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Diameter and displacement of sphere
involutions
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Abstract. We show that spheres in all dimensions ≥ 3 can be
deformed to have diameter larger than the distance between any pair
of antipodal points. This answers a question of Yurii Nikonorov.
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1 Introduction

The diameter diam(M, d) of a compact length space is the maximal
distance between pairs of points in (M,d); if M is a manifold and d = dg

is induced by a Riemannian metric g, we write diam(M, g) = diam(M, dg).
For example, the round n-sphere of radius r has diam(Sn(r)) = π r.
Nikonorov [Ni01] proved the following:
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Theorem 1.1 (Nikonorov). If (M, d) is a length space homeomorphic to
the sphere S2 and I : M → M is an isometric involution without fixed
points, then there exists x ∈M such that diam(M,d) = d(x, I(x)).

The above naturally leads to the following question [Ni01]:

Question 1 (Nikonorov). Is there an analogue of Theorem 1.1 for length
spaces homeomorphic to the sphere Sn for some n ≥ 3?

Podobryaev [Po18b] observed that sufficiently collapsed Berger spheres
provide a negative answer in dimension n = 3. In fact, this observation
can be easily extended to all odd dimensions n ≥ 3, considering the (ho-
mogeneous) spheres (S2q+1, g(t)) obtained scaling the unit round sphere
by t > 0 in the vertical direction of the Hopf bundle S1 → S2q+1 → CP q.
For all t > 0, the projection onto CP q remains a Riemannian submer-
sion, hence diam(S2q+1, g(t)) ≥ diam(CP q) = π

2 . Meanwhile, pairs of
antipodal points x and I(x) = −x on (S2q+1, g(t)) are also antipodal
points on the totally geodesic fiber S1(t), and thus dg(t)(x, I(x)) ≤ π t.
Therefore, dg(t)(x, I(x)) < diam(S2q+1, g(t)) for all t < 1

2 . The latter
actually holds for all t < 1√

2
due to the explicit computation (3.1) of

diam(S2q+1, g(t)) by Rakotoniaina [Ra85], recently rediscovered (in dimen-
sion 3) by Podobryaev [Po18a].

In this short note, we provide negative answers in all dimensions n ≥ 3.

Our first construction involves the spherical join Sk(r) ∗ Sn−k−1(r),
1 ≤ k ≤ n− 2, of spheres of radius 0 < r < 1

2 , which is a length space (in
fact, an Alexandrov space) with diameter π

2 and which is homeomorphic
to Sn, see [GP93, p. 582] or [BH99, p. 63] for details and definitions.
Every point in Sk(r) ∗ Sn−k−1(r) \ (Sk(r) ∪ Sn−k−1(r)) can be identified
via coordinates (x, ρ, y), where x ∈ Sk(r), y ∈ Sn−k−1(r), and ρ ∈

(
0, π2

)
.

There is a natural isometric action of SO(k + 1) × SO(n − k) given by
(A,B) · (x, ρ, y) = (Ax, ρ,By), whose orbits have diameter π r < π

2 , since
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(see, e.g., [BH99, p. 63]),

dsph
join

(
(x1, ρ, y1), (x2, ρ, y2)

)
= arccos

(
cos2 ρ cos(d(x1, x2))

+ sin2 ρ cos(d(y1, y2))
)
,

which is bounded from above by max{d(x1, x2), d(y1, y2)} ≤ πr, where d

is used for distances in Sk(r) and Sn−k−1(r). The involution I(x, ρ, y) =

(−x, ρ,−y) induced by the antipodal maps of each sphere is an isometry
without fixed points, and corresponds to the antipodal map of Sn under the
above homeomorphism. Since I commutes with the SO(k+1)×SO(n−k)-
action, it leaves invariant each orbit, and thus its maximal displacement is
π r < π

2 . Therefore, Sk(r) ∗ Sn−k−1(r), with 1 ≤ k ≤ n− 2 and 0 < r < 1
2 ,

yields a negative answer to Question 1 for all n ≥ 3.
The spherical join Sk(r)∗Sn−k−1(r) is a smooth Riemannian manifold if

and only if r = 1, in which case it is isometric to Sn(1). However, inspired
by this construction, we can also produce smooth counter-examples to
Question 1, as follows:

Theorem. For all n ≥ 3, there is a family of smooth Riemannian metrics
(gs)s≥0 on Sn, such that g0 is the unit round metric, diam(Sn, gs) ≥ π

2 ,
and the antipodal map I(x) = −x is an isometry of (Sn, gs) satisfying
dgs(x, I(x)) ≤ π√

1+ s
2

for all x ∈ Sn.

Clearly, for s > 6, the spheres (Sn, gs) provide a negative answer to
Question 1 in all dimensions n ≥ 3. These spheres are Cheeger defor-
mations of Sn(1) ⊂ Rn+1 with respect to the block diagonal subgroup of
isometries SO(k + 1) × SO(n − k) in SO(n + 1), with 1 ≤ k ≤ n − 2. In
particular, they are cohomogeneity one manifolds with geometric features
similar to Sk(r) ∗ Sn−k−1(r); e.g., both are positively curved and converge
in Gromov–Hausdorff sense to

[
0, π2

]
as s ↗ +∞, respectively r ↘ 0. In

fact, the unifying feature of all constructions in this note is that they are
spheres with a distance-nonincreasing map onto

[
0, π2

]
whose fibers are in-

variant under the antipodal map and can be deformed to have arbitrarily
small intrinsic diameter.
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2 Main construction

Let G = SO(k + 1) × SO(n − k) ⊂ SO(n + 1) be the subgroup of
block diagonal matrices that act on Rn+1 = Rk+1 ⊕Rn−k preserving this
orthogonal splitting. Clearly, G acts on the unit sphere Sn(1) ⊂ Rn+1,
and the unit speed geodesic γ :

[
0, π2

]
→ Sn(1), given by γ(ρ) = cos ρ e1 +

sin ρ en+1, where {ej} is the canonical basis of Rn+1, meets all G-orbits in
Sn(1) orthogonally. The orbits G(γ(0)) ∼= Sk(1)×{0} and G(γ(π2 ))

∼= {0}×
Sn−k−1(1) are singular orbits; all the other orbits G(γ(ρ)) ∼= Sk(cos ρ) ×
Sn−k−1(sin ρ), 0 < ρ < π

2 , are principal orbits. Using this framework,
we may define G-invariant metrics on Sn by specifying their values on the
(open and dense) subset of principal points as the doubly warped product

g = dρ2 + φ(ρ)2 gSk + ψ(ρ)2 gSn−k−1 , 0 < ρ < π
2 , (2.1)

where φ and ψ are positive functions satisfying appropriate smoothness
conditions at ρ = 0 and ρ = π

2 , and gSd is the unit round metric on Sd.
Cohomogeneity one metrics of the form (2.1) are called diagonal. For ex-
ample, the unit round metric g0 = gSn is of the above form, with functions
φ0(ρ) = cos ρ and ψ0(ρ) = sin ρ.

The Cheeger deformation of g0 is the 1-parameter family gs, s ≥ 0, of
diagonal cohomogeneity one metrics (2.1) determined by the functions

φs(ρ) =
cos ρ√

1 + s cos2 ρ
and ψs(ρ) =

sin ρ√
1 + s sin2 ρ

, (2.2)

see [AB15, Ex 6.46]. For all s ≥ 0, the metric gs is C∞ smooth and
G-invariant, the orbit space of the G-action on (Sn, gs) is Sn/G =

[
0, π2

]
,

and γ remains a unit speed geodesic orthogonal to all G-orbits. As the
projection Sn → Sn/G is distance-nonincreasing, we have

diam(Sn, gs) ≥ π
2 , for all s ≥ 0. (2.3)

Moreover, (Sn, gs) has sec ≥ 0 for all s ≥ 0, and it converges in Gromov–
Hausdorff sense to Sn/G =

[
0, π2

]
as s↗ +∞.
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The G-orbits in (Sn, g), where g is the cohomogeneity one diagonal met-
ric (2.1), are isometric to the product G(γ(ρ)) = Sk(φ(ρ))× Sn−k−1(ψ(ρ))

of round spheres of radii φ(ρ) and ψ(ρ). Thus, the distance between any
x, y ∈ G(γ(ρ)) is

dg(x, y) ≤ diam(G(γ(ρ)), g)

=
√
diam(Sk(φ(ρ)))2 + diam(Sn−k−1(ψ(ρ)))2 = π

√
φ(ρ)2 + ψ(ρ)2.

Setting φ and ψ to be the functions in (2.2), one easily checks that the
maximum value of the above is achieved at ρ = π

4 for all s ≥ 0, and is
equal to π√

1+ s
2

.

The antipodal map I : Sn → Sn, which acts as I = −Id ∈ O(n + 1),
commutes with the G-action on (Sn, gs), thus I leaves invariant all G-orbits.
In fact, I restricts to the antipodal map on each sphere factor in G(γ(ρ)),
ρ ∈

[
0, π2

]
. Thus, the displacement of I on (Sn, gs) satisfies

dgs(x, I(x)) ≤ max
ρ∈[0, π2 ]

diam(G(γ(ρ)), gs) =
π√
1+ s

2

.

Together with (2.3), this proves the Theorem in the Introduction.

Remark 2.1. Not all G-invariant metrics on Sn are diagonal, i.e., of the
form (2.1), if n is odd. For instance, let n = 3 and k = 1. For all t ̸= 1,
the isometry group of the Berger sphere (S3, g(t)) is U(2) ⊂ SO(4), which
contains G = SO(2)×SO(2), so g(t) is G-invariant. However, g(t) is not of
the form (2.1) if t ̸= 1. Indeed, principal G-orbits in (S3, g(t)) are isometric
to flat 2-tori (G(γ(ρ)), g(t)) ∼= R2/Γ(ρ,t) and none of the lattices Γ(ρ,t) are
rectangular if t ̸= 1. Meanwhile, principal G-orbits in (S3, g), with g as in
(2.1), are rectangular flat tori (G(γ(ρ)), g) ∼= R2/2πφ(ρ)Z⊕ 2πψ(ρ)Z.
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3 Final remarks

3.1 Berger spheres

Let us expand on our discussion of the spheres (S2q+1, g(t)), whose Hopf
circles are closed geodesics of length 2π t. According to [Ra85, Po18a],

diam(S2q+1, g(t)) =



π

2
√
1− t2

, if 0 < t ≤ 1√
2
,

π t, if 1√
2
< t ≤ 1,

π, if 1 < t.

(3.1)

As pairs of antipodal points x and I(x) are joined by half of the Hopf
circle to which they belong, dg(t)(x, I(x)) ≤ π t < diam(S2q+1, g(t)) for all
t < 1√

2
, see Figure 3.1.

Figure 3.1: Diameter (black) and half length of Hopf circle (red) in
(S2q+1, g(t)).
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A similar situation occurs on the Berger spheres (S4q+3,h(t)) and
(S15, k(t)) obtained by scaling the unit round sphere by t > 0 in the vertical
direction of the Hopf bundles S3 → S4q+3 → HP q and S7 → S15 → S8

(
1
2

)
,

respectively. Namely, for all t > 0, the projection map of these bun-
dles remains a Riemannian submersion, and thus diam(S4q+3,h(t)) ≥
diam(HP q) = π

2 and diam(S15, k(t)) ≥ diam(S8
(
1
2

)
) = π

2 . Pairs of an-
tipodal points belong to the same Hopf circle, hence to the same (totally
geodesic) fiber, which is isometric to S3(t) or S7(t), so dg(t)(x, I(x)) ≤ π t.
Thus, for sufficiently small t > 0, these spheres also provide a negative
answer to Question 1.

3.2 First Laplace eigenvalue

Spectral geometry provides an alternative path to show that Berger
spheres yield a negative answer to Question 1, by considering

g 7−→ λ1(M, g) diam(M, g)2,

where λ1(M, g) is the smallest positive eigenvalue of the Laplace–Beltrami
operator. This scale-invariant functional is bounded from below by π2

4 on
compact connected homogeneous spaces [Li80]. Moreover, one has that
λ1(S

2q+1, g(t)) ≤ 4(q + 1) for all t > 0, since

λ1(S
2q+1, g(t)) = min

{
4(q + 1), 2q + 1

t2

}
=


4(q + 1), if t ≤ 1√

2q+4
,

2q + 1
t2
, if t ≥ 1√

2q+4
,

see [BP13, Prop. 5.3]. Similar upper bounds on λ1 for (S4q+3,h(t)) and
(S15, k(t)) can be obtained from [BLP22]. This yields a positive diameter
lower bound, independent of t > 0, that could be used in lieu of the exact
value (3.1) for (S2q+1, g(t)) or of the submersion lower bound π

2 in general.
However, this spectral lower bound on the diameter is weaker than the
latter, and becomes arbitrarily small as q ↗ +∞.
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