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Abstract. Given a smooth compact Riemannian n-manifold (M, g),
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1 Introduction

A lot of attention has been dedicated to the so-called sharp Sobolev
type inequalities (Aubin [2], Beckner [5], Brezis and Nirenberg [7], Brout-
telande [8], Ceccon and Montenegro [12], Druet [16, 17], Escobar [19],
Hebey and Vaugon [25], Lieb [28], Moser [31], Talenti [34], Trudinger [35],
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among others). Frequently, these inequalities are in connection with con-
crete problems from geometry and physics (Aubin [3], Carlen and Loss
[10], Lieb and Thirring [29], Schoen [32]).

Considerable work has been devoted to the study of extremal functions
to sharp Sobolev inequalities in recent decades (see Aubin [2], Aubin and Li
[4], Brouttelande [9], Carleson and Chang [11], Collion, Hebey and Vaugon
[13], Demyanov and Nazarov [14], Djadli and Druet [15], Druet, Hebey and
Vaugon [18], Hebey [21, 23], Humbert [26], Li [27], Struwe [33] and Zhu
[36]). Such functions are connected, for instance, with the computation of
ground state energy in some physical models.

The goal of the present paper is to discuss the existence of extremal
functions of Sobolev type inequality modeled on smooth compact Rieman-
nian manifolds, precisely sharp Riemannian Sobolev-Poincaré inequalities
involving also upper order remainder terms. Before we go further and ex-
hibit our target problems, a little bit of notation and overview should be
presented.

For n ≥ 2, it was shown by Aubin [1] and Talenti [34] that, for 1 ≤
q < n and q∗ = qn/(n− q),

K(n, q) = sup

{∥∇u∥Lq(Rn)

∥u∥Lq∗(Rn)
: u ̸≡ 0, u ∈ Lq∗(Rn) ,∇u ∈ Lq(Rn)

}
is achieved and the extremal functions are found. In particular,

K(n, q) =
q − 1

n− q

[
n− q

n(q − 1)

] 1
q

[
Γ(n+ 1)

Γ(nq )Γ(n+ 1− n
q )ωn−1

] 1
n

for 1 < q < n and

K(n, 1) =
1

n

[
n

ωn−1

] 1
n

where Γ is the gamma function and ωn−1 denotes the volume of the stan-
dard (n − 1)-sphere. All the extremal functions for 1 ≤ q < n are given
by

u(x) = c

(
1

µ+ |x− x0|q/q−1

)n−q
q
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where c, µ, x0 ∈ Rn. It is easy to see that for some c̃, µ̃ > 0 the corre-
sponding

v(x) = c̃

(
1

µ̃+ |x|q/q−1

)n−q
q

is the unique minimizer which satisfies:

v(0) = 1, ∇v(0) = 0,

∫
Rn

vq∗dx = 1 and −∇v = K(n, q)−qvq∗−1.

On a compact Riemannian manifold n-dimensional (M, g), the Sobolev
embedding theorem holds: the inclusion H1,q(M) ⊂ Lq∗(M) is continuous
for 1 ≤ q < n. Thus, there exists a real constant C0 such that any u ∈
H1,q(M) satisfies ∥u∥Lq∗(M) ≤ C0∥∇gu∥Lq(M). Moreover, on a compact
manifold, the inclusion H1,q(M) ⊂ Lq∗(M) is continuous but not compact
and H1,q(M) ⊂ Lq(M) is compact by the Kondrakov theorem. When we
are in this situation, there are constants C and A such that

∥u∥Lq∗(M) ≤ C∥∇gu∥Lq(M) +A∥u∥Lq(M). (1.1)

Define K = inf C such that some A exists. Then K > 0. Aubin [1]
proved that K only depends on n and p. So K = K(n, p) is a norm of the
inclusion H1,q(Rn) ⊂ Lq∗(Rn).

Let (M, g) be a smooth compact Riemannian n-manifold and q ≤ p <

qn/(n−q), such that there exists a constant B0(p, n, g) > 0 where, for any
C∞
0 (M), we have the following sharp inequality

||u||q
Lq∗ (M)

≤ K(n, q)q||∇gu||qLq(M) +B0(p, n, g)||u||qLp(M) (1.2)

for all u ∈ H1,q(M).
The constant B0(p, n, g) = inf A such that (1.1) occurs with C =

K(n, q), B0(p, n, g) depends only on p and (M, g). By summarising the
works of Aubin [2], Druet [16], Hebey and Vaugon [24] , the inequality
above is valid in the cases:

1. On any smooth, compact Riemannian n-manifold, n ≥ 3 and q = 2 .
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2. For all q on any 2-dimensional smooth, compact Riemannian mani-
fold.

3. For all q on compact flat spaces, compact hyperbolic spaces and
smooth, compact n-manifolds of nonpositive sectional curvature as
long as the Cartan-Hadamard n-manifold conjecture is true (see
Hebey [22] section 8.2). In particular, n = 3 or n = 4.

Special attention has also been paid to the existence problem of ex-
tremal functions to (1.2). A non-zero function u0 ∈ C∞(M) is said to be
an extremal to (1.2), if

||u0||qLq∗ (M)
= K(n, q)q||∇gu0||qLq(M) +B0(p, n, g)||u0||qLp(M) .

Denote by Ep(g) the set of the extremal functions to (1.2) with unit
Lq∗-norm.

Our main result in this paper is summarized in the next theorem.

Theorem 1.1. Let (M, g) be a smooth compact Riemannian n-manifold
without boundary of dimension n ≥ 4 such that the inequality (1.2) is true.
Then the set Ep(g) is non-empty for any 1 < q < p < q∗.

The general idea of the proof and its nature are well-known and were
developed in various works (cf. [2], [4], [15], [24], among others). The
tools are based on blow-up techniques, concentration analysis and PDE
estimates. What happens is that each proof has its specific technical dif-
ficulties inherent to the problem addressed, for instance, by the range of
values of p in our inequalities. The ideas of the proofs are mainly inspired
in the works of Aubin and Li [4]. The key points are the so-called Lp

concentration estimates.
In Section 2, we define the PDE framework and formulate functions

uα, aimed at minimizing the Euler-Lagrange functional Jα. Section 3 is
dedicated to construct an extremal function u ∈ C∞(M), the weak limit of
uα. We study in detail the case u = 0. We then perform a comprehensive
study of blow-up, concentration and priori estimates on the generated
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family of minimizers. Moving to Section 4, we show that u is non-zero and
conclude the proof of Theorem 1.1, by contraction.

2 The PDE setting

Let 1 < q < p < q∗ and (α) ⊂ R be a sequence of positive real numbers
converging to B0(p, n, g) with α < B0(p, n, g). For each α, we consider the
functional

Jα(u) =

∫
M

|∇gu|q dvg + αK(n, q)−q

(∫
M

|u|p dvg
) q

p

defined on
Λα =

{
u ∈ H1,q(M) : ||u||Lq∗ (M) = 1

}
where dvg is the Riemannian volume element of g and H1,q(M) denotes
the completion of C∞(M) under the norm

||u||H1,q(M) =
(
||∇gu||qLq(M) + ||u||qLq(M)

)1/q
.

By the definition of B0(p, n, g),

λα := inf
Λα

Jα(u) < K(n, q)−q. (2.1)

For α close enough to B0(p, n, g), we claim that (2.1) leads to the
existence of a positive smooth minimizer uα for λα. The Euler-Lagrange
equation satisfied by such a minimizer is

−∆quα + αK(n, q)−q||uα||q−p
Lp(M)u

p−1
α = λαu

q∗−1
α , (2.2)

where ∆qu = divg(|∇gu|q−2∇gu) is the q-Laplacian operator associated to
the metric g. Since Jα is of C1 class on Λα, by the Ekeland’s variational
principle [20], there exists a minimizing sequence (um) ⊂ Λα such that
||DJα(um)||(TumΛα)∗ → 0, where DJα denotes the Fréchet derivative of
Jα on Λα and T represents the tangent space. Since the sequence (um)

is bounded in H1,q(M), there exists uα ∈ H1,q(M) such that, up to a
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subsequence, (um) converges weakly to uα in H1,q(M), strongly in Lq(M)

and in Lp(M), and almost everywhere as m → +∞. Moreover, there exist
bounded nonnegative measures µ and ν such that

|∇gum|qdvg ⇀ µ, |um|q∗dvg ⇀ ν. (2.3)

By a standard concentration-compactness principle of Lions [30], there
exists at most a countable set T , {xj}j∈T ⊂ M and positive numbers
{µj}j∈T and {νj}j∈T such that

µ ≥ |∇guα|qdvg +
∑
j∈T

µjδxj , ν = |uα|q
∗
dvg +

∑
j∈T

νjδxj (2.4)

with K(n, q)qµj ≥ ν
q/q∗

j for all j ∈ T , where δxj represents the Dirac mass
centered at xj .

Fix k ∈ T and choose a cutoff function φε ∈ C∞
0 (B(xk, 2ε)) satisfying

0 ≤ φε ≤ 1, φε = 1 in B(xk, ε) and |∇gφε| ≤ c
ε for some constant c > 0

independent of ε, where B(xk, ε) denotes the geodesic ball, with respect
to g, of radius ε centered at xk. Write

φεum = τm +

(∫
M

|um|q∗φε dvg

)
um,

where
τm :=

[
φε −

(∫
M

|um|q∗φε dvg

)]
um ∈ TumΛα.

The boundness of (um) in H1,q(M) implies∫
M

|∇gum|q−2⟨∇gum,∇gτm⟩ dvg +

+αK(n, q)−q||um||q−p
p

∫
M

|um|p−2umτm dvg → 0.

Since∫
M

|∇gum|q−2⟨∇gum,∇gτm⟩ dvg +

+αK(n, q)−q||um||q−p
p

∫
M

|um|p−2umτm dvg
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=

∫
M

|∇gum|q−2∇gum∇g(φεum) dvg

−
(∫

M
|um|q∗φε dvg

)(∫
M

|∇gum|q−2⟨∇gum,∇gum⟩ dvg
)

+αK(n, q)−q||um||q−p
p

∫
M

|um|p−2um(φεum) dvg

−
(∫

M
|um|q∗φε dvg

)
αK(n, q)−q||um||q−p

p

∫
M

|um|p−2u2m dvg,

so that, by (2.3),

lim
m→+∞

(∫
M

|∇gum|q−2⟨∇gum,∇g(φεum)⟩ dvg+

+αK(n, q)−q||um||q−p
p

∫
M

|um|p−2um(φεum) dvg

)
= lim

m→+∞

(∫
M

|um|q∗φε dvg

)
×

×

(∫
M

|∇gum|q dvg + αK(n, q)−q

(∫
M

|um|p dvg
) q

p

)

= λα

(∫
M

φε dν

)
. (2.5)

On the other hand, from (2.3), we also get

lim
m→+∞

(∫
M

|∇gum|q−2⟨∇gum ,∇g(φεum)⟩ dvg+

+αK(n, q)−q||um||q−p
p

∫
M

|um|p−2um(φεum) dvg

)
= lim

m→+∞

(∫
M

um|∇gum|q−2⟨∇gum ,∇gφε⟩+ φε|∇gum|q dvg+

+αK(n, q)−q||um||q−p
p

∫
M

φε|um|p dvg
)

= lim
m→+∞

(∫
M

um|∇gum|q−2⟨∇gum ,∇gφε⟩ dvg+

+αK(n, q)−q||um||q−p
p

∫
M

φε|um|p dvg
)
+

∫
M

φε dµ. (2.6)
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We now show that the last limit tends to zero as ε → 0. In fact, using
Hölder’s inequality, we have∣∣∣∣∫

M
um|∇gum|q−2⟨∇gum,∇gφε⟩ dvg

∣∣∣∣
≤
∫
M

|um||∇gum|q−1|∇gφε| dvg

≤
(∫

M
|∇gum|q dvg

) q−1
q

(∫
B(xk,2ε)\B(xk,ε)

|um|q|∇gφε|q dvg

) 1
q

≤
(∫

M
|∇gum|q dvg

) q−1
q

(∫
B(xk,2ε)\B(xk,ε)

|∇gφε|n dvg

)1/n

×

×

(∫
B(xk,2ε)\B(xk,ε)

|um|q∗ dvg

)1/q∗

Observe also that, from (2.4),

lim sup
m→+∞

∣∣∣∣∫
M

um|∇gum|q−2⟨∇gum ,∇gφε⟩ dvg
∣∣∣∣

≤ c lim sup
m→+∞

(∫
M

|∇gum|q dvg
) q−1

q

(∫
B(xk,2ε)\B(xk,ε)

|∇gφε|n dvg

) 1
n

×

×

(∫
B(xk,2ε)\B(xk,ε)

|um|q∗ dvg

) 1
q∗


≤ c

[
1

εn
volg (B(xk, 2ε) \B(xk, ε))

]1/n
×

× lim
m→∞

(∫
B(xk,2ε)\B(xk,ε)

|um|q∗ dvg

) 1
q∗

≤ c

∫
B(xk,2ε)\B(xk,ε)

|uα|q
∗
dvg +

∑
j∈T

νjδxjvol(B(xk, 2ε) \B(xk, ε))

 1
q∗

→ 0, as ε → 0.

The estimate of the remaining integral is decomposed into two cases.
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If uα = 0 on M , then

lim sup
m→+∞

(
||um||q−p

p

∫
M

φε|um|p dvg
)

≤ lim sup
m→+∞

||um||qp = 0.

Otherwise,

lim sup
m→+∞

(
||um||q−p

p

∫
M

φε|um|p dvg
)

= ||uα||q−p
p

∫
M

φε|uα|p dvg → 0

as ε → 0.
Therefore, letting ε → 0 in (2.5) and (2.6), one arrives at

µk = λανk. (2.7)

We claim that λα > 0 for α close enough to B0(p, n, g). Let B0(p, n, g)−
ε < α < B0(p, n, g) with ε > 0 small enough. Evaluating the sharp in-
equality (1.2) at um and applying Hölder’s inequality, we obtain

||um||qLp ≤ ||um||q
Lq∗vg(M)

q
p
− q

q∗ ,

so that

||um||q
Lq∗ (M)

≤ K(n, q)q
(∫

M
|∇gum|q dvg

)
+B0(p, n, g)||um||2Lp(M)

= K(n, q)qJα(um) + (B0(p, n, g)− α)||um||qLp(M)

≤ K(n, q)qJα(um) + εvg(M)
q
p
− q

q∗ ||um||q
Lq∗ (M)

,

there exists M > 0, M > K(n, q)q such that

Jα(um) ≥ 1/M

for all m ≥ 1. So, the positivity of λα follows by passing the limit on m

in the inequality above. In particular, from (2.7), one has µk > 0 if, and
only if, νk > 0. In this case, from K(n, q)qµk ≥ ν

q/q∗

k , one gets

µk ≥ 1

K(n, q)nλ
n/q∗
α

.
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This implies that T is a finite set, since µ is a bounded measure. We
claim that T = ∅. Otherwise, if k ∈ T , then

λα = lim
m→+∞

(∫
M

|∇gum|q dvg + αK(n, q)−q

(∫
M

|um|p dvg
) q

p

)

≥
∫
M

|∇guα|q dvg + αK(n, 2)−2

(∫
M

|uα|p dvg
) q

p

+
∑
j∈T

µj

≥
∑
j∈T

µj ≥ µk ≥ 1

K(n, q)nλ
n/q∗
α

,

so that

λα ≥ K(n, q)−q .

However, this last inequality contradicts (2.1). Therefore, ||um||Lq∗ (M)

converges to ||uα||Lq∗ (M). Brezis-Lieb lemma [6] then guarantees that (um)

converges strongly to uα in Lq∗(M) and, in particular, uα ∈ Λα. Moreover,
uα is a minimizer of Jα on Λα. We can assume that uα is a nonnegative
minimizer, since Jα and Λα are Z2-invariant. So, we find a nontrivial
nonnegative weak solution uα to (2.2). Its positivity and regularity follow
directly from well-known results of the elliptic PDEs theory (Rabinowitz
[37]).

3 Blow-up analysis

Let q < p < q∗ and (α) ⊂ R be a sequence of positive real numbers
converging to B0(p, n, g) with α < B0(p, n, g). Assume that, for any α,

λα = inf
Λα

Jα(u) < K(n, q)−q ,

where Jα and Λα are as in Section 2. In the previous section, we construct
positive functions uα ∈ C∞(M) satisfying

−∆quα + αK(n, q)−q||uα||q−p
p up−1

α = λαu
q∗−1
α (3.1)
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and
∫
M |uα|q

∗
dvg = 1.

Since the sequence (uα) is bounded in H1,q(M), there exists a nonnega-
tive function u ∈ H1,q(M) such that, up to a subsequence, (uα) converges
weakly to u in H1,q(M) and strongly in Lq(M) for any 2 ≤ q < q∗ as
α → B0(p, n, g). Assume also that (λα) converges to λ. If u ̸≡ 0, then by
letting α → B0(p, n, g) in (3.1), one has

−∆qu+B0(p, n, g)K(n, q)−q||u||q−p
p up−1 = λuq

∗−1 . (3.2)

From (1.2) and (3.2), it follows that(∫
M

|u|q∗ dvg

) q
q∗

≤

≤ K(n, q)q
(∫

M
|∇gu|q dvg

)
+B0(p, n, g)

(∫
M

|u|p dvg
) q

p

= K(n, q)qλ

∫
M

|u|q∗ dvg ≤
∫
M

|u|q∗ dvg,

since 0 ≤ λ ≤ K(n, q)−q. This implies that ||u||Lq∗ (M) ≥ 1. On the other
hand, we get ||u||Lq∗ (M) ≤ lim inf ||uα||Lq∗ (M) = 1, so that ||u||Lq∗ (M) =

1. Using this information in the inequality above, it follows that λ =

K(n, q)−q and, in particular, u is an extremal function of (1.2) .
The rest of the paper is dedicated to a detailed study of the sequence

(uα) when u = 0 on M . Such a study consists of blow-up analysis and
PDEs estimates to the sequence (uα). By definition of uα, we have

λα =

∫
M

|∇guα|qdvg + αK(n, q)−q

(∫
M

|uα|p dvg
) q

p

.

On the other hand, by (1.2),

1 ≤ K(n, q)q
∫
M

|∇guα|qdvg +B0(p, n, g)

(∫
M

|uα|p dvg
) q

p

.

So, we get

1 ≤ λαK(n, q)q + (B0(p, n, g)− α)

(∫
M

|uα|p dvg
) q

p
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and it readily follows from this inequality that

λα → K(n, q)−q (3.3)

as α → B0(p, n, g). In particular, we have∫
M

|∇guα|q dvg → K(n, q)−q . (3.4)

Note also that

||uα||L∞(M) → +∞ , (3.5)

what can be seen from

1 = ||uα||q
∗

Lq∗ (M)
≤ ||uα||q

∗−q
L∞(M)||uα||

q
Lq(M) .

We let xα ∈ M and µα > 0 be such that

uα(xα) = ||uα||L∞(M) = µ
−n−q

q
α (3.6)

and µα converges to 0 as α → B0(p, n, g).
Let δ0 > 0 be a number less than the injectivity radius of (M, g). For

β > 0 fixed, consider the function Bxα,β : M → R given by

Bxα,β(x) = β
n
q∗
(
1 + (ββ)

q
q−1dg(x, xα)

q
q−1

)− n
q∗

,

where β = (n(n− 2))−1K(n, q)−q.
The blow-up analysis on the sequence (uα) is made in order to estab-

lish the following estimates:

Estimate 1. For each δ0/2 ≤ δα ≤ δ0, we have∫
Bδα (xα)

(
|∇g(uα −Bxα,µ

−1
α
)|q + |uα −Bxα,µ

−1
α
)|q∗
)

dvg → 0

as α → B0(p, n, g).
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Proof. Consider the following rescaling of (uα) defined on the geodesic ball
Bδα(xα):

vα(y) = µ
n
q∗
α uα(expxα(µαy)) , y ∈ Ωα ,

where

Ωα = µ−1
α exp−1

xα
(Bδα(xα)) = µ−1

α Bδα(0)

and expxα(µαy) is an exponential map.
Clearly, vα satisfies

−∆gα,qvα + ηαv
p−1
α = λαv

q∗−1
α in Ωα , (3.7)

where

gα(y) = g(expxα(µαy))

and

ηα = αµ
n− p(n−q)

q
α ||uα||q−p

Lp(M),

with a constant C > 0 independent of α. Remark that the sequence of
metrics (gα) converges to the Euclidean metric ξ on compact subsets of Rn

in the C1-topology. We claim that (ηα) converges to 0 as α → B0(p, n, g).
In fact, from the definition of µα in (3.6), one gets

ηα =
α||uα||qLp(M)

||uα||q
∗−p

L∞(M)||uα||
p
Lp(M)

and

1 =

∫
M

|uα|q
∗
dvg ≤ ||uα||q

∗−p
L∞(M)||uα||

p
Lp(M) ,

so that

ηα ≤ α||uα||qLp(M) → 0

as α → B0(p, n, g).
A simple change of variable furnishes∫

Ωα

vq
∗

α dvgα =

∫
Bα

uq
∗

α dvg
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and ∫
Ωα

|∇gαvα|q dvgα =

∫
Bα

|∇guα|q dvg,

Consequently,

lim sup
α→B0

∫
Ωα

vq
∗

α dvgα ≤ 1 (3.8)

and
lim sup
α→B0

∫
Ωα

|∇gαvα|q dvgα ≤ K(n, q)−q . (3.9)

Since 0 ≤ vα ≤ 1 in Ωα and (gα) converges to the Euclidean metric ξij

in C1
loc(Rn), it follows from standard elliptic estimates that (vα) converges,

modulo a subsequence, to a function v in C1
loc(Rn). Note that v(0) = 1

since vα(0) = 1. Moreover, by (3.4), v satisfies

−∆qv = K(n, q)−qvq
∗−1 in Rn . (3.10)

Besides, by (3.9), for any R > 0,∫
BR

|v|q∗ dy = lim
α→B0

∫
BR

|vα|q
∗
dvgα ≤ 1 . (3.11)

and ∫
BR

|∇v|q dx = lim
α→B0

∫
BR

|∇gαvα|q dvgα ≤ K(n, q)−q, (3.12)

so that v ∈ D1,q(Rn). Multiplying (3.10) by v, integrating by parts and
using the definition of K(n, q), we have

K(n, q)−q

∫
Rn

vq
∗
dx =

∫
Rn

|∇v|q dx ≥ K(n, q)−q

(∫
Rn

|v|q∗ dx

) q
q∗

.

Thus, ||v||Lq∗ (Rn) ≥ 1 and, by (3.11), we get ||v||Lq∗ (Rn) = 1 and
||∇v||Lq(Rn) = K(n, q)−q. Therefore, necessarily v = u0, where u0 was
defined in the introduction.

Independently, for any a, b ∈ R and s ≥ 1, one has

||a+ b|s − |a|s − |b|s| ≤ C(s)
(
|a|s−1|b|+ |a||b|s−1

)
.
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So, choosing s = q∗, a = vα − v and b = v in the inequality above, we
obtain∫

Ωα

|vα − v|q∗ dvgα

≤
∫
Ωα

|vα|q
∗
dvgα −

∫
Ωα

|v|q∗ dvgα +

+C

(∫
Ωα

|vα − v|q∗−1|v| dvgα +

∫
Ωα

|vα − v||v|q∗−1 dvgα

)
≤ o(1) + C

(∫
Ωα

|vα − v|q∗−1|v| dvgα +

∫
Ωα

|vα − v||v|q∗−1 dvgα

)
,

since ||v||Lq∗ (Rn) = 1 and (3.11) clearly implies that both ||vα||Lq∗ (Ωα)
and

||v||Lq∗ (Ωα)
converge to 1 as α → B0(p, n, g).

The remaining right-hand side is easily seen to tend to 0 as α →
B0(p, n, g):∫

Ωα

|vα − v|q∗−1|v| dvgα

=

∫
BR

|vα − v|q∗−1|v| dvgα +

∫
Ωα\BR

|vα − v|q∗−1|v| dvgα

≤
∫
BR

|vα − v|q∗−1|v| dvgα +

+

(∫
Ωα\BR

|vα − v|q∗ dvgα

)n(q−1)+q
nq

(∫
Ωα\BR

|v|q∗ dvgα

) 1
q∗

≤
∫
BR

|vα − v|q∗−1|v| dvgα + C

(∫
Rn\BR

|v|q∗ dx

) 1
q∗

.

By taking R > 0 large, the last integral can be made arbitrarily small,
so that the C1

loc-convergence of (vα) lead to∫
Ωα

|vα − v|q∗−1|v| dvgα → 0 .

Similarly, one easily checks that∫
Ωα

|vα − v||v|q∗−1 dvgα → 0 .
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Therefore,∫
Ωα

|vα − v|q∗ dvgα → 0 as α → B0(p, n, g) .

In order to establish the strong convergence of the gradients, note first
that ∣∣∣∣∫

Ωα

⟨∇gα(vα − v),∇gαv⟩
q
2 dvgα

∣∣∣∣
≤
∫
BR

|∇gα(vα − v)|
q
2 |∇gαv|

q
2 dvgα +

+

(∫
Ωα\BR

|∇gα(vα − v)|q dvgα

) 1
2
(∫

Ωα\BR

|∇gαv|q dvgα

) 1
2

≤
∫
BR

|∇gα(vα − v)|
q
2 |∇gαv|

q
2 dvgα + C

(∫
Ωα\BR

|∇v|q dx

) 1
2

which implies ∫
Ωα

⟨∇gα(vα − v),∇gαv⟩
q
2 dvgα → 0. (3.13)

From simple computations, we have∫
Ωα

|∇gα(vα − v)|2 dvgα =

∫
Ωα

|∇gαvα|2 dvgα −
∫
Ωα

|∇gαv|2 dvgα

−2

∫
Ωα

⟨∇gα(vα − v),∇gαv⟩ dvgα (3.14)

Then, combining (3.12), (3.14) and (A + B)k ≤ 2k−1(Ak + Bk), for
A,B ∈ R+, k ≥ 1 we have∫

Ωα

|∇gα(vα − v)|q dvgα

≤ 2q−1
(∫

Ωα

|∇gαvα|q dvgα +

∫
Ωα

⟨∇gα(vα − v),∇gαv⟩
q
2 dvgα

)
→ 0

from (3.13). Estimate 1 follows after a change of variable.
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As a consequence of Estimate 1, (uα)α possesses only one concentra-
tion point. Indeed, this follows directly from the next estimate.

Estimate 2. For any δ > 0 small enough, we have∫
M\Bδ(xα)

(
|∇guα|q + uq

∗
α

)
dvg → 0 as α → B0(p, n, g).

Proof. Let 0 < δ < δ0. Given ε > 0, by Estimate 1 and a change of
variable, there exists a constant α1 > 0 such that, for any α ≥ α1,∫

Bδ(xα)
|uα|q

∗
dvg ≥

∫
Rn

|v|q∗ dx− ε

4
= 1− ε

4

and ∫
Bδ(xα)

|∇guα|q dvg ≥
∫
Rn

|∇v|q dx− ε

4
= K(n, q)−q − ε

4
.

Using that ||uα||Lq∗ (M) = 1 and (3.4), we find a constant α0 ≥ α1 such
that, for all α ≥ α0,∫

M\Bδ(xα)

(
|∇guα|q + uq

∗
α dvg

)
≤ ε.

Estimate 3. For any δ > 0 small enough,

||uα||L∞(M\Bδ(xα)) → 0 as α → B0(p, n, g).

Proof. By Estimate 2, we have, for any ball Bρ(x) ⊂ M \Bδ(xα),

||uq∗−q
α ||

L
q∗

q∗−q (Bρ(x))
= ||uα||q

∗−q

Lq∗ (Bρ(x))
≤ ||uα||q

∗−q

Lq∗ (M\Bδ(xα))
→ 0 .

So, by De Giorgi-Nash-Moser iterative scheme, we derive

||uα||L∞(Bρ/2(x)) ≤ C||uα||L1(Bρ(x)) ≤ C||uα||L1(M)

for some constant C > 0 independent of α. So, the conclusion follows from
the L1-convergence and the fact that u = 0 on M .
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Let x0 ∈ M be the limit, up to a subsequence, of the sequence (xα).

Estimate 4. For any δ > 0 small enough, we have∫
M\Bg(x0,δ)

upα dvg∫
M upα dvg

→ 0 as α → B0(p, n, g) ,

if either p ∈ (q, q∗) and n ≥ 4 or p = 2 and n ≥ 5 .

Proof. We recall that

−∆quα + αK(n, q)−q||uα||q−p
Lp(M)u

p−1
α = λαu

q∗−1
α . (3.15)

Since B0(p, n, g) > 0, we have

−∆quα ≤ λαu
q∗−1
α ,

so that Estimate 2 and the De Giorgi-Nash-Moser scheme provide a con-
stant C1 > 0, independent of α, such that

||uα||L∞(M\Bg(x0,δ)) ≤ C1||uα||Lp(M) .

Thus, from (3.15)∫
M\Bg(x0,δ)

upα dvg ≤ ||uα||L∞(M\Bg(x0,δ))

∫
M

up−1
α dvg

≤ C1||uα||Lp(M)||uα||
p−q
Lp(M)

∫
M

uq
∗−1

α dvg ,

so that ∫
M\Bg(x0,δ)

upα dvg∫
M upα dvg

≤ C1

∫
M uq

∗−1
α dvg

||uα||q−1
Lp(M)

. (3.16)

If p ≥ q∗ − 1, applying Holder’s inequality in (3.16), we derive∫
M\Bg(x0,δ)

upα dvg∫
M upα dvg

≤ C2||uα||q
∗−q

Lp(M) → 0.
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Otherwise, if p < q∗ − 1, using an interpolated Holder’s inequality, we
get ∫

M\Bg(x0,δ)
upα dvg∫

M upα dvg
≤ C1

∫
M uq

∗−1
α dvg

||uα||Lp(M)

≤ C1

||uα||θ(q
∗−1)

Lp(M) ||uα||(1−θ)(q∗−1)

Lq∗ (M)

||uα||Lp(M)

= C1

||uα||θ(q
∗−1)

Lp(M)

||uα||Lp(M)
,

where
1

q∗ − 1
=

θ

p
+

1− θ

q∗
.

Note that the condition θ(q∗−1) > 1 is equivalent to p > n
n−q . On the

other hand, q ≥ n
n−q for all n ≥ 4 and equality holds only when n = 4.

This ends the proof of Estimate 4.

4 Proof of Theorem 1.2

In this section, we end the proof of the existence of extremal functions
to (1.2) by deriving a contradiction to the fact that the sequence (uα)

converges weakly to 0.
Due to the Estimate 4, we now easily arrive in a contradiction. In the

sequel, some possibly different positive constants independent of α and δ

will be denoted by c. Let 0 < δ < δ0 be a fixed number and consider a
smooth cutoff function η such that 0 ≤ η ≤ 1, η = 1 in Bg(x0, δ/2) and
η = 0 in M \ Bg(x0, δ). Taking φα = ηuα as a test function in the sharp
inequality (1.2), using the identity∫

M
|∇g(ηuα)|q dvg = −

∫
M

ηquα∆quα dvg +

∫
M

|∇gη|quqα dvg,

and the equation (2.2), one arrives at(∫
M

|ηuα|q
∗
dvg

)q/q∗

−
∫
M

ηq|uα|q
∗
dvg
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≤ B0(q, n, g)

∫
M

ηquqα dvg

+

∫
M

|∇gη|quqα dvg − αK(n, q)−q||uα||q−p
p

∫
M

ηqupα dvg

≤ c

∫
Bg(x0,δ)

uqα dvg + cδ

∫
M\Bg(x0,δ)

uqα dvg +

−αK(n, q)−q||uα||q−p
p

∫
Bg(x0,δ/2)

upα dvg.

On the other hand, by Hölder’s inequality,∫
M

ηq|uα|q
∗
dvg ≤

(∫
M

|ηuα|q
∗
dvg

)q/q∗ (∫
M

|uα|q
∗
dvg

)(q∗−q)/q∗

≤
(∫

M
|ηuα|q

∗
dvg

)q/q∗

∫
Bg(x0,δ)

uqα dvg ≤ cδn(p−q)/q

(∫
Bg(x0,δ)

upα dvg

)q/p

and ∫
M\Bg(x0,δ)

uqα dvg ≤ c

(∫
M\Bg(x0,δ)

upα dvg

)q/p

,

so that

0 ≤ cδn(p−q)/q

(∫
Bg(x0,δ)

upα dvg

)q/p

+ cδ

(∫
M\Bg(x0,δ)

upα dvg

)q/p

+

−αK(n, q)−q||uα||q−p
p

∫
Bg(x0,δ/2)

upα dvg.

Dividing both sides of this inequality by ||uα||qp, letting α → B0(p, n, g)

and applying Estimate 4, we clearly achieved the desired contradiction.
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