vol(M) ≥ V, diam(M) ≤ D}. (7.13)

in [6]. Note that this class has no uniform lower bound on injectivity radius. This
is the class of noncollapsing manifolds with lower Ricci curvature bounds stud-
ied by Cheeger-Colding that have subsequences which converge in the metric
measure sense to limits and have controls on their eigenfunctions [25]. Yu Ding
controlled the heat kernels on such spaces in [45]. The limits of these spaces
are in fact RCD∗(H,N) spaces which were first introduced by Ambrosio-Gigli-
Savare [5].

In fact Ambrosio, Honda, Portegies and Tewodrose considered spectral maps
defined on these RCD∗(H,N) spaces in [6] extending many known results to this
class. Theorem 6.8 and 6.9 in their paper [6] are also new results for smooth
Riemannian manifolds in MD

H,V . Theorem 6.9 concerns an eigenmap, so we
include it below as reformulated for us by Portegies for manifolds:
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Theorem 7.5 (Theorem 6.9 in [6]). For all D > 0,V > 0, ϵ > 0 and 1 ≤ p < ∞
there exists

t0 := t0(H,N,V,D, ϵ, p) > 0

such that for all 0 < t ≤ t0 and every closed n-dimensional Riemannian manifold
M ∈ MD

H,V , there exists an N0 = N0(H,N,V,D, ϵ, p, t) such that for all N ≥ N0,
we have

∥ |ωnt(n+2)/2gN
t − cng|HS ∥Lp ≤ ϵ.

where

gN
t := Ψ∗t gEN =

N∑
i=1

e−2λitdϕi ⊗ dϕi.

Observe that this theorem is stating that the pull back metric tensor is con-
verging to the original tensor but only with uniform Lp bounds on the conver-
gence. In Conjectures 8.4 and 8.5 stated at the end of this paper, we ask whether
we can achieve Gromov-Hausdorff or Intrinsic Flat Convergence with the right
choice of class M of Riemannian manifolds. Note that Lp convergence of the
metric tensor is not enough to achieve uniform, Gromov-Hausdorff, or intrinsic
flat convergence unless there are also uniform bounds on the metric tensors from
above and below as shown by Allen-Sormani in [3] and [4] or controls like those
required by Allen-Perales-Sormani to achieve VADB convergence in [2].

8 Open Questions

Throughout this paper we have been exploring the properties of heat kernels,
eigenfunctions, and spectral maps for a variety of manifolds and classes of man-
ifolds. In this section, we vaguely state some conjectures related to these ideas.
We hope to bring together mathematicians from around the world to study these
problems together.

8.1 Conjectures on Truncated Eigenmaps of Small Dimension

In the work of Belkin-Niyogi reviewed in Section 6.1 and the work of
Coifman-Lafon reviewed in Section 6.10, truncated spectral maps were quite
useful even when N = 2 or N = 3 and without taking t → 0. This is due
in part to the underlying symmetries of the data sets that they are studying. In
Section 5.4 we saw that the symmetries of a sphere guarantee that it spectrally
embeds into Euclidean space with only N = 3 and does so symmetrically. Data
sets lying on surfaces which are close to a sphere in the appropriate sense also
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have nearby eigenfunctions and thus also embed with N = 3. Other surfaces
like the barbell and the lollipop studied by our students did not always spectrally
embed with N = 3 as seen in Sections 6.8 and 6.9. Even the torus S1 × S1

needs N = 4 and a thin torus needs a much larger N as discussed in Sections 5.5
and 5.6.

This leads naturally to the following conjecture:

Conjecture 8.1. Can we describe a class of manifoldsM for which

ΨN
t : M → EN (8.1)

is an embedding when N = 3 or N = 4?

Since eigenvalues and eigenfunctions vary smoothly with C2 convergence
of manifolds, we know that this conjecture holds with N = 3 for the class of
manifolds which are sufficiently close to a standard sphere in the C2 sense, and
it holds with N = 4 for the class of manifolds which are sufficiently close to a
standard torus in the C2 sense. We saw in Section 7.1 that Bèrard-Besson-Gallot
proved that if M have Ricci curvature bounded uniformly from below and are C0

close, then their eigenfunctions and eigenvalues are close, thus this conjecture
holds with N = 3 for classes of manifolds C0 close to the standard sphere with
Ricci curvature bounded uniformly from below, and similarly for N = 4 near
the standard torus. However there is no precise statement as to how close these
manifolds must be. It would also be interesting to define a class which does not
mention the sphere or the torus.

8.2 Conjectures on Selective Eigenmaps

In Section 5.6 we observed how shapes like a thin torus would not be em-
bedded by a truncated spectral map until N is taken very large and then there
has not been a very useful reduction in dimension. We suggested the idea of
selecting eigenfunctions to define an embedding rather than just truncating a
spectral embedding. In particular, we suggested only selecting eigenfunctions
with eigenvalues near a given eigenvalue λ. This leads to the following natural
conjecture:

Conjecture 8.2. If we are given a Riemannian manifold, Mn, is a class,M, with
injrad ≥ i0 > 0 and we define a selected spectral map using only eigenfunctions
whose eigenvalues are close to λ0 defined as a function of i0, can we prove this
selected spectral map is an spectral embedding?
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Note that in the conjecture above we have been deliberately vague about the
choice of λ0 and how it depends on i0. We have also been vague about the class,
M. It might be natural to require the class have bounds on Ricci curvature,
volume, or diameter.

Conjecture 8.3. Can we describe a class of manifoldsM for which we can find
selected spectral map that is an embedding when N = 3 or N = 4?

8.3 Conjectures on Convergence of Pullbacks of Embeddings

Recall in Section 5.2 we reviewed the truncated heat kernel map of Bérard-
Besson-Gallot,

ψN
t (x) =

√
2(4π)n/4t(n+2)/4{e−λ jt/2ϕ j(x)}Nj=1 ∈ E

N , (8.2)

has the property that: ∀ϵ > 0, ∃tϵ > 0, s.t. ∀t ∈ (0, tϵ), ∃Nt,ϵ s.t. ∀N ≥ Nt

|gN
t − g| < ϵ (8.3)

where gN
t = (ψN

t )∗gEN . In Section 7.4, we saw that Portegies proved the choice
of tϵ and of Nt,ϵ can be made uniform on the classMV

H,i0
.

Recalling the definition of the Lipschitz distance in Section 4.4, we can
rewrite this as ∀ϵ > 0, ∃tϵ > 0, s.t. ∀t ∈ (0, tϵ), ∃Nt,ϵ s.t. ∀N ≥ Nt

dLip
(
(M, dgN

t
) − (M, dg)

)
< ϵ (8.4)

where the choice of tϵ and of Nt,ϵ can be made uniform on the classMV
H,i0

.
Recall the definition of Gromov-Hausdorff distance in Section 4.9.

Conjecture 8.4. Can we find a class of manifolds,M such that ∀ϵ > 0, ∃tϵ >
0, s.t. ∀t ∈ (0, tϵ), ∃Nt,ϵ s.t. ∀N ≥ Nt

dGH
(
(M, dgN

t
) − (M, dg)

)
< ϵ (8.5)

where the choice of tϵ and of Nt,ϵ can be made uniform on the classM?

Recall the definition of the intrinsic flat distance in Section 4.13.

Conjecture 8.5. Can we find a class of manifolds,M such that ∀ϵ > 0, ∃tϵ >
0, s.t. ∀t ∈ (0, tϵ), ∃Nt,ϵ s.t. ∀N ≥ Nt

dGH
(
(M, dgN

t
) − (M, dg)

)
< ϵ (8.6)

where the choice of tϵ and of Nt,ϵ can be made uniform on the classM?
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Since Lipschitz convergence implies Gromov-Hausdorff and Intrinsic Flat
convergence, both of the above conjectures are immediately true for the class
MV

H,i0
. However they should be provable without the injectivity radius bound.

See the discussion in Section 7.6.

8.4 Conjectures on Convergence of Manifolds and their Embed-
dings

We saw in Section 7.1 that Bèrard-Besson-Gallot proved that if M j have
Ricci curvature bounded uniformly from below and M j → M∞ in the C0 sense,
then ψN

t (M j)→ ψ3
t (M∞) in the C0 sense because the eigenfunctions converge.

Recall the definition of Hausdorff and Gromov-Hausdorff convergence in
Sections 4.9 and 4.11:

Conjecture 8.6. Suppose M j ⊂ M for some class M, and M j → M∞ in the
measured Gromov-Hausdorff sense, does ψN

t (M j) → ψN
t (M∞) in the Hausdorff

sense as subsets of Euclidean Space, EN?

Recall the definition of the intrinsic flat convergence in Section 4.13.

Conjecture 8.7. Suppose M j ⊂ M for some class M, and M j → M∞ in the
SWIF sense, does ψN

t (M j) → ψN
t (M∞) in the Flat sense as submanifolds of

Euclidean Space, EN?

These conjectures are quite deliberately vague as the specific class of mani-
folds has not been prescribed. Both conjectures are probably easily proven to be
true if we choose a class with a lower bound on injectivity radius and on Ricci
curvature using the theorems surveyed within this article. It would be far more
challenging to remove the injectivity radius bound.

Please contact us if you would like to work on any of the conjectures in this
survey. We are happy to set up teams of collaborators to work together and might
invite you to participate in workshops on the topic as well.
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