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Dyson’s split action formula
for transport operators
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Abstract. A proof of Dyson’s formula for transport operators with
fields defined on a bounded open set in Rn with volume is presented.
Its proof stems from Lax’s Equivalence Theorem for linear systems,
which is the “principle of uniform boundedness” of numerical analysis.
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1 Introduction

The linear response theory of Nonequilibrium Statistical Mechanics
models transport processes, such as transport coefficients, using molecu-
lar interactions [2]. In this theory, the Mori-Zwanzig procedure extracts
generalized Langevin equations from a system of evolution ordinary dif-
ferential equations (o.d.e.). Dyson’s split action (or decomposition) for-
mula is used in this procedure to generate the memory and noise terms
of Langevin equations. Briefly, the procedure goes as follows (see [1, 2]
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for details). Let x′(t) = f(x(t)) be an autonomous system of evolution
o.d.e. with dynamics Φ. From the Theory of Characteristics [3], one has
f(Φ(t, x)) = (etLf)(x), where etL formally denotes the solution opera-
tor of the Liouville equation ∂tu(t, x) = Lu(t, x), wherein L = f(x) · ∇
is the transport operator. As such the o.d.e. system may be written
∂tΦ(t, x) = (etLf)(x) = etLLx = etLPLx+etLQLx, where P is a statistical
projection operator and Q = I − P its orthogonal complement. Dyson’s
formula is then used to set etLQLx = etQLQLx+

∫ t
0 e

(t−s)LPLesQLQLx, ds.
As such the o.d.e. system may further be written ∂tΦ(t, x) = etLPLx +∫ t
0 e

(t−s)LPLesQLQLx, ds+etQLQLx. This is a generalized Langevin equa-
tion with Markovian term etLPLx, memory term

∫ t
0 e

(t−s)LPLesQLQLx, ds

and noise term etQLQLx.

An application of the Mori-Zwanzig procedure to modeling the interactions
within a small set of variables extracted from a large set of interacting vari-
ables, a forerunner subject of Machine Learning, is presented in [1]. An
application to data assimilation is presented in [4]. An application to the
numerical stabilization of the dynamics of a cloud-resolving model (CRM)
is presented in [5], where the CRM is an extension of the incompressible
Navier-Stokes equations, derived from the compressible equations, toward
atmospheric convective processes, such as cyclones and hurricanes, along
with subgrid equations for viscous turbulence processes. This study was
conducted in parabolic regime. A similar study in hyperbolic regime is
under way.

Dyson’s formula is the core of the dynamical stabilization method pre-
sented in [5]. A proof of Dyson’s formula for transport operators with
fields defined on a bounded open set in Rn with volume is presented in
this work (for fields in Rn see [4], Appendix). The proof stems from Lax’s
Equivalence Theorem for well-posed linear initial-value problems, which
states that a finite-difference scheme for such problems converges provided
∆t ≤ Mα(k) if, and only if, it is consistent and Lax-Richtmyer stable
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provided ∆t ≤ Mα(k), which means that for any time t > 0 there is τ > 0

such that the set {|||(C(∆x,∆t))l||| : 0 < ∆x < τ, 0 < ∆t ≤ M∆x, 0 <

l∆t ≤ t} is bounded, where C(∆x,∆t), ∆x and ∆t are the scheme’s ma-
trix, grid width and time step [7, 6]. The Equivalence Theorem is the
“principle of uniform boundedness” of numerical analysis.

2 Dyson’s formula

Let M(k) be the set of real square matrices of order k.

Lemma: (Dyson’s formula for matrices) If A,B ∈ M(k) and x0 ∈ Rk,
then et(A+B)x0 = etAx0 +

∫ t
0 e

(t−s)(A+B)BesAx0 ds.

proof: Let x(t) = et(A+B)x0 − etAx0. Taking the derivative of x(t), one
obtains the initial value problem

x′(t) = (A + B)x(t) + BetAx0, t ∈ R, (2.1)

x(0) = 0 (2.2)

Eq. 2.1 is a non-homogeneous linear ordinary differential equation with
constant coefficient. Duhamel’s formula for the solution of problem 2.1-
2.2 is x(t) =

∫ t
0 e

(t−s)(A+B)BesAx0 ds. Thus et(A+B)x0 − etAx0 =∫ t
0 e

(t−s)(A+B)BesAx0 ds.

Theorem: (Dyson’s formula for transport operators) Let Ω be a bounded
open set in Rn with volume. Let C0

b(Ω) be the space of bounded continuous
functions on Ω and C1

b(Ω) the space of bounded continuous functions with
bounded continuous partial derivatives on Ω. If

1. a, b : Ω → Rn are {C1
b(Ω)}n vector fields with flow functions defined

for all t ≥ 0;
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2. S(t) : C1
b(Ω) → C1

b(Ω), t ≥ 0, is the solution operator of

∂tu(t, x) = a(x) · ∇u(t, x) (2.3)

with S(0)u0 = u0;

3. T(t) : C0
b(Ω) → C0

b(Ω), t ≥ 0, is the solution operator of

∂tw(t, x) = (a(x) + b(x)) · ∇w(t, x) (2.4)

with T(0)w0 = w0;

then

T(t)u0 = S(t)u0 +

∫ t

0
T(t− s) B S(s)u0 ds,

for all u0 ∈ C1
b(Ω), where B = b(x) · ∇ : C1

b(Ω) → C0
b(Ω).

proof: Let {Ωα}, 0 < α < 1, be a decreasing family of uniform grids
mounted inside Ω and such that ∪Ωα = Ω, where α is the grid width of
Ωα and Ωα is the closed region enclosed by Ωα. Let Tk(t), Sk(t) : Rp(k) →
Rp(k), Tk(t) = (C1(α(k),∆t))m, Sk(t) = (C2(α(k),∆t))m, denote any two
sequences of finite-difference discretizations of T(t) and S(t) with constant
time step ∆t, mounted on a sequence of grids Ωα(k) with limk α(k) = 0,
such that Tk(t)[w0] and Sk(t)[u0] converge to T(t)w0 and S(t)u0 as k →
+∞ provided ∆t ≤ Mα(k), for some M > 0, where [f ] ∈ Rp(k) denotes a
grid vector, C1,C2 ∈ M(p(k)) are the discretization matrices of Eqs. 2.3
and 2.4, m = m(t,∆t) is the number of time steps from time 0 to t (i.e. an
integer close to t/∆t such that m∆t → t as ∆t → 0) and p(k) is the num-
ber of grid points in Ωα(k). Let Bk : Rp(k) → Rp(k) be the discretization of
B employed in Tk(t). Let N/α(k), N ≥ supx∈Ω

∑n
j=1 |bj(x)|, be a bound

to the infinite operator norm of Bk, so that ||Bk [v]|| ≤ (N/α(k)) ||[v]|| for
all v ∈ C1

b(Ω), where ||[f ]|| = maxi=1,...,p(k) |[f ]i| for [f ] ∈ Rp(k) (so that
||[f ]|| → ||f || as k → +∞, for any bounded f : Ω → R, where || · || is the
sup norm).
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One has:

||Tk(t− s) Bk Sk(s)[u0]− [T(t− s) B S(s)u0]||
= ||Tk(t − s) Bk Sk(s)[u0] ± Tk(t − s) [B S(s)u0] ± Tk(t − s) Bk [S(s)u0] −
[T(t− s) B S(s)u0]||
= ||Tk(t−s)

(
Bk (Sk(s)[u0]−[S(s)u0])+(Bk[S(s)u0]−[BS(s)u0])

)
+
(
Tk(t−

s) [BS(s)u0]− [T(t− s)BS(s)u0]
)
||

≤ |||Tk(t − s)|||
(
||Bk (Sk(s)[u0] − [S(s)u0])|| + ||Bk[v0(s)] − [Bv0(s)]||

)
+

||Tk(t− s)[w0(s)]− [T(t− s)w0(s)]||,

where v0(s) = S(s)u0, w0(s) = BS(s)u0 and |||Tk(t)||| = sup {||Tk(t)[w]|| :
[w] ∈ Rp(k), ||[w]|| = 1}.

According to Lax’s Equivalence Theorem [7, 6], Tk is Lax-Richtmyer stable
provided ∆t ≤ Mα(k) since Tk converges provided ∆t ≤ Mα(k). Thus for
any time t − s > 0 there is τ > 0 such that the set {|||(C1(α(k),∆t))l||| :
0 < α(k) < τ, 0 < ∆t ≤ Mα(k), 0 < l∆t ≤ t − s} is bounded. Hence its
subset {|||Tk(t−s)||| : 0 < α(k) < τ, 0 < ∆t ≤ Mα(k)} is bounded. In ad-
dition ||Bk vk(s)|| ≤ (N/α(k)) ||vk(s)|| → 0 if ||vk(s)|| = O(α2(k)), which is
the case for vk(s) = Sk(s)[u0]− [S(s)u0] if Sk(s) is second order accurate in
space. It follows that Tk(t−s) Bk Sk(s)[u0] → T(t−s) B S(s)u0 as k → +∞
provided ∆t ≤ Mα(k), where (T(t − s) B S(s)u0)(x), (s, x) ∈ [0, t] × Ω,
is integrable in s since, from the Theory of Characteristics [3], it may be
written h(s, g(t− s, x)), where g and h are continuous functions of s.

Hence:

Tk(t)[u0]−Sk(t)[u0]−Rkm(t)[u0] → T(t)u0−S(t)u0−
∫ t
0 T(t−s) B S(s)u0 ds

as k,m → +∞ provided ∆t ≤ Mα(k), where Rkm(t)[u0] =
∑m

i=0(Tk(t −
si) Bk Sk(si)[u0])∆t, wherein si = si−1 +∆t and s0 = 0.
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But:

Tk(t)[u0]−Sk(t)[u0]−Rkm(t)[u0] → et(Ak+Bk)[u0]−etAk [u0]−
∫ t
0 e

(t−s)(Ak+Bk)Bk

esAk [u0] ds as m → +∞ upon ∆t → 0 with k held fixed, where Ak is the
discretization of a(x) · ∇ employed in Sk(t) and Tk(t).

Since, according to the Lemma, this limit value vanishes, one has T(t)u0−
S(t)u0−

∫ t
0 T(t−s) B S(s)u0 ds = limk limmTk(t)[u0]−Sk(t)[u0]−Rkm(t)[u0] =

limk 0 = 0.
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