Matemática
 Contemporânea

Vol. 57, 23-31
(C) 2023

Diameter and displacement of sphere involutions

Renato G. Bettiol (iD ${ }^{1}$ and Emilio A. Lauret (iD) ${ }^{2}$
${ }^{1}$ CUNY Lehman College and CUNY Graduate Center, New York, NY, USA
${ }^{2}$ Instituto de Matemática (INMABB), Departamento de Matemática, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina

Abstract

We show that spheres in all dimensions ≥ 3 can be deformed to have diameter larger than the distance between any pair of antipodal points. This answers a question of Yurii Nikonorov.

Keywords: Diameter, spherical join, cohomogeneity one spheres, Berger spheres.

2020 Mathematics Subject Classification: 51M16, 53C20, 53C30, 58C40.

1 Introduction

The diameter $\operatorname{diam}(M, \mathrm{~d})$ of a compact length space is the maximal distance between pairs of points in $(M, \mathrm{~d})$; if M is a manifold and $\mathrm{d}=\mathrm{d}_{\mathrm{g}}$ is induced by a Riemannian metric g , we write $\operatorname{diam}(M, \mathrm{~g})=\operatorname{diam}\left(M, \mathrm{~d}_{\mathrm{g}}\right)$. For example, the round n-sphere of radius r has $\operatorname{diam}\left(\mathbb{S}^{n}(r)\right)=\pi r$. Nikonorov [Ni01] proved the following:

Renato G. Bettiol is partially supported by the NSF CAREER grant DMS-2142575 and NSF grant DMS-1904342. E-mail: r.bettiol@lehman.cuny.edu

Emilio A. Lauret is partially supported by grants from FONCyT (PICT-2018-02073 and PICT-2019-01054) and SGCYT-UNS. E-mail: emilio.lauret@uns.edu.ar

Theorem 1.1 (Nikonorov). If ($M, \mathrm{~d}$) is a length space homeomorphic to the sphere \mathbb{S}^{2} and $I: M \rightarrow M$ is an isometric involution without fixed points, then there exists $x \in M$ such that $\operatorname{diam}(M, \mathrm{~d})=\mathrm{d}(x, I(x))$.

The above naturally leads to the following question [Ni01]:

Question 1 (Nikonorov). Is there an analogue of Theorem 1.1 for length spaces homeomorphic to the sphere \mathbb{S}^{n} for some $n \geq 3$?

Podobryaev [Po18b] observed that sufficiently collapsed Berger spheres provide a negative answer in dimension $n=3$. In fact, this observation can be easily extended to all odd dimensions $n \geq 3$, considering the (homogeneous) spheres ($\left.\mathbb{S}^{2 q+1}, \mathrm{~g}(t)\right)$ obtained scaling the unit round sphere by $t>0$ in the vertical direction of the Hopf bundle $\mathbb{S}^{1} \rightarrow \mathbb{S}^{2 q+1} \rightarrow \mathbb{C} P^{q}$. For all $t>0$, the projection onto $\mathbb{C} P^{q}$ remains a Riemannian submersion, hence $\operatorname{diam}\left(\mathbb{S}^{2 q+1}, \mathrm{~g}(t)\right) \geq \operatorname{diam}\left(\mathbb{C} P^{q}\right)=\frac{\pi}{2}$. Meanwhile, pairs of antipodal points x and $I(x)=-x$ on $\left(\mathbb{S}^{2 q+1}, \mathrm{~g}(t)\right)$ are also antipodal points on the totally geodesic fiber $\mathbb{S}^{1}(t)$, and thus $\mathrm{d}_{\mathrm{g}(t)}(x, I(x)) \leq \pi t$. Therefore, $\mathrm{d}_{\mathrm{g}(t)}(x, I(x))<\operatorname{diam}\left(\mathbb{S}^{2 q+1}, \mathrm{~g}(t)\right)$ for all $t<\frac{1}{2}$. The latter actually holds for all $t<\frac{1}{\sqrt{2}}$ due to the explicit computation (3.1) of $\operatorname{diam}\left(\mathrm{S}^{2 q+1}, \mathrm{~g}(t)\right)$ by Rakotoniaina [Ra85], recently rediscovered (in dimension 3) by Podobryaev [Po18a].

In this short note, we provide negative answers in all dimensions $n \geq 3$.
Our first construction involves the spherical join $\mathbb{S}^{k}(r) * \mathbb{S}^{n-k-1}(r)$, $1 \leq k \leq n-2$, of spheres of radius $0<r<\frac{1}{2}$, which is a length space (in fact, an Alexandrov space) with diameter $\frac{\pi}{2}$ and which is homeomorphic to \mathbb{S}^{n}, see [GP93, p. 582] or [BH99, p. 63] for details and definitions. Every point in $\mathbb{S}^{k}(r) * \mathbb{S}^{n-k-1}(r) \backslash\left(\mathbb{S}^{k}(r) \cup \mathbb{S}^{n-k-1}(r)\right)$ can be identified via coordinates (x, ρ, y), where $x \in \mathbb{S}^{k}(r), y \in \mathbb{S}^{n-k-1}(r)$, and $\rho \in\left(0, \frac{\pi}{2}\right)$. There is a natural isometric action of $\mathrm{SO}(k+1) \times \mathrm{SO}(n-k)$ given by $(A, B) \cdot(x, \rho, y)=(A x, \rho, B y)$, whose orbits have diameter $\pi r<\frac{\pi}{2}$, since
(see, e.g., [BH99, p. 63]),

$$
\begin{aligned}
\mathrm{d}_{\text {join }}^{\mathrm{sph}}\left(\left(x_{1}, \rho, y_{1}\right),\left(x_{2}, \rho, y_{2}\right)\right)=\arccos \left(\cos ^{2} \rho \cos (\right. & \left.\mathrm{d}\left(x_{1}, x_{2}\right)\right) \\
& \left.+\sin ^{2} \rho \cos \left(\mathrm{~d}\left(y_{1}, y_{2}\right)\right)\right)
\end{aligned}
$$

which is bounded from above by $\max \left\{\mathrm{d}\left(x_{1}, x_{2}\right), \mathrm{d}\left(y_{1}, y_{2}\right)\right\} \leq \pi r$, where d is used for distances in $\mathbb{S}^{k}(r)$ and $\mathbb{S}^{n-k-1}(r)$. The involution $I(x, \rho, y)=$ $(-x, \rho,-y)$ induced by the antipodal maps of each sphere is an isometry without fixed points, and corresponds to the antipodal map of \mathbb{S}^{n} under the above homeomorphism. Since I commutes with the $\mathrm{SO}(k+1) \times \mathrm{SO}(n-k)$ action, it leaves invariant each orbit, and thus its maximal displacement is $\pi r<\frac{\pi}{2}$. Therefore, $\mathbb{S}^{k}(r) * \mathbb{S}^{n-k-1}(r)$, with $1 \leq k \leq n-2$ and $0<r<\frac{1}{2}$, yields a negative answer to Question 1 for all $n \geq 3$.

The spherical join $\mathbb{S}^{k}(r) * \mathbb{S}^{n-k-1}(r)$ is a smooth Riemannian manifold if and only if $r=1$, in which case it is isometric to $\mathbb{S}^{n}(1)$. However, inspired by this construction, we can also produce smooth counter-examples to Question 1, as follows:

THEOREM. For all $n \geq 3$, there is a family of smooth Riemannian metrics $\left(\mathrm{g}_{s}\right)_{s \geq 0}$ on \mathbb{S}^{n}, such that g_{0} is the unit round metric, $\operatorname{diam}\left(\mathbb{S}^{n}, \mathrm{~g}_{s}\right) \geq \frac{\pi}{2}$, and the antipodal map $I(x)=-x$ is an isometry of $\left(\mathbb{S}^{n}, \mathrm{~g}_{s}\right)$ satisfying $\mathrm{d}_{\mathrm{g}_{s}}(x, I(x)) \leq \frac{\pi}{\sqrt{1+\frac{s}{2}}}$ for all $x \in \mathbb{S}^{n}$.

Clearly, for $s>6$, the spheres $\left(\mathbb{S}^{n}, \mathrm{~g}_{s}\right)$ provide a negative answer to Question 1 in all dimensions $n \geq 3$. These spheres are Cheeger deformations of $\mathbb{S}^{n}(1) \subset \mathbb{R}^{n+1}$ with respect to the block diagonal subgroup of isometries $\mathrm{SO}(k+1) \times \mathrm{SO}(n-k)$ in $\mathrm{SO}(n+1)$, with $1 \leq k \leq n-2$. In particular, they are cohomogeneity one manifolds with geometric features similar to $\mathbb{S}^{k}(r) * \mathbb{S}^{n-k-1}(r)$; e.g., both are positively curved and converge in Gromov-Hausdorff sense to $\left[0, \frac{\pi}{2}\right]$ as $s \nearrow+\infty$, respectively $r \searrow 0$. In fact, the unifying feature of all constructions in this note is that they are spheres with a distance-nonincreasing map onto $\left[0, \frac{\pi}{2}\right]$ whose fibers are invariant under the antipodal map and can be deformed to have arbitrarily small intrinsic diameter.

2 Main construction

Let $\mathrm{G}=\mathrm{SO}(k+1) \times \mathrm{SO}(n-k) \subset \mathrm{SO}(n+1)$ be the subgroup of block diagonal matrices that act on $\mathbb{R}^{n+1}=\mathbb{R}^{k+1} \oplus \mathbb{R}^{n-k}$ preserving this orthogonal splitting. Clearly, G acts on the unit sphere $\mathbb{S}^{n}(1) \subset \mathbb{R}^{n+1}$, and the unit speed geodesic $\gamma:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{S}^{n}(1)$, given by $\gamma(\rho)=\cos \rho e_{1}+$ $\sin \rho e_{n+1}$, where $\left\{e_{j}\right\}$ is the canonical basis of \mathbb{R}^{n+1}, meets all G-orbits in $\mathbb{S}^{n}(1)$ orthogonally. The orbits $\mathrm{G}(\gamma(0)) \cong \mathbb{S}^{k}(1) \times\{0\}$ and $\mathrm{G}\left(\gamma\left(\frac{\pi}{2}\right)\right) \cong\{0\} \times$ $\mathbb{S}^{n-k-1}(1)$ are singular orbits; all the other orbits $\mathrm{G}(\gamma(\rho)) \cong \mathbb{S}^{k}(\cos \rho) \times$ $\mathbb{S}^{n-k-1}(\sin \rho), 0<\rho<\frac{\pi}{2}$, are principal orbits. Using this framework, we may define G-invariant metrics on \mathbb{S}^{n} by specifying their values on the (open and dense) subset of principal points as the doubly warped product

$$
\begin{equation*}
\mathrm{g}=\mathrm{d} \rho^{2}+\varphi(\rho)^{2} \mathrm{~g}_{\mathbb{S}^{k}}+\psi(\rho)^{2} \mathrm{~g}_{\mathbb{S}^{n-k-1}}, \quad 0<\rho<\frac{\pi}{2}, \tag{2.1}
\end{equation*}
$$

where φ and ψ are positive functions satisfying appropriate smoothness conditions at $\rho=0$ and $\rho=\frac{\pi}{2}$, and $\mathrm{g}_{\mathbb{S}^{d}}$ is the unit round metric on \mathbb{S}^{d}. Cohomogeneity one metrics of the form (2.1) are called diagonal. For example, the unit round metric $\mathrm{g}_{0}=\mathrm{g}_{S^{n}}$ is of the above form, with functions $\varphi_{0}(\rho)=\cos \rho$ and $\psi_{0}(\rho)=\sin \rho$.

The Cheeger deformation of g_{0} is the 1-parameter family $\mathrm{g}_{s}, s \geq 0$, of diagonal cohomogeneity one metrics (2.1) determined by the functions

$$
\begin{equation*}
\varphi_{s}(\rho)=\frac{\cos \rho}{\sqrt{1+s \cos ^{2} \rho}} \quad \text { and } \quad \psi_{s}(\rho)=\frac{\sin \rho}{\sqrt{1+s \sin ^{2} \rho}} \tag{2.2}
\end{equation*}
$$

see [AB15, Ex 6.46]. For all $s \geq 0$, the metric g_{s} is C^{∞} smooth and G-invariant, the orbit space of the G-action on $\left(\mathbb{S}^{n}, \mathrm{~g}_{s}\right)$ is $\mathbb{S}^{n} / \mathrm{G}=\left[0, \frac{\pi}{2}\right]$, and γ remains a unit speed geodesic orthogonal to all G-orbits. As the projection $\mathbb{S}^{n} \rightarrow \mathbb{S}^{n} / \mathrm{G}$ is distance-nonincreasing, we have

$$
\begin{equation*}
\operatorname{diam}\left(\mathbb{S}^{n}, \mathrm{~g}_{s}\right) \geq \frac{\pi}{2}, \quad \text { for all } s \geq 0 \tag{2.3}
\end{equation*}
$$

Moreover, ($\mathbb{S}^{n}, \mathrm{~g}_{s}$) has sec ≥ 0 for all $s \geq 0$, and it converges in GromovHausdorff sense to $\mathbb{S}^{n} / \mathrm{G}=\left[0, \frac{\pi}{2}\right]$ as $s \nearrow+\infty$.

The G-orbits in $\left(\mathbb{S}^{n}, \mathrm{~g}\right)$, where g is the cohomogeneity one diagonal metric (2.1), are isometric to the product $\mathrm{G}(\gamma(\rho))=\mathbb{S}^{k}(\varphi(\rho)) \times \mathbb{S}^{n-k-1}(\psi(\rho))$ of round spheres of radii $\varphi(\rho)$ and $\psi(\rho)$. Thus, the distance between any $x, y \in \mathrm{G}(\gamma(\rho))$ is

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{g}}(x, y) \leq \operatorname{diam}(\mathrm{G}(\gamma(\rho)), \mathrm{g}) \\
& \quad=\sqrt{\operatorname{diam}\left(\mathbb{S}^{k}(\varphi(\rho))\right)^{2}+\operatorname{diam}\left(\mathbb{S}^{n-k-1}(\psi(\rho))\right)^{2}}=\pi \sqrt{\varphi(\rho)^{2}+\psi(\rho)^{2}} .
\end{aligned}
$$

Setting φ and ψ to be the functions in (2.2), one easily checks that the maximum value of the above is achieved at $\rho=\frac{\pi}{4}$ for all $s \geq 0$, and is equal to $\frac{\pi}{\sqrt{1+\frac{s}{2}}}$.

The antipodal map $I: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$, which acts as $I=-\operatorname{Id} \in \mathrm{O}(n+1)$, commutes with the G -action on $\left(\mathbb{S}^{n}, \mathrm{~g}_{s}\right)$, thus I leaves invariant all G -orbits. In fact, I restricts to the antipodal map on each sphere factor in $\mathbf{G}(\gamma(\rho))$, $\rho \in\left[0, \frac{\pi}{2}\right]$. Thus, the displacement of I on $\left(\mathbb{S}^{n}, \mathrm{~g}_{s}\right)$ satisfies

$$
\mathrm{d}_{\mathrm{g}_{s}}(x, I(x)) \leq \max _{\rho \in\left[0, \frac{\pi}{2}\right]} \operatorname{diam}\left(\mathrm{G}(\gamma(\rho)), \mathrm{g}_{s}\right)=\frac{\pi}{\sqrt{1+\frac{s}{2}}}
$$

Together with (2.3), this proves the Theorem in the Introduction.

Remark 2.1. Not all G-invariant metrics on \mathbb{S}^{n} are diagonal, i.e., of the form (2.1), if n is odd. For instance, let $n=3$ and $k=1$. For all $t \neq 1$, the isometry group of the Berger sphere $\left(\mathbb{S}^{3}, \mathrm{~g}(t)\right)$ is $\mathrm{U}(2) \subset \mathrm{SO}(4)$, which contains $\mathrm{G}=\mathrm{SO}(2) \times \mathrm{SO}(2)$, so $\mathrm{g}(t)$ is G-invariant. However, $\mathrm{g}(t)$ is not of the form (2.1) if $t \neq 1$. Indeed, principal G -orbits in $\left(\mathbb{S}^{3}, \mathrm{~g}(t)\right)$ are isometric to flat 2-tori $(\mathrm{G}(\gamma(\rho)), \mathrm{g}(t)) \cong \mathbb{R}^{2} / \Gamma_{(\rho, t)}$ and none of the lattices $\Gamma_{(\rho, t)}$ are rectangular if $t \neq 1$. Meanwhile, principal G-orbits in $\left(\mathbb{S}^{3}, \mathrm{~g}\right)$, with g as in (2.1), are rectangular flat tori $(\mathrm{G}(\gamma(\rho)), \mathrm{g}) \cong \mathbb{R}^{2} / 2 \pi \varphi(\rho) \mathbb{Z} \oplus 2 \pi \psi(\rho) \mathbb{Z}$.

3 Final remarks

3.1 Berger spheres

Let us expand on our discussion of the spheres $\left(\mathbb{S}^{2 q+1}, \mathrm{~g}(t)\right)$, whose Hopf circles are closed geodesics of length $2 \pi t$. According to [Ra85, Po18a],

$$
\operatorname{diam}\left(\mathbb{S}^{2 q+1}, \mathrm{~g}(t)\right)= \begin{cases}\frac{\pi}{2 \sqrt{1-t^{2}}}, & \text { if } 0<t \leq \frac{1}{\sqrt{2}} \tag{3.1}\\ \pi t, & \text { if } \frac{1}{\sqrt{2}}<t \leq 1 \\ \pi, & \text { if } 1<t\end{cases}
$$

As pairs of antipodal points x and $I(x)$ are joined by half of the Hopf circle to which they belong, $\mathrm{d}_{\mathrm{g}(t)}(x, I(x)) \leq \pi t<\operatorname{diam}\left(\mathbb{S}^{2 q+1}, \mathrm{~g}(t)\right)$ for all $t<\frac{1}{\sqrt{2}}$, see Figure 3.1.

Figure 3.1: Diameter (black) and half length of Hopf circle (red) in $\left(\mathbb{S}^{2 q+1}, \mathrm{~g}(t)\right)$.

A similar situation occurs on the Berger spheres $\left(\mathbb{S}^{4 q+3}, \mathrm{~h}(t)\right)$ and ($S^{15}, \mathrm{k}(t)$) obtained by scaling the unit round sphere by $t>0$ in the vertical direction of the Hopf bundles $\mathbb{S}^{3} \rightarrow \mathbb{S}^{4 q+3} \rightarrow \mathbb{H} P^{q}$ and $\mathbb{S}^{7} \rightarrow \mathbb{S}^{15} \rightarrow \mathbb{S}^{8}\left(\frac{1}{2}\right)$, respectively. Namely, for all $t>0$, the projection map of these bundles remains a Riemannian submersion, and thus $\operatorname{diam}\left(\mathbb{S}^{4 q+3}, \mathrm{~h}(t)\right) \geq$ $\operatorname{diam}\left(H P^{q}\right)=\frac{\pi}{2}$ and $\operatorname{diam}\left(\mathbb{S}^{15}, \mathrm{k}(t)\right) \geq \operatorname{diam}\left(\mathbb{S}^{8}\left(\frac{1}{2}\right)\right)=\frac{\pi}{2}$. Pairs of antipodal points belong to the same Hopf circle, hence to the same (totally geodesic) fiber, which is isometric to $\mathbb{S}^{3}(t)$ or $\mathbb{S}^{7}(t)$, so $\mathrm{d}_{\mathrm{g}(t)}(x, I(x)) \leq \pi t$. Thus, for sufficiently small $t>0$, these spheres also provide a negative answer to Question 1.

3.2 First Laplace eigenvalue

Spectral geometry provides an alternative path to show that Berger spheres yield a negative answer to Question 1, by considering

$$
\mathrm{g} \longmapsto \lambda_{1}(M, \mathrm{~g}) \operatorname{diam}(M, \mathrm{~g})^{2},
$$

where $\lambda_{1}(M, \mathrm{~g})$ is the smallest positive eigenvalue of the Laplace-Beltrami operator. This scale-invariant functional is bounded from below by $\frac{\pi^{2}}{4}$ on compact connected homogeneous spaces [Li80]. Moreover, one has that $\lambda_{1}\left(\mathbb{S}^{2 q+1}, g(t)\right) \leq 4(q+1)$ for all $t>0$, since

$$
\lambda_{1}\left(\mathbb{S}^{2 q+1}, \mathrm{~g}(t)\right)=\min \left\{4(q+1), 2 q+\frac{1}{t^{2}}\right\}= \begin{cases}4(q+1), & \text { if } t \leq \frac{1}{\sqrt{2 q+4}} \\ 2 q+\frac{1}{t^{2}}, & \text { if } t \geq \frac{1}{\sqrt{2 q+4}},\end{cases}
$$

see [BP13, Prop. 5.3]. Similar upper bounds on λ_{1} for $\left(\mathbb{S}^{4 q+3}, \mathrm{~h}(t)\right)$ and ($\mathbb{S}^{15}, \mathrm{k}(t)$) can be obtained from [BLP22]. This yields a positive diameter lower bound, independent of $t>0$, that could be used in lieu of the exact value (3.1) for $\left(\mathbb{S}^{2 q+1}, \mathrm{~g}(t)\right)$ or of the submersion lower bound $\frac{\pi}{2}$ in general. However, this spectral lower bound on the diameter is weaker than the latter, and becomes arbitrarily small as $q \nearrow+\infty$.

Acknowledgements

This paper is a contribution to the special issue "TYAN Virtual Thematic Workshop in Mathematics" of Matemática Contemporânea. We thank the organizers for the invitation and their excellent job. We would also like to thank Alberto Rodríguez-Vázquez for discussions about Berger spheres and for informing us of the paper [Ra85], Yurii Nikonorov for bringing Question 1 to our attention and for useful comments on a first draft of the paper, and the anonymous referee for thoughtful suggestions to improve the presentation.

References

[AB15] M. M. Alexandrino and R. G. Bettiol. Lie groups and geometric aspects of isometric actions. Springer, Cham, 2015. DOI: 10.1007/978-3-319-16613-1.
[BP13] R. G. Bettiol, P. Piccione. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calc. Var. Partial Differential Equations 47:3-4 (2013), 789-807. DOI: 10.1007/s00526-012-0535-y.
[BLP22] R. G. Bettiol, E. A. Lauret, P. Piccione. The first eigenvalue of a homogeneous CROSS. J. Geom. Anal. 32 (2022), 76. DOI: 10.1007/s12220-021-00826-7.
[BH99] M. Bridson, A. Haefliger. Metric spaces of non-positive curvature. Grundlehren Math. Wiss., 319. Springer-Verlag (1999). DOI: 10.1007/978-3-662-12494-9.
[GP93] K. Grove, P. Petersen. A radius sphere theorem. Invent. Math. 112:3 (1993), 577-583. DOI: 10.1007/BF01232447.
[Li80] P. Li. Eigenvalue estimates on homogeneous manifolds. Comment. Math. Helvetici 55 (1980), 347-363. DOI: 10.1007/BF02566692.
[Ni01] Yu. G. Nikonorov. On the geodesic diameter of surfaces possessing an involutory isometry (Russian). Tr. Rubtsovsk. Ind. Inst. 9 (2001), 62-65. English translation: arXiv:1811.01173.
[Po18a] A. V. PodobryaEv. Diameter of the Berger Sphere. Math. Notes 103:5-6 (2018), 846-851. DOI: 10.1134/S0001434618050188.
[Po18b] A. V. Podobryaev. Antipodal points and diameter of a sphere. Russ. J. Nonlinear Dyn. 14:4 (2018), 579-581. DOI: 10.20537/nd180410.
[Ra85] C. Rakotoniaina. Cut locus of the B-spheres. Ann. Global Anal. Geom. 3:3 (1985), 313-327. DOI: 10.1007/BF00130483.

