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1 Introduction

In a Lecture Notes of 1989 [16], M. P. Do Carmo asked for the following
question:

Is a noncompact, complete, stable, constant mean curvature hypersur-
face M of Rn+1 necessarily minimal?

The question is very natural because in 1989, in R3, it was proved by
F. Lopez and A. Ros [31] and independently by A. da Silveira [15] that
the question has an affirmative answer (see Theorem 3.3).

For a long time, there was no answer to do Carmo question in higher
dimension (except with further assumptions). Then, in 2007, F. Elbert,
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the author and H. Rosenberg [21], and independently X. Cheng [11], gave
an affirmative answer in R4 and R5.

In dimension larger than 5, only partial results are known.
Notice that in R3, once one proves that a complete, stable, constant

mean curvature surface is minimal, then it is a plane as it was proven
independently by M. Do Carmo, C.K. Peng [17], D. Fischer-Colbrie, R.
Schoen, [23] and A. Pogorelov [37] (see Theorem 3.4).

Recently O. Chodosh, C. Li [12] have been able to prove that a minimal
stable complete hypersurface in R4 is a hyperplane. This crucial result,
joint with the affirmative answer to do Carmo’s question for M in R4,

yields that M is a hyperplane.
In this article we give an overview of results related to Do Carmo’s

question along the years. It is worthwhile to mention that Do Carmo’s
question has been explored in non Euclidean ambient spaces, too. Never-
theless, we will mainly deal with the results in Rn+1.

2 Preliminaries

Let x : M −→ N n+1 be an immersion of an orientable n-manifold in a
Riemannian n + 1-manifold. By abuse of notation we will use loosely M

to indicate x(M). Let A be the second fundamental form of M and denote
by κ1, . . . , κn its eigenvalues, that is, the principal curvatures of M. The
mean curvature of M is

H =
κ1 + · · ·+ κn

n
.

We assume that H is constant and orient M by a unit normal vector field
N such that H is nonnegative. When H ̸= 0, the vector HN is known as
the mean curvature vector of M.

It is well known that one can characterize constant mean curvature
hypersurfaces in N n+1 in a variational way. More precisely, a hypersurface
M in N n+1 has constant mean curvature H if and only if it is a critical
point for a functional related to area, with respect to variations defined as
follows.
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Let D be a relatively compact domain in M with smooth boundary. By
a variation of x|D we mean a differentiable map X : (−ε, ε)×D −→ N n+1

such that Xt = X(t, ·) is an immersion for each t ∈ (−ε, ε), X0 = x, and
Xt|∂D = x|∂D.

We define the area and the volume functions A, V : (−ε, ε) −→ R by

A(t) =

∫
M

dMt and V (t) =

∫
[0,t]×M

X∗dv,

where dMt is the volume form on Mt, dv is the volume element of N n+1,

X∗ is the standard linear map on forms induced by X and X∗dv is the
induced (algebraic) volume form.

It is proved in [3] (see also [2]) that, writing f = ⟨∂X∂t |t=0, N⟩, one has

dA

dt
(0) = −n

∫
D
HfdM and

dV

dt
(0) =

∫
D
fdM.

Notice that, without loss of generality we can integrate over M, ex-
tending f to be zero outside the domain D.

Now, we consider the function G : (−ε, ε) −→ R defined by G(t) =

A(t) + nHV (t). Clearly, dG
dt (0) = 0. Furthermore, one computes (see [3])

d2G

dt2
(0) = −

∫
M
(f∆f + (Ric(N) + |A|2)f2)dM,

where |A| is the norm of the second fundamental form of M, while Ric(N)

is the Ricci curvature of the ambient space in the direction of N.

The linear operator L := ∆ + Ric(N) + |A|2 is called the stability
operator of M and M is said to be stable if L is nonpositive, that is

Q(f, f) := −
∫
M

fLf ≥ 0, ∀f ∈ C∞
0 (M).

For completeness, we define the index of M . Let D be a relatively
compact domain of M. Define iL|D the number of negative eigenvalues of
−L = −(∆ +Ric(ν, ν) + |A|2), for the Dirichlet problem on D :

−Lf = λf, f|∂D = 0.
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The Index(M) is defined as follows

Index(M) := sup{iL|D | D ⊂ M rel. comp.}

In order to understand the index geometrically, we observe that the
index measures the number of linearly independent normal deformations
with compact support of M, that decrease the functional Q. Clearly, M is
stable if and only if M has index zero.

We conclude this section by introducing a different notion of stability.
One says that M is weakly stable if Q(f, f) := −

∫
M fLf ≥ 0, for all

f ∈ C∞
0 (M) such that

∫
M f = 0.

Analogously one can define the weak index, adding the nullity condition∫
M f = 0 to the definition of the index.

The relation between weak stability and stability has been studied by
J.L. Barbosa and P. Berard [4]. What is relevant for our discussion is
that in the case of a complete non-compact manifold with infinite volume,
the two indices are equal, provided some mild assumption on the volume
growth is satisfied: it is enough that the volume of the intrinsic geodesic
ball of radius R+1 is less or equal to a constant times the volume of the in-
trinsic geodesic ball of radius R. Moreover, the assumption infinite volume
is not restrictive because of a result by K. Frensel [24, Theorem 1]: a com-
plete, non-compact, constant mean curvature hypersurface in a manifold
with bounded geometry has infinite volume.

Furthermore, the following result is well known.

Theorem 2.1. If M is weakly stable, then, there exists a compact K ⊂ M

such that M \K is stable.

Proof. [27, Proposition 2.1] If M is stable, we choose K = ∅ and the result
is proved. Assume M is not stable, then there exists f ∈ C∞

0 (M) such
that Q(f, f) < 0. Let K = supp(f), we will prove that M \ K is stable,
i.e. for any g ∈ C∞

0 (M \ K), one has Q(g, g) ≥ 0. Denote by α =
∫
M g

and β =
∫
M f and define h := αf−βg. By a straightforward computation,

one has that
∫
M h = 0. As M is weakly stable, one has Q(h, h) ≥ 0. As



About a Do Carmo’s question 7

supp(f) ∩ supp(g) = ∅, using the bi-linearity of Q one has

a0 ≤ Q(h, h) = α2Q(f, f) + β2Q(g, g). (2.1)

As Q(f, f) < 0, inequality (2.1) implies that β ̸= 0 and Q(g, g) ≥ 0. Hence
M \K is stable.

Let us finish this introductory section by explaining why we consider M
noncompact since the beginning. The following result, due to L. Barbosa,
M. Do Carmo and J. Eschenburg holds for stable compact constant mean
curvature hypersurfaces in space forms (the analogous result in Rn+1 is [2,
Theorem 1.3]).

Theorem 2.2. [3, Theorem 1.2] Let M be a compact hypersurface of a
space form N , with constant mean curvature. Then M is weakly stable if
and only if M is a geodesic sphere.

Moreover, it is shown in [2] that geodesic spheres in space forms are
not stable.

3 When the answer to do Carmo’s question is
known.

3.1 A Toy Theorem.

Let us start by proving a simple case where the answer to Do Carmo
question is affirmative.

Theorem 3.1. There is no entire graph in Rn with constant mean curva-
ture H ̸= 0.

Theorem 3.1 is related with Do Carmo question, because a constant
mean curvature graph is stable. In fact, assume that M is a graph with
respect to the vertical direction en+1 in Rn+1. Without loss of generality,
we can assume that the mean curvature vector H⃗ = HN of M points
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upwards. As M is a graph, then f = ⟨N, en+1⟩ is a positive function on
M. By a straightforward computation one gets that f satisfies

∆f + (Ric(N) + |A|2)f = 0

that is f is a positive Jacobi field on M. By [23, Theorem 1], this yields
that M is stable.

The proof of the Theorem 3.1 is well known and, to the best of our
knowledge, handed down orally. Hence we do it here.

Proof. Assume that M is a graph with respect to the vertical direction
and that the mean curvature vector of M points upwards. Consider a
geodesic ball B of mean curvature H. Up to vertical translation, B and
M are disjoint and B lies above M. Translate down B towards M and
consider the first contact point p between M and B. As B is above M

around p and they have the same mean curvature vector, they coincide,
by the maximum principle. This is a contradiction because B is compact
and M is not.

Remark 3.2. We notice that, as soon as one consider different ambient
spaces, in order to get Theorem 3.1, one has to add some natural assump-
tions. For example, in hyperbolic space, for any H ∈ (0, 1) there is a ro-
tational non minimal graph over the entire hyperbolic plane, with constant
mean curvature H. The result analogous to Theorem 3.1 in hyperbolic space
holds for hypersurfaces with constant mean curvature larger than one, after
choosing a suitable notion of graph. Another interesting example is given
by constant mean curvature graphs in Hn × R with respect to the vertical
direction. For any H ∈ (0, n−1

n ], there is an entire rotational graph over
Hn with constant mean curvature H. The result analogous to Theorem 3.1
in Hn × R, holds for hypersurfaces with constant mean curvature larger
than n−1

n .
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3.2 The answer in R3

Do Carmo question in R3 has been completely answered by F. Lopez
and A. Ros [31] and independently by A. da Silveira [15]. We state Lopez-
Ros Theorem.

Theorem 3.3. The only weakly stable constant mean curvature surfaces
in R3 are the plane and the sphere.

In the same article, F. Lopez and A. Ros show that a complete surface
with constant mean curvature has finite index if and only if it is either
compact or a minimal surface with finite total curvature. Notice that
examples of compact constant mean curvature surfaces other than the
sphere are the famous Wente tori, constructed by H. Wente [41].

The strategy of Lopez-Ros proof is as follows. They prove that, if the
mean curvature is different from zero, then the surface must be compact,
then it is the sphere by Theorem 2.2. If the mean curvature is zero, then
one apply the following result, that we already cited in the introduction.

Theorem 3.4. A minimal stable surface in R3 is a plane.

Theorem 3.4 has been proven independently by M. Do Carmo, C.K.
Peng [17], D. Fischer-Colbrie, R. Schoen, [23] and A. Pogorelov [37].

The fact that so many high level mathematicians were working on the
subject almost at the same time is just a further evidence that the end
of the seventies was the beginning of a new golden age of minimal surface
theory [36].

Notice that, the result of Theorem 3.4 can be viewed as an generaliza-
tion of the celebrated Bernstein’s theorem.

Theorem 3.5. [5] A minimal entire graph in R3 is a plane.

3.3 The answer in R4 and R5

For almost 20 years, there was no answer to Do Carmo’s question in
dimension larger than three, without some further assumption. Then, in
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2007, M. F. Elbert, the author and H. Rosenberg answered to Do Carmo’s
question in R4 and R5 [21, Corollary 1]. The analogous result was obtained
by X. Cheng independently [11, Theorem 1.2] where the author observed
that the result holds for finite index hypersurfaces, as well.

Theorem 3.6. Any complete, stable, constant mean curvature, hypersur-
face in Rn+1 for n = 3, 4 is minimal.

The result by F. Elbert, the author and H. Rosenberg and X. Cheng,
holds in a general Riemannian manifold, provided the mean curvature
of the hypersurface is larger than a constant depending on the sectional
curvature of the ambient space. In fact the result follows immediately from
the following distance estimate.

Theorem 3.7. [21, Theorem 1] Let Mn be any stable, constant mean
curvature H, hypersurface of a riemannian manifold N n+1 for n = 3, 4.

There exists a constant c depending on n, H, sec(N n+1), such that

distMn(p, ∂Mn) ≤ c

whenever H > 2
√

|min(0, sec(N n+1)|.

The proof is based on a Bonnet-Myers method and inspires in [38].

Proof. (sketch) Stability implies that there exists u > 0 on M such that
Lu = 0 [22]. Consider the metric on M given by ds̃2 = u2kds2, where
5(n−1)

4n ≤ k ≤ 4
n−1 . Notice that in order to have a k satisfying the previous

bound, n must be smaller than 5.
Let p ∈ M and r such that the ball Br of radius r centered at p is

contained in M. Let γ be a geodesic, minimizing for ds̃, joining p to ∂Br.

Let a be the ds-length of γ. One has a ≥ r, then it is enough to bound a.

From the formula of the second variation along a minimizing geodesic
one has ∫ r̃

0

(
(n− 1)

(
dφ

ds̃

)2

− R̃11φ
2

)
ds̃ ≥ 0
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where r̃ is the ds̃-length of γ, φ : [0, r̃] −→ M, φ(0) = φ(r̃) = 0 and
R̃11 is the ds̃ Ricci curvature in the direction tangent to γ. After a long
manipulation, using the expression of R̃11 in terms of the ds Ricci curvature
R11, in the direction tangent to γ, the fact that Lu = 0 and the bounds
on k, one gets that there exist two constant A,B depending on k, n, H

such that ∫ a

0
(φssA+Bφ)φds ≤ 0.

Now, choosing φ(s) = sin(πsa−1), s ∈ [0, a] one gets

a2 ≤ Aπ2

B

that gives the desired result.

Remark 3.8. For completeness, we point out that the distance estimates
in R3 given in [38, Theorem 2] is π

2H . This estimate was improved to π
H

by L. Mazet [32, Theorem 1]. Notice that Mazet’s result is sharp, as it is
realized in half of the round sphere of radius 1

H , when one considers the
distance between the north pole and the equator.

4 Partial results in Rn+1 for n ≥ 5

In dimension larger than 5, there are only partial results concerning Do
Carmo’s question. In the following we will describe the principal results
and issues.

4.1 Assumptions on the growth of the total curvature

Let M be a hypersurface in Rn+1, denote by A the shape operator of
M , by H its mean curvature and by Φ = −A +HI, the traceless second
fundamental form. H. Alencar and M. Do Carmo, in 1997, proved the
following result.

Theorem 4.1. [1, Theorem 01] Let M be a complete, non compact hyper-
surface of Rn+1, n ≤ 5, with constant mean curvature H. Assume that M
is stable and that
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lim
R−→∞

∫
BR

|Φ|2dM
R2+2q

= 0, q ≤ 2

6n+ 1
.

Then M is a hyperplane.

The proof of Theorem 4.1 relies on a Simons’ type inequality for the
traceless second fundamental form and on classical computations similar
to those by Do Carmo and Peng in [18]. One gets that |Φ| = 0, that
implies that M is totally umbilical and hence an hyperplane.

In 2000, M. Do Carmo and D. Zhou were able to improve by one the
dimension in Theorem 4.1 but need to assume the following more restrictive
hypothesis on the growth of the total curvature.

Theorem 4.2. [19, 20] Let M be a complete, non compact hypersurface
of Rn+1, n ≤ 6, with constant mean curvature H. Assume that M is stable
and that

lim
R−→∞

∫
BR

|Φ|2dM
R2−2/n

= 0.

Then M is a hyperplane.

More recently, in 2012, Theorem 4.1 was generalized as follows by S.
Ilias, the author and M. Soret.

Theorem 4.3. [27, Corollary 6.3] Let M be a complete, non compact
hypersurface of Rn+1, n ≤ 5, with constant mean curvature H. Assume
that M is stable and there exists s ≥ 1 such that

lim
R−→∞

∫
B2R\BR

|Φ|2dM
R2s

= 0.

Then M is a hyperplane.

In Theorem 4.3, the assumption on the growth of the total curvature
is weaker than in Theorem 4.1. In fact, any polynomial growth is allowed
for the total curvature. The strategy of the proof of Theorem 4.3 is very
similar to the strategy of the proofs of the previous theorems by do Carmo,
but an improved Caccioppoli’s type inequality [27, Theorem 5.6] allows the
authors to get a more general result.

We finally remark that Corollary 6.3 in [27] is stated in Space Forms.
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4.2 Assumptions on the volume entropy

For a long time, the only concrete answers to Do Carmo’s question were
obtained by taking assumptions on total curvature. In 2016 [28], S. Ilias,
the author and M. Soret considered a different point of view and study Do
Carmo’s question with respect to assumptions on the volume growth.

In order to study this problem, we introduce the volume entropy of a
Riemannian manifold, that is, roughly speaking, the exponential volume
growth of the balls. We follow the notation by R. Brooks [6, 7], who first
introduced this invariant of the metric.

Let M be a n-manifold, BR be a geodesic ball in M, of radius R,

centered at a fixed point σ ∈ M and denote by |BR| its volume. The
volume entropy of M is

µM := lim sup
R−→∞

(
ln |BR|

R

)
.

The notion of volume entropy does not depend on the center σ of the
balls. Moreover, having volume entropy equal to zero is equivalent to the
following limit being satisfied.

lim sup
R−→∞

|BR|
eαR

= 0, ∀α > 0.

Then, it is natural to say that M has subexponential growth if µM = 0

and exponential growth if µM > 0.

Notice that, having subexponential growth is a weaker assumption than
being bounded by a polynomial of any degree.

4.2.1 The volume entropy and the spectrum by R. Brooks

In order to relate the volume entropy with stability, we need to give
some further definitions. Let M be a n-manifold, ∆ be the Laplacian on
M and σ(M) be the spectrum of the opposite of the Laplacian on M, −∆.
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The bottom of the spectrum σ(M) is denoted by λ0(M) and is char-
acterized as follows (see for example [9, Chapter 1]).

λ0(M) = inf{σ(M)} = inf
f∈C∞

0 (M)

f ̸=0

(∫
M |∇f |2∫
M f2

)
.

One also defines the essential spectrum σess(M) of −∆ and its bottom,
as follows

λess
0 (M) = inf{σess(M)} = sup

K
λ0(M \K) (4.1)

where K runs through all compact subsets of M.

Another invariant related to the spectrum is the Cheeger constant [10].
Recall that the Cheeger constant hM of a Riemannian manifold M is de-
fined as

hM = inf
Ω

|∂Ω|
|Ω|

where Ω runs over all compact domains of M, with piecewise smooth
boundary, and | · | indicates the volume.

We summarize in the following Theorem two results by Brooks and
Cheeger.

Theorem 4.4. [6, 10] If M has infinite volume, then

h2M
4

≤ λ0(M) ≤ λ0(M \K) ≤ λess
0 (M) ≤

µ2
M

4

where K is any compact subset of M.

We observe that the infiniteness of the volume follows, for example,
from the existence of a Sobolev inequality [8, 25] or in the case where M
is a complete noncompact submanifold with bounded mean curvature of a
manifold with bounded geometry, by the result by K. Frensel [24] recalled
in Section 2.

4.2.2 The case of zero volume entropy

The next theorem by S. Ilias, the author and M. Soret answers posi-
tively to Do Carmo’s question provided the entropy of the hypersurface is
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zero. Notice that, there is neither dimensional nor curvature assumptions
on the manifold M

Theorem 4.5. [28, Corollary 8] There is no complete, non-compact, finite
index hypersurface M in Rn+1 with constant mean curvature H ̸= 0 and
µM = 0.

Theorem 4.5 follows easily from the following result.

Theorem 4.6. [28, Theorem 9] There is no complete, noncompact, finite
index hypersurface M immersed in a manifold N , provided the mean cur-
vature H of M satisfies nH2 + Ric(N) ≥ δ, where N is a unit normal
vector field to M , δ is a constant such that δ >

µ2
M
4 .

Proof. Assume that such M exists. By [22, Proposition 1], the finite index
implies that there exists a compact K in M such that M \ K is stable.
Then, for any f ∈ C∞

0 (M \K), one has

0 ≤ Q(f, f) =

∫
M\K

|∇f |2 − (|A|2 +Ric(N))f2.

Then |A|2 + Ric(N) ≥ nH2 + Ric(N) ≥ δ, yields 0 ≤
∫
M\K |∇f |2 −

δ
∫
M\K f2, By definition of λ0, one has λ0(M \ K) ≥ δ >

µ2
M
4 . This con-

tradicts Theorem 4.4.

We finish this section by stating a recent result, answering to Do
Carmo’s question in the case of constant mean curvature foliations of a
manifold with zero volume entropy.

Theorem 4.7. [29, Theorem 2]. Let N be a manifold such that µN = 0.

Let F be a codimension one C3 foliation of N by non-compact leaves of
constant mean curvature H. Then H = 0.

5 An interesting application: the Maximum Prin-
ciple at Infinity.

We would like to complete this survey by recalling a theorem that can
be proved once one has an affirmative answer to Do Carmo’s question.
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Let us start by a result for minimal surfaces, the so called Strong Half-
space Theorem proved by D. Hoffman and W. Meeks in 1990.

Theorem 5.1. [26, Theorem 2] Two connected minimal surfaces, properly
immersed in R3, must intersect, unless they are parallel planes.

Let us give an outline of the proof of Theorem 5.1. Assume by contra-
diction that two such surfaces M1 and M2 exist. Being minimal, M1 and
M2 are not compact. Then, there is connected non-compact domain W

such that ∂W = M1 ∪M2.

Now, translate M1 towards M2. If there is a first interior contact point,
one gets a contradiction by the maximum principle, then, the first contact
point is at infinity and we can assume that M1 and M2 are asymptotic
one to the other. We consider a relatively compact domain S in M1 with
boundary Γ = ∂S a Jordan curve. One can solve the Plateau problem
with boundary Γ in W (using M1 and M2 as barriers). By letting S being
larger and larger, solving Plateau problems for the sequence of boundary
of S and getting the limit, one finds a complete stable minimal surface Σ

in W . By Theorem 3.4, Σ must be a plane, hence M1 lies on one side of
a plane. This is a contradiction by the following Halfspace Theorem.

Theorem 5.2. [26, Theorem 1] A connected, nonplanar minimal surface
M properly immersed in R3 is not contained in a halfspace.

We notice that, the proof that we sketched is not the proof contained
in [26], but has the advantage that can be generalized to many other situ-
ations and can be related to the positive answer to Do Carmo’s question.

In the litteraure, a result analogous to the strong half-space theorem,
for surfaces with constant mean curvature different from zero is usually
called Maximum Principle at Infinity.

As an example, we state the pioneer theorem proved by A. Ros and H.
Rosenberg in 2010.

Theorem 5.3. [38, Theorem 1] Let M1 and M2 be connected disjoint
surfaces properly embedded in R3, with constant mean curvature H. Then
M2 is not on the mean convex side of M1.
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We give a sketch of the strategy of the proof of Theorem 5.3. Assume,
by contradiction, that M2 is contained in the mean convex side of M1.

If either M1 or M2 is compact, one uses the classical maximum principle
to get a contradiction. Otherwise, one is able to prove that there exists
a complete stable surface with constant mean curvature H between M1

and M2, as in the proof of the Strong Halfspace Theorem. This is a
contradiction because such surface does not exist, by Theorem 3.3.

Let us do some remarks about (strong) halfspace theorem and maxi-
mum principle at infinity.

In Rn+1, n > 2, a theorem analogous to the Halfspace Theorem (Theo-
rem 5.2) does not hold because catenoids (minimal hypersurfaces, invariant
by rotations) are contained in a slab (see for example [40]). As a conse-
quence, the analogous to the Strong Halfspace Theorem (Theorem 5.1)
does not hold in higher dimension.

As for the higher dimensional version of Theorem 5.3, it clearly it holds
in Rn+1, n = 3, 4, because of Theorem 3.6. We notice that, as Theorem
3.6 holds in a more general ambient manifold with uniformly bounded
sectional curvature, the Maximum Principle at Infinity holds as well ([21,
Theorem 2]).

The Maximum Principle at Infinity has been studied in different am-
bient spaces of dimension three. Let us describe some examples.

In the hyperbolic space, a Maximum Principle at Infinity for surfaces
with constant mean curvature larger than one, with bounded Gaussian
curvature is proved by R. F. de Lima and W. Meeks III [30], while in H2×R,
provided the mean curvature is larger than 1√

3
, it is proved by the author

and H. Rosenberg in [34, Theorem B]. H. Rosenberg proved a Maximum
Principle at Infinity in any homogeneously regular three manifold, provided
the mean curvature is large enough.

The careful reader could remark that in the Maximum Principle at
Infinity in H2 × R, the natural bound on the mean curvature should be
H larger than larger than 1

2 . We believe that the bound 1√
3

in [34, Theo-
rem B] is due to technical reasons, but this is an open question: does the
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Maximum Principle at Infinity in H2 ×R holds for surfaces with constant
mean curvature between 1√

3
and 1

2?

Different maximum principles at infinity in H2 × R are contained for
example in [33, 35, 39].

We finish this section with a three-dimensional case where the Strong
Half Space Theorem is still open: the Heisenberg space, Nil3.

We recall that the simply connected homogeneous 3-manifolds Nil3 is
one of the eight Thurston geometries. Moreover, minimal surfaces in such
Thurston geometries has been deeply studied in the last twenty years.

The more general partial result about Halfspace Theorem in Nil3 is
the following theorem, due to B. Daniel, W. Meeks III and H. Rosenberg.

Theorem 5.4. [14, Theorem 1.4] Let S be a properly immersed minimal
surface in Nil3. If S lies on one side of some entire minimal graph G, then
S is the image of G by a vertical translation.

A weaker result was proved by B. Daniel and L. Hauswirth, that showed
that if S is contained on one side of a vertical plane P, then S is a vertical
plane parallel to P [13, Theorem 6.3]. In order to get the Strong Halfspace
Theorem, one should replace the graph G with a general minimal surface
in Nil3.
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