
Vol. 56, 71–110 ©2023
http://doi.org/10.21711/231766362023/rmc566

Fixed Point Theorems for Hypersequences
and the Foundation of Generalized

Differential Geometry: The Simplified
Algebra

S. O. Juriaans 1 and J. Oliveira2

1University of São Paulo, Rua do Matão 1010, São Paulo, Brazil
2Universidade Federal de Roraima, Roraima, Brazil

Abstract. We lay the foundations of a generalized geometry and
prove a fixed point theorem for hypersequences in this generalized
context. Given a classical riemannian manifold M we prove that it
can be discretely embedded in a generalized manifold M∗ in such a
way that the differential structure of the latter is a natural extension
of the differential structure of the former. Furthermore, if Ω ⊂ Rn

then D′(Ω) is discretely embedded in G(Ω) and the elements of
C∞(Ω) form a grid of equidistant points in G(Ω). Ergo, classical
solutions to differential equations are scarce and association in G(Ω)
is a topological and not an algebraic notion.

Keywords: generalized geometry, generalized analysis, generalized
manifold, generalized fixed point, sharp topology, hypersequence.

2020 Mathematics Subject Classification: Primary 46F30 Sec-

ondary 46T20.

ostanley@usp.br
joselito.oliveira@ufrr.br

71

http://doi.org/10.21711/231766362023/rmc566
https://orcid.org/0000-0002-2605-722X


72 S. O. Juriaans, J. Oliveira,

1 Introduction

The Theory of Colombeau Generalized Functions is a nonlinear The-
ory of Generalized Functions which includes Schwartz’ Theory of Linear
Generalized Functions, i.e., Schwartz Distribution Theory. Colombeau’s
Theory is well documented by now. Excellent textbooks and articles exist
that are pitstops to appreciate and understand the theory and the wide
spectra of applications. We refer the reader to some of these excellent text,
[1, 2, 14, 16, 17, 18, 19, 32, 37, 38, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51,
53, 61, 55, 56, 57, 58, 59, 62, 63, 64, 65], to get the zest of the basics and
relish advanced parts of this theory.

In the Colombeau environments, proving existence for differential equa-
tions involving products of distributions in their data has always leaned
on classical results to guarantee existence. To achieve this, classical ex-
istence results are used, proceeding to prove moderateness and conclude
existence of solutions in the environments of Colombeau Algebras. This
can be highly nontrivial. One of the setbacks is that most tools used are
not intrinsic to these environments. The development of Generalized Dif-
ferential Calculus (see [3, 9]) envisaged the buildout of tools, intrinsic to
the generalized environments, making it possible to pin less faith on the
classical ones.

Let M be an n−dimensional manifold. The idea of linking a generalized
objected M̃c to M was first employed in [41] where a blueprint was given
how to use these objects to solve important problems in General Relativity.
Based on this pivotal idea, in [9], the notion of a generalized manifold was
introduced. The definition is exactly the same as the classical one the
difference being that local charts take values in open subsets of Rn and
differentiability is checked using the Generalized Differential Calculus. In
[3], more details of Generalized Differential Calculus were worked out,
showing that it extends and behaves very similar to classical Calculus and
an example of a generalized manifold, different from M̃c, was also given
(actually it is a subset of M̃c). As far as we know, other examples were not
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given yet and it remained unclear whether M̃c was a generalized manifold
and whether there existed other examples.

A pursue in another direction was the construction of an diffeomor-
phism invariant Colombeau algebra. This was early undertaken in [20, 34]
and was settled in the definite in [40] well afore Generalized Differential
Calculus was proposed. These are top-notch papers which show that the
main obstruction to the construction of such an algebra has a topological
nature: Colombeau algebras are ultrametric spaces which naturally mis-
match with the classically used topologies. This translate into a highly
non-trivial endeavor the creation of an algebra that can be attached to
classical manifolds. The last example given in [40] shows that having such
an algebra does not necessarily make things much easier when applying
the theory to obtain existence of solutions of differential equations having
products of distributions in their data. It is essential to observe that an
algebra of generalized functions that can be attached to a manifold was
also achieved in [60]. Amazingly enough, in this case, technicalities are
not that involved.

In [9], all necessary machinery of Generalized Differential Calculus
(such as the Inverse Mapping Theorem, The Implicit Function Theorem
and others) were proved so that a consistent basis could be laid for a
Generalized Differential Geometry. At first, definitions given and results
obtained are exactly the same as the classical ones but extend the latter in
a non-trivial way. Howbeit, much has yet to be accomplished before this
Generalized Differential Geometry unveils its smoldering potential. The
development of this new Calculus is based on key ideas developed over the
years by all prominent researchers in the field but the decisive ideas are
due to Kuzinger-Oberguggenberger ([38]) and Biagioni-Oberguggenberger-
Scarpalézos ([14, 61]). The topology in use (see [4, 5, 6]) is a slight mod-
ification of the sharp topology introduced by Biagioni-Oberguggenberger
and Scarpalézos (see [14, 61]), yet equivalent to it, is more natural and in
sync with the algebraic structure (see for example [6, 7]) of the Colombeau
algebras. An interesting fact is that, in the sharp topology, Rn embeds as
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a discrete subset of Rn and yet the Generalized Differential Calculus is
a near perfect extension of the Newtonian Differential Calculus (see the
Embedding Theorem in [9]). In particular, Classical Space-Time becomes
a grid of equidistant points in Generalized Space-Time, a possibility that
was raised along time by many physicists and more recently also in [68].
The common distance betwixt grid points could well be glossed as the
Planck length lp or the Plank time tp depending wether we measure space
or time.

Can this discontinuity in classical space-time be perceived experimen-
tally? Or at least, can one be convinced that we do have an issue in this
direction? Since classical space-time is a grid of equidistant points it is
impossible for classical sequences to converge in this new environment.
In particular, it is no longer true that the sequence ( 1n)n∈N converges in
the ring of Colombeau generalized numbers. To remedy this discontinu-
ity is where the notion of hypersequences steps into the picture. These
histories of sequences fill in the spaces between the grid points. The hy-
persequence generated by the classical ( 1n)n∈N is of the form ( 1n)n∈Ñ and
now does converge to zero in the generalized environment. From the point
of view of someone living in generalized environment, classical conver-
gence of a sequence (xn) is equivalent to the existence of a n0 ∈ Ñ such
that xn − xm ∈ V1(0) if n,m > n0 and classically we cannot distinguish
anymore between xn and xm. So classically we only measure upto scale
α = [ε −→ ε], which is the reason for calling α our natural gauge, the lat-
ter being first introduced in [10]. A similar problem occurs when proving
existence of differential equations using classical tools to prove moderate-
ness and existence in environments that are like chalk and cheese, in the
topological sense, compared to the environment where these tools come
from.

The paper is structured as follows. In the next section we recall the
necessary machinery needed to understand the context and prove subse-
quent results. In the third section we prove a fixed point theorem for hy-
persequences, prove that association is a topological and not an algebraic
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concept and that D′(Ω) is discretely embedded in G(Ω) thus proving that
classical functions are extremely rare. In the fourth section we prove that
M̃c is a generalized manifold and devote the last section to examples and
the enumeration of some results in this new generalized geometry. This is
the first of two papers. The second paper is in the context of the full al-
gebra of Colombeau Generalized Functions (see [35]) thus completing the
proposal of this new Generalized Differential Geometry as a roundabout
route to define generalized functions on manifolds.

The notation K, for the ring of Colombeau generalized numbers, was
introduced by Colombeau. However, developments overtime show that it
is more reasonable to use the notation K̃ to denote this ring. Here we
will still be using Colombeau’s original notation to be consistent with the
notation in [3, 4, 5, 9].

This paper was written while the second author held a pos-doc position
at IME-USP, the University of São Paulo-Brazil. The dimension invariance
theorem of section four and some of the examples of the last section are
part of his Ph.D. thesis ([52]) written under the supervision of the first
author.

2 Preliminaries

We shall mainly work over the field R of real numbers but all results
also hold for C. This is the reason why sometimes we use K to denote
either of these fields. One could rightfully ask “why not consider the field
Q ?” The answer is simples: The Colombeau Theory constructed using
R is the same as the Colombeau Theory constructed using Q since real
numbers can be seen as nets of rational numbers. The reason why we end
up with a bigger structure, which is not a field, but is never the less very
interesting, is because we mod out some, but not all, nets converging to
zero. These surviving nets, converging to zero, are the infinitesimals which
inhabit the halos of the elements of the newly formed environments.

Set I =]0, 1], Iη =]0, η], for η ∈]0, 1[ and let α be the identity map
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α : I −→ R, α(ε) = ϵ. We shall denote, once in a while, αn = αn and call
α the standard or natural gauge. Nearly all results in this paper can be
proved for other gauges using the already existing results for these gauges
(see [54, 66]).

A map (also called a net) x : I −→ R is moderate if |x| < αr, for some
r ∈ R, i.e. |x(ε)| < εr, ∀ε ∈ Iη = ]0, η], ∃ η < 1. Denote the set of moderate
maps by EM and by I = {x : x is moderate and |x| < αn,∀n ∈ N}. For
x ∈ EM , denote by V (x) = Sup{r ∈ R : |x| < αr} and set ∥x∥ = e−V (x).
Then I is a radical ideal of the ring EM and setting R := EM

I , we have
that (R, ∥ ∥) is an ultrametric partially ordered topological ring whose
group of units, Inv(R), is open and dense (see [10]). The latter property
is essential in developing the Generalized Differential Calculus ([3, 9]).
This topological ring, (R, ∥ ∥), is called the ring of Colombeau Generalized
(real) numbers. A generalized number x ∈ R is a unit if and only if
|x| > αr for some r ∈ R and it is a non-unit if and only if there exist
a nontrivial idempotent e ∈ B(K) such that e · x = 0 (see [10, 12]). In
particular, a generalized number is either a unit or a zero divisor. The ring
R, contains R as a discrete subfield. Actually, R is a grid of equidistant
points in R. The latter is a partially ordered ring whose maximal ideals
and idempotents have been completely determined (see [9, 10, 12, 64]).
The partial order is not intrinsic but stems from the order of R. This
is maybe the only definition that is not, yet, intrinsic. Distance emerges
from this order and that is why it is important to understand order. In the
references we just mentioned, one finds the following facts: the Jacobson
Radical of R is trivial, its ideals are convex, its Krull dimension is infinite
and it has a minimal prime which is also a maximal ideal. Its Boolean
algebra, B(R), consists of {0, 1} and positive elements each of which is a
characteristic functions of a subset S ⊂ I, such that 0 ∈ S ∩Sc, where the
last two bars stand for topological closure in R. The set of these subsets
is denoted by S and was defined in [10]. Ultrafilters of S parametrize
prime and maximal ideals of K. It also holds that B(R) = B(C) (see [12]).
In particular, the Heaviside function H /∈ B(R), i.e., H2 ̸= H (see [25]).
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Biagioni-Oberguggenberger and Scarpalézos were the first to suggest
the topology, defined above, for R. It came to be known as the sharp topol-
ogy turning R into a complete ultrametric algebra and hence, its topology
is generated by balls. In [4, 5] it was shown that this topology was also
generated by the sets Vr[x] = {y ∈ R : |y−x| < αr}, balls with generalized
numbers as radii , compatible with the ring structure. It is easily seen that
B2r(0) ⊂ Vr[0] ⊂ Br/2(0) if r > 0.

Let Ω ⊂ Rn be an open subset with an exhaustion by relatively
compact subset Ωm ⊂ Ω. Consider nets p = (pε), pε ∈ Ωm(p) ∀ε ∈ Iη,
m(p) ∈ N, such that the net (∥pε∥) ∈ EM . Factoring out nets p for
which also (∥pε∥) ∈ I, give rise to a subset of Rn which is denote by
Ω̃c (see [37, 38]). The notation Ω̃ is used if one does not require the ex-
istence of m(p). The algebra of Colombeau generalized functions G(Ω)
(see [2, 16, 17, 37] for the original definition), defined on the open sub-
set Ω ⊂ Rn, can be viewed as C∞−functions defined on Ω̃c ⊂ Rn and
taking values in R (see [37, 38, 3, 9]). In [9] (see also [3]) the foun-
dation of Colombeau Generalized Calculus is laid and shown that G(Ω)
can be embedded into C∞(Ω̃c,R). In particular, Schwartz space of lin-
ear distributions, D′(Ω) can be seen as infinitely differentiable functions
where differentiability is defined a la Newton. So we have come full circle
from seeing elements of D′(Ω) as linear maps, and hence not undergo-
ing variation, to seeing them as functions undergoing variation (note that,
classically, derivation in D′(Ω) is defined without the use of variation).
An interesting fact is that, in the presence of moderateness, negligibility
only has to be checked at level 0. This is mentioned and proved in sev-
eral references. See, for example, [40, paragraphs after I.Theorem 7.13].
Generalized Differential Calculus allows to give an easy proof of this fact.
In fact, in the presence of moderateness negligibility at level 0 is a state-
ment about point values: If f̂(ε, x) is moderate, then it defines an element
f ∈ C∞(Ω̃c,R). Given x ∈ Ω̃c there exists a compact subset K ⊂ Ω

containing a representative of x. Moderateness at level 0 implies that
∥(f)|K∥∞ = 0 (note that this is exactly the uniformity on K). It fol-
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lows that f(x) = 0, proving that f = 0 in Ω̃c. Generalized Differential
Calculus gives that ∂βf = 0, ∀ β ∈ Nn. Since the Embedding Theorem
[9, Theorem 4.1] tells us that derivations commutes with the embedding,
it follows that f = 0 in G(Ω). So there is no need to check other levels.
The same proof holds for the full algebra and should also work for the
invariant algebra once we have at hand a Generalized Differential Calcu-
lus for the latter. Note however that one must have negligibility at level
0 and not just point values of elements of Ω being zero. To see why,
consider f = xδ ∈ G(R), where δ = [(ρε)], ρ a mollifier. We have that
f(x) = 0,∀x ∈ R. Also, for x0 ∈ R, f(x0α) = x0 · ρ(x0), for φ ∈ D(Ω)

we have that
∫
R
f(x)φ(x)dx = [(

∫
R
(xφ)(x)ρε)] and hence, since (ρε) is a

delta-net,
∫
R
f(x)φ(x)dx = (

∫
R
xφ(x)ρε(x)dx) ≈ (xφ)(0) = 0. This proves

that f ≈ 0 but f ̸= 0. This example also shows an interesting phenom-
ena: f(0) = 0 and thus for x ∈ Vr(0), a small enough sharp neighborhood
of 0, f(x) ∈ V1(0). For classical mathematics (and hence measurements)
f(x) = 0 and thus seemingly does not interfere with physical reality. But
for histories of the form x = x0α, x0 ∈ R we have that f(x) = x0 ·ρ(x0) ∈ R
and thus interfere with physical reality. These “waves” of appearing and
disappearing from physical reality are the source of the turbulence effects
we see in physical reality. And it can be worse. Consider g(x) = fk,
k ∈ N. Then g(0) = 0, g(α) = (ρ(1))k. So if ρ(1) > 1 and k is large, then
these “waves” coming from Vr(0) which we cannot measure, can effect in
a non-trivial way physical reality. Note also that δ(0) = α−1 · ρ(0) is an
infinity we can not measure but it is cancelled out on histories, x0α near
0, giving us a real number, f(x0α) = x0 · ρ(x0) ∈ R, that we can measure.
Even though the history x0α is near 0, the position in physical reality
where we observe the effect can be faraway from 0 (in this case at x0 ∈ R)
and the result of the measurement x0ρ(x0) becomes small as x0 goes to
infinity. So turbulence should be the interaction of elements of B1(0) and
infinities, i.e., elements of norm greater then 1, producing a measurable
but not predictable effect on physical reality. The non-predictability stems
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from the fact that spheres in generalized environments are clopen sets and
classical Euclidean-Space is a grid of equidistant points. Jumps from one
sphere to another sphere occur by multiplying with the αr, r ∈ R, which
form a discrete chain of quantas.

The construction carried out above with Ω ⊂ Rn can also be carried
out with any subset X ⊂ Rn. In fact, consider X with the induced
topology, consider an exhaustion (Xn) of X by relatively compact subsets
and proceed as before. The set obtained in Rn will be denoted by X̃c. We
embed X into X̃c using constant nets p = (pε), pε = x ∈ X, ε ∈ Iη. It is
clear that, in the sharp topology, X is a discrete grid of equidistant points
contained in X̃c. The remarkable thing is that, in case of a submanifold
M of Rn, Generalized Differential Calculus on M̃c will be a generalization
of the Classical Differential Calculus on M , although M is discretely
embedded in M̃c.

Let q be any norm on Rn. Extending it in the obvious way to Rn, we
define for x = (x1, · · · , xn) ∈ Rn, ∥x∥q = q(x) ∈ R and q∥x∥ ∈ R to be the
norm of q(x) as an element of R. If q(x) =

√
x21 + · · ·+ x2n then we write

∥x∥q = ∥x∥2 (see [3, 12]). Since all norms on Rn are equivalent, it is easily
seen that q∥x∥ does not depend on the norm q and thus we shall write it
as ∥x∥.

The positive cone, R+, of R is not an open subset. In fact, let e be
an idempotent and set xn = e− (1− e) ·αn. Then |xn| = e+ (1− e) ·αn.
We clearly have that xn is not in the positive cone but xn −→ e. However
if we let Inv(R)+ = Inv(R) ∩ R+ then we have:

Lemma 2.1. Let Inv(R)+ = Inv(R) ∩ R+.

1. Inv(R)+ is an open subgroup of R.

2. Let t ∈ ˜[0, 1] and x, y ∈ Inv(R)+. Then tx+ (1− t)y ∈ Inv(R)+.

Proof. The fact that Inv(R)+ is a subgroup of R is clear. So let x ∈
Inv(R) ∩ R+. Since x is invertible, there exists αr such that x > αr. If
y ∈ Vr(x) then |y − x| < αr and thus 0 < x− αr < y. On the other hand,
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since Inv(R) is open and {αt : t ∈ R} form a totally ordered set, we
may take r such that Vr(x) ⊂ Inv(R).

To prove the second part, take m > 0 such that αm < min{x, y}.
Then if follows that tx + (1 − t)y ≥ tαm + (1 − t)αm = αm and thus,
tx+ (1− t)y ∈ Inv(R).

The negative cone Inv(R)+ = Inv(R) ∩ R− is also an open subset of
R. It follows that Inv(R) has two connected component which are both
open subsets of R. Moreover, Inv(R)+ ∩ Inv(R)− = ∅ and 0 is in the
topological closure of both Inv(R)+ and Inv(R)−. Both are closed under
addition and interleaven (see the end of this section or [46]).

The lemma shows that there can not exist a continuous curve whose
initial value is negative, its final value is positive and at all other instants
its values are comparable with 0. This is exactly what is needed to define
the notion of orientation on generalized manifolds.

The idea to consider nets of point in Rn was introduced in [32, 37, 38].
This was used in [3] to define the notion of membranes and histories in
Rn. Subsequently, in [46], the notions of internal and strong internal sets
(internal sets are generalization of membranes) were introduced, inspired
also by concepts of nonstandard analysis. In this same paper, ([46]), very
strong and relevant properties involving these notions were proved. For
example, it is proved that strongly internal sets are open subsets of Rn

whereas internal sets are closed subsets of the same space. We will be
using freely the results contained in these references.

Given a net (Aε) in Rn we shall write it also as Aα, being α = [ε → ε]

our natural or standard gauge. For an idempotent e ∈ B(K) we define
eα = [ε → e(ε)ε], meaning that when e(ε) = 0 this index will be omitted.
We also write eAα for the net Aeα, ∂Aα for the net (∂Aε) (the boundary)
and int(U) for the set of interior point of a subset U ⊂ Rn. Given a
net Aα ⊂ Rn of subset of Rn, we denote the membrane, or internal set,
it originates by [Aα] and the strongly internal set it originates by ⟨Aα⟩.
As mentioned above, internal sets are closed in the sharp topology while
strongly internal sets are open in the sharp topology. We say that (Aα) is
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regular if there exists k ∈ N such that at each boundary point Aε we can
inscribe balls of radius εk tangent to ∂Aε and contained in int(Aε) and
another ball of the same radius tangent at the same point but contained
in (int(Aε))

c. As a result, the volume of a regular net is a unit since
vol(Aα) ≥ vol(Vk(0)) = πα2k ∈ Inv(K) (see [3]). For example, this is the
case if the boundaries are compact hyper surfaces whose encompassing
volumes are not shrinking too fast.

Lemma 2.2. Let (Aα) be a net in Rn and U = ⟨Aα⟩ its strong internal
set. Then ∂⟨Aα⟩ = [∂Aα].

Proof. For z ∈ ∂⟨Aα⟩, there exist sequences (zn) ⊂ ⟨Aα⟩ and (pn) ⊂
(⟨Aα⟩)c both converging to z in Kn. Let w = dist(z, [∂Aα]) be the distance
of z to the membrane [∂Aα]. If w = 0 then z ∈ [∂Aα]. If not, then
there exist e ∈ B(K) and t >> k such that e · w > e · αt. In particular,
dist(zε, ∂Aε) > εt ̸= 0 if e(ε) = 1. Hence, for ε such that e(ε) = 1, we have
that either zε ∈ int(Aε) or zε ∈ int((Aε)

c). Consequently, we may write
e = e1+e2, a sum of orthogonal idempotents, such that e1 ·z ∈ e1(int(Aα))

and e2 · z ∈ e2(int(Aα)
c). On the other hand, since pn → z , there exists

n0 such that if n > n0 we have that dist(e1 ·pn, e1 · [(∂Aα)]) > e1 ·α7t. But
since e1 · z ∈ e1 ·∂⟨Aα⟩ this implies that e1 ·pn ∈ ⟨e1 ·Aα⟩, a contradiction,
unless e1 = 0. If so, then revers the roles of zn and pn obtaining another
contradiction. Thus we have that w = 0 and the result is proved.

In case Aα consists of intervals Jε =]aε, bε[⊂ R, uniformly bounded, we
have that ∂⟨Aα⟩ = Interleaven{a, b}, where a = [(aε)] and b = [(bε)]. The
notion of interleaven is defined in [46] which is as follows: the interleaved

of a set X ⊂ Rn is the set of all finite sums
m∑
i=1

ei · xi, with xi ∈ X and

{e1, · · · , em} a complete set of mutually orthogonal idempotents in R, i.e.,

ei · ej = 0 if i ̸= j and
m∑
i=1

ei = 1. We extend the definition of interleaving

allowing that the number of idempotents involved in the sum of the inter-
leaving is countable and not necessarily finite. Interleavings can also be
done with hypersequences and elements of C∞(Ω) (see the next section).
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The expressions entanglement or intertwine express the same idea, since
several points are connected in the same net that cannot be undone since
it is a point in generalized Euclidean-Space. This is actually the way that
new points in generalized Euclidean-Space are created. Observing a point
x corresponds to the creation of the point x · αn, n ∈ Ñ ∪ {∞}, where αn

is defined in the second paragraph of the next section. Hence, observing
is seeing a part of the interleaving x. An observation does not change the
part of the point that it observes if and only if αn is an idempotent.

Consider again f(x) = xδ. The halo(0) = B1(0), or the halo of any
other point, contains information of any subset of Rn via the histories
Rn · αr, r > 0 or, in general Rn · y, y ∈ B1(0) and their interleavings.
In the same way, information of any subset of Rn is contained in the
complement of B1(0) via histories Rn · αr, r < 0. This can also be
seen using the homeomorphisms of Kn like those whose existence are
proved in [10, Theorem 3.3, Theorem 3.4]. The same holds for subsets
of K. We can intertwine the history of points x0 ̸= x1 ∈ R using the
notion of interleaving: x = (x0e1 + x1e2)α, e1 + e2 = 1, the latter being
idempotents. As a result, the measurement, f(x), is also an intertwine:
f(x) = x0ρ(x0)e1+x1ρ(x1)e2 which is what is measured in physical reality.
We proceed to give an interpretation of this measurement in probabilistic
terms.

Consider an intertwine
∑
i
ei · xi. For each idempotent e ∈ B(R) in-

volved in the sum, there exists a set Se ∈ S, (see [10, Definition 4.1]),
such that e = χSe is the characteristic function of Se (see [10, 12]). If
there exists η0 > 0 such that ]0, η0] ∩ Se is measurable, define µ(e) :=

lim
η→0

(
1
η

η∫
0

χSedµ

)
. Since, in an interleaving, the idempotents involved

form a complete set of mutually orthogonal idempotents, it follows that∑
i
µ(ei) = 1. Hence the µ(ei)’s can be seen as probabilities and, being

countable in number, there exists i0 such that µ(ei0) > 0. The interpre-
tation is that whenever µ(ei) > 0 the measurement at the corresponding
point xi is more likely to be obtained because f(xi) will appear with the
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same probability in the resulting measurement (see the example in the pre-
vious paragraph). We say that the entanglement is a complete intertwine
if µ(ei) > 0, ∀ i and is a perfect intertwine if µ(ei) = µ(ej), ∀ i, j. In the
latter case the number of idempotents involved must be finite. Since mea-
surements involve the same generalized function f , the whole history of
measurement is determent and cannot be changed unless the entanglement
is undone. One can let the xi’s in an interleaving take values in disjoint
subsets Xi ⊂ Rn letting the probabilities relate to the sets Xi which, for
example, can be regions in physical reality. In this case, an interleaving
can be seen as a function from x : I −→

⋃
i
Xi. For example, rolling a dice

produces an intertwine x =
6∑

i=1
ei · i, with Xi = {i}, being perfect only if

the dice is honest.

3 A Generalized Fixed Point Theorem

In this section we prove a fixed point theorem which is one more piece of
the Generalized Differential Calculus whose development started in [3, 9].
All the features of this calculus have been extended in [30] to the context
of Robinson-Colombeau rings of generalized numbers which includes the
fields K/M, where M�K is maximal (see [10, 64]).

In the sequel, ideas contained in [29, 42] will be used. Let Ñ ⊂ R be
the set of generalized numbers with a representative in NI and ˜N ∪ {∞}
elements of the form e ·n+(1−e) ·∞, e2 = e, n ∈ Ñ. Another way to view
these elements is to consider EM (N) and factor by the ideal I defined in
the previous section. The elements of Ñ are called hyper natural numbers.
In the same way one can define the ring of hyper integers Z̃. We extend
the notation αn, n ∈ N, introduced in [10], to the case when n ∈ ˜N ∪ {∞}:
if n = [(nε)] then αn = [(εnε)]. We can extend this definition to n ∈ Z̃
as long as the set {nε : ε < 0} is bounded, being obvious the reason
to require this condition. With this notation, idempotents are also of the
form αn, where, in this case, n consists of a string of 0’s and ∞’s.
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A hypersequence is a map x : Ñ −→ G(Ω) and is denoted by (xn). If
x(Ñ) ⊂ K, we say that (xn) converges to L ∈ K if given r > 0, there exists
n0 ∈ Ñ such that if n > n0 then L−xn ∈ Vr(0). Since we are in a Hausdorff
space, limits are unique whenever they exist. Such a hypersequence (xn)

is a Cauchy hypersequence if given r > 0 there exists n0 ∈ Ñ such that if
m,n > n0 then xm − xn ∈ Vr(0). K being a complete metric space, we
have:

Lemma 3.1. Let x = (xn) be a hypersequence. Then x is a convergent
sequence if and only if it is a Cauchy sequence if and only if for each r ∈ R∗

+

there exists n0 ∈ Ñ such that n > m > n0 implies that xn − xm ∈ Vr(0).

The sequence x = ( 1n)n∈N does not converge in K because its elements
form a grid of equidistant points. However, the hypersequence x = ( 1n)n∈Ñ,
converges to 0 ∈ K. In fact, given r > 0, take α−r ≤ n0 = [(⌊ε−r+1.5⌋)] ≤
α−(r+1). If n > n0, we have that 1

n ∈ Vr(0). We also know that
∑
n∈N

1
n

diverges. However if one sums over a countabel subset of Ñ containing a
finite number of elements of norm one then the sum converges, since, in
this setting, a series

∑
n∈N

an converges if and only if an −→ 0.

Let r ∈ ]0, 1[ be fixed and suppose that we want rn ∈ Vt(0), where
n = [(nε)]. For this to occur one must have rnε < εt. From this it follows

that nε > ( −t
| ln(r)|) · ln(ε). Hence we may take nε = 2 ·

⌊
−t

| ln(r)| · ln(ε))
⌋
. Note

that n < α−1 and hence is moderate (actually its norm equals 1). Clearly,
for any m > n we have rm ∈ Vr(0). This proves that the hypersequence
(rn) converges to 0.

Any sequence x̂0 : N −→ K defines a map x̂ : Ñ −→ KI in the
obvious way: x̂n = (ε −→ x̂0nε). If x̂ is moderate then it defines a
hypersequence x. If there exists n0 ∈ Ñ and L ∈ Kas = K + K0 (see
[10]) such that n > n0 implies x(n) − x(n0) ∈ V1(0), then the sequence
(x̂0n)n∈N converges to L0 ∈ K, with L0 ≈ L, in the classical sense, and the
whole history of measuring this convergence is contained in the sentence
"n > n0 implies x(n)− x(n0) ∈ V1(0)". Conversely, if (x0n)n∈N converges
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to the real number L0 and for each ε one choses nε minimal such that
n > nε implies |x̂n − L| < ε then n = [(nε)] must be an element of Ñ if x
were to converge. This shows that a sequence of measurements can have
precision αk0 , for some k0, but not for all k ∈ N. It might be possible to
infer from this if classical space-time is discontinuous (unless we declare
it continuous and stop measuring beyond V1(0)). Since it is not at all
clear that the convergence of x̂0 implies de convergence of x, one might
question the definition of the notion of integral given in [3, 9, 37]. We
shall prove that, at least in this case, limits do exists and are equal. It is
important that this is true if we want that classical theories also hold in
the generalized environment.

Let f ∈ G(Ω) and let [Kε] be a membrane (see [3]). To keep things
simple we suppose that Kε = K is compact for all ε and contained in an
open and relatively compact subset Ωm ⊂ Ω. Note however that the result
obtained also holds for a general membrane. Given a fixed dV ∈ { 1

n , α
r :

r ∈ I, n ∈ Ñ}, consider the partition P of norm dV of K contained in
Ωm, i.e., for each ε ∈ I and dV < 2

µ(Ωm) , Pε has norm dVε ∈ { 1
nε
, εr},

where µ(Ωm) denotes the Lebesgue measure of Ωm. Since K is compact,
there exists x0, x1 ∈ K̃ such that m = f(x0) ≤ f(x) ≤ M = f(x1),∀x ∈
K̃. Let s(f, dV ), S(f, dV ) and S(f, dV, ∗) be, respectively the lower and
upper Riemann sum and any other starred Riemann sum with this dV

as the norm of the partition. Then s(f, n) ≤ S(f, dV, ∗) ≤ S(f, dV ) and
|S(f, dV ) − s(f, dV )| ≤ α−N · µ(Ωm) · dV , where N > 0 is such that
∥(∇f)|K∥∞ ≤ α−N . Choosing dV < αN+r+1 (this is possible because the
hypersequence ( 1n) converges to zero), we have that |S(f, dV )−s(f, dV )| ∈
Vr+1(0) and thus {s(f, dV ), S(f, dV ), S(f, dV, ∗)} ⊂ Vr(

∫
K

f(x)dx), where∫
K

f(x)dx) is as defined in [37, 3, 9]. From this it follows that the classical

and generalized limits are the same and if r = 1 then we already have
that s(f, dV ), and S(f, dV ), S(f, dV, ∗) are all associated to

∫
K

f(x)dx and

thus, in the classical sense, they are all equal. In case we take dV = 1
n

we have a hypersequence and we just proved its convergence. For each
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s(f, dV ), S(f, dV ), S(f, dV, ∗) and
∫
K

f(x)dx) there exists an element c ∈

K̃, for each one of them there exists one such element, so that it is equal
to f(c) · µ(K). If φ ∈ D(Ω) is non-negative, then

∫
K

fφ(x)dx) = f(c) ·∫
K

φ(x)dx, for some c ∈ K̃. In particular, if φ ∈ A0(Ω) (see [2]) is positive,

then
∫
K

fφ(x)dx) = f(c). This is useful when looking at the notion of

association in G(Ω).
Fix k ∈ R∗

+ and, in EM (N), define x̂(n)(ε) = χS(n) · εk, where χS(n) is
the characteristic function of the set S(n) = {(nε)

−1 : ε ∈ I}. If n ∈ N
then S(n) = {n−1} and x̂(n) would be non-zero only when ε = 1

n , having
value 1

nk . If these were measurements or observations, and since we cannot
make infinitely many measurements or observations, the result would be
points of the sequence ( 1

nk )n∈N and hence converge to 0. However, if we
look at the hypersequence x then x(n) = en · αk, where en = [χS(n)] ∈
B(K). Hence x(n) = 0,∀ n ∈ N and ∥x(n) − x(m)∥ = e−k · ∥en − em∥ ∈
{0, e−k}. Consequently, this is not a converging hypersequence.

In the introduction of [33] there are two examples that are worth rewrit-
ing into this context. The first is that of a point mass of weight 1 at a
point x0 on the real axis. Consider the membrane M = V1(x0). Then the
corresponding functionals can be written as

L(φ) =
1

vol(M)

∫
M

φ(x)dx = 2α−1

∫
M

φ(x)dx

By [3, Proposition 3] we have that L(φ) = φ(c), for some c ∈ M . Since
φ ∈ D(R), we have that φ(M) ⊂ B1(φ(x0)) = halo(φ(x0)) and hence
φ(c) ≈ φ(x0), the latter being what measurements give us, but φ(c) ∈ R
being the actual value. We can extend this to φ ∈ G(R)as (which will
be defined yet in this section) by taking M = Vk(x0) such that φ(M) ⊂
B1(φ(x0)).

The other example is that of a dipole at 0 with moment 1. In this case,
the functionals can be written as
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M(φ) = α−1 · (φ(α)− φ(0))

This amounts to φ(α) = φ(0) + M(φ) · α. Expanding around 0 gives us
that M(φ) − φ′(0) ∈ V1(0), i.e., M(φ) ≈ φ′(0), the latter being what we
measure, the actual value being M(φ) ∈ R. Again, this can be extended to
G(R). In both cases, our measurements are the only "real" point in the halo
of the actual values. Howbeit, classically we cannot differentiate among
points in a halo. From the classical point of view, each halo contains only
one point but, as we already saw, they do interfere in physical reality. In
both examples, the measurable effect in physical reality is a product of an
infinity, 2α−1 respectively α−1, and an infinitesimal,

∫
M

φ(x)dx respectively

φ(α)−φ(0), both accredited and coexisting in harmony in this generalized
milieu.

In the generalized environments the history of measurements and of
convergence is captured and not each measurement separately (however
arbitrarily). If the problem lies in the classical mathematical tools that we
use and not in space-time its self, then we hope that these examples help
to convince that the generalized environments, in particular generalized
space-time, are environments that perhaps should be considered. See also
[37, Section 1.6] and the references mentioned therein.

For the reader’s sake, we recall the basics of the sharp topology, or
Biagioni-Oberguggenberg topology (see [61, 14, 4, 5, 6]). Let (Ωm) be
an exhaustion of relatively compact and open subsets of Ω ⊂ Rn. Given
f ∈ G(Ω) and (m, p) ∈ N2, define Vmp := Sup{a ∈ R | ∀β ∈ Nn, |β| ≤
p, ∥∂βf(ε, · )∥Ωm = o(εa), for ε small } and Dmp(f, g) := exp(−Vmp(f̂ −
ĝ)), where “ˆ” stands for representative. The latter are pseudo-ultrametrics
defining the Biagioni-Oberguggenberger sharp topology on G(Ω) (see [1,
Definition 1.9, Proposition 1.10 and 1.11]). This topology is proved to
be equivalent to the topologies given in [4, 5, 6]. As observed in these
references, this topology is metrizible and, with the notation given above,
an ultrametric in G(Ω) is given by
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D(f, g) = sup

{
2 ·Dmm(f, g)

1 +Dmm(f, g)
: m ∈ N

}
.

With the notation of [4, 5, 6], W k
m,r(0) = {f ∈ G(Ω) | |∂βf(x)| ∈

Vr(0), ∀ |β| ≤ k, ∀ x ∈ Ω̃m}, Vr(0) = {x ∈ K : |x| < αr} and
∥∂βf∥β,m := [ε −→ ∥(∂βfε)|Ωm

∥∞]. By [5, Theorem 3.6], the sets W k
m,r(0)

form a filtered basis of the sharp topology of G(Ω).
If f, g ∈ G(Ω) then f ≈ g iff

∫
Ω

(f − g)φdx ∈ K0 and f ∼ g iff∫
Ω

(f − g)φdx = 0 ∈ K, ∀φ ∈ D(Ω) (see [37]). In the latter case, one says

that f and g are test equivalent and in the former case one says that they
are associated. In [10], K0 = {x ∈ K : x ≈ 0} was first formally given a
notation as was Kas = K+K0 (see [37, Definition 1.6.5] where they were
first defined). Here, we introduce the notation G(Ω)0 = {f ∈ G(Ω) : f ≈
0} and G(Ω)as = {f ∈ G(Ω) : ∃ T ∈ D′(Ω), such that f ≈ T}. Clearly,
K0 ⊂ G(Ω)0. Define the halo of f ∈ G(Ω) as halo(f) := f+B1(0) = B1(f),
where B1(0) is the ball {f ∈ G(Ω) : D(f, 0) < 1} ⊂ G(Ω) (see also
[25]). Confusion should not arise between G(Ω)0 and G0(Ω), the original
Colombeau algebra (see [37]). Association in Colombeau algebras has been
presented as an algebraic notion substituting equality in some sense. We
proceed to prove that it is in fact a topological notion and use this to
prove that, in a topological sense, Schwartz generalized functions, and
hence classical solutions of differential equations, are scarce.

Proposition 3.2. Let f, g ∈ G(Ω). Then the following hold.

1. If g ∈ halo(f) then g ≈ f .

2. B1(0) = halo(0) ⊂ G(Ω)0.

3. If ∥f∥m ∈ K0, ∀ m, then f ∈ G(Ω)0.

4. If Im(f) ⊂ K0 then f ∈ G(Ω)0.

5. G(Ω)as = D′(Ω) + G(Ω)0.
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Proof. To prove the first two items, by hypothesis, h := f − g ∈ B1(0).
Since D(h, 0) < 1, it follows that Dmm(h, 0) < 1, ∀m ∈ N and hence there
exists a decreasing sequence ((rm) , rm > 0, ∀ m), such that Vmm(h) =

rm > 0,∀m ∈ N. Consequently, h ∈
⋂

m∈N,
Wm

m,rm . In particular, h(x) ∈

Vrm(0),∀x ∈ Ω̃m, i.e., |h(x)| < αrm ,∀x ∈ Ω̃m. Let φ ∈ D(Ω) and m ∈ N
be such that supp(φ) ⊂ Ωm; then |

∫
Ω

hφdx| = |
∫

Ωm

hφdx| ≤ αrm · ∥φ∥∞ ·

µ(Ωm). Hence
∫
Ω

hφdx ∈ K0.

If φ ∈ D(Ω) then there exists m such that supp(φ) ⊂ Ωm. Hence
|
∫
Ω

f(x)φ(x)dx| = |
∫

Ωm

f(x)φ(x)dx| ≤ ∥f∥m · ∥φ∥∞ · µ(Ωm) ∈ K0, proving

the third item.
To prove the fourth item, use an appropriate Riemann sum, as was

shown to exist in the examples preceding the proposition, and the fact
that K0 is a ring. It also follows by the previous item. The fifth item is
an obvious statement.

If f ≈ 0 then for each x0 ∈ Ω and each Br(x0) ⊂ Ω we have that there
exists cr ∈ B̃r(x0) such that f(cr) ∈ K0. This follows from the observation
at the end of the paragraph about Riemann sums.

In [9] it was proved that Rn is a discrete subset of Rn and that if
r ∈ K∗ and x ∈ K then ∥rx∥ = ∥x∥. Our next results state that the same
is true for D′(Ω) and C∞(Ω). The first part of the next corollary is in fact
nothing more than a topological interpretation of [37, Proposition 1.6.3]
and [37, Proposition 1.7.28]. The second part looks at the building blocks
of G(Ω) and equate them with the building blocks of K.

Corollary 3.3. Let Ω ⊂ Rn be an open subset. The embedding of D′(Ω)

in G(Ω) is a discrete embedding. Moreover, if h ∈ C∞(Ω)∗ and f ∈ G(Ω)
then ∥hf∥ = ∥f∥.

Proof. Since the embedding is linear, we just have to prove discreteness
at the origin. Let f ∈ B1(0) ∩ D′(Ω). By the previous proposition, f ≈ 0

and hence, by [37, Proposition 1.6.3], f = 0. The proof of the second part
is straightforward.
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Since g ≈ f if g ∈ halo(f), it follows that uniqueness of solutions and
association can be seen as statements about halos. That is, the weaker
notion of equality called association is a topological notion! Equality is
an algebraic notion! Elements of G(Ω) that are associated are indistin-
guishable one from another from the classical point of view (See also [37,
Section 1.6]). An element of G(Ω), not in the halo of any point of D′(Ω),
is called a vampier in [37]: it has no distributional shadow. Note however
that it can be that, multiplying it with an e ∈ B(R) it has a shadow,
even infinitely many and thus, it can flaunt omnipresence (see the notion
of intertwine or of support in the next section). This shows that the con-
struction of Ω̃c starting from Ω is the same as the construction of G(Ω)
starting from D(Ω). All that is classical becomes discrete in the gener-
alized environments. Once again, no sequence converging in D′(Ω) can
converge in G(Ω) and, classically, measuring convergence is stopped at the
sets Wm

p,1! Again, it appears that one has to call upon hypersequences to
fix this.

That being so, even in the Colombeau Algebras there is just one notion
of equality, i.e., the classical one! Association is not equality in any sense
but a topological statement and test equivalent looks more like classical
equality but is not. In fact, once again, let f = xδ, q ∈ N and let the
delta-net be induced by the mollifier ρ. Then

∫
Ω

fεφdx = ε·
∫
Ω

zρ(z)φ(εz)dz

= ε ·
∫
Ω

zρ(z)[φ(εz) − φ(0)]dz = εq

(q−1)! ·
∫
Ω

zρ(z)φ(θ · εz)dz = o(εq). This

proves that
∫
Ω fφdx = 0 ∈ K and thus, f ∼ 0 but f ̸= 0. For this

f , f(x) = 0, ∀ x ∈ R but it is not true that it is zero uniformly on
compact subset of R, i.e., it is not negligible at level zero and even more,
f /∈ W 0

m,r(0) with r > 0.

There should be no strangeness in the fact that f(x) = xδ is identically
zero on R but is not in R̃c. Recall that R forms a grid of equidistant
points in R and thus f = 0 on a discrete grid with no accumulation
points. However, f ′(x) = δ + xδ′ is not necessarily identically zero in R
because f ′(0) = ρ(0) · α−1. For comparison, g(x) = sin(πx), x ∈ Z, is
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identically zero, but g′(x) = πcos(πx), x ∈ Z, is not.
In case of K, nets of K are its building blocks and one knows that

K embeds as a grid of equidistant points into K. In case of G(Ω), the
building blocks are nets of elements of C∞(Ω) (see also [2, 14, 17, 37]
about how to construct intrinsically D′(Ω) starting with the embedding of
C∞(Ω)). Hence the following results should not come as a surprise (see
also [12, Theorem 5.8]).

Corollary 3.4. The elements of C∞(Ω) form a grid of equidistant points
in G(Ω). In particular, G(Ω) is a fractal.

Proof. Since C∞(Ω) is diagonally embedded it follows that Vmp = 0, ∀m, p.
By [10, Lemma 3.6], it follows that the inductive dimension dim(G(Ω)) =
∞ and, being an ultrametric space, Ind(G(Ω)) = 0. Consequently, G(Ω)
is a fractal.

Given a net of maps (Tε) and n = [(nε)] ∈ Ñ, we denote by Tn the
net (Tnε

ε ) acting on nets f = (fε) as Tn(f) = (Tnε
ε (fε)). Suppose that

Tn is well defined in G(Ω), with Ω ⊂ Rn an open subset, and denote
by T the net when n = 1. Let A ⊂ G(Ω) be a closed subspace and
suppose that the restriction T|A : A −→ A. The map T : A −→ A
is said to be a contraction if there exist L ∈ R∗

+, λ ∈]0, 1[ such that
L < λ and |T (f) − T (g)|(x) ≤ L · |f − g|(x). It easily follows that
|Tn(f)−Tn(g)|(x) ≤ Ln · |f − g|(x) ≤ λn · |f − g|(x). Our interest is when
the hypersequence (Tn(f)) converges in G(Ω). We look at some examples
inspired by the classical analog.

Let Ω ⊂ Rn be an open subset, L ∈ R+ and x0 ∈ Ω̃c. Define A =

{f ∈ G(Ω) : |f(x) − x0| ≤ L, x ∈ Ω̃c} and consider it with the induced
sharp topology. Then A is a closed subset of G(Ω). In fact, let (fn) be a
Cauchy sequence in A. Since G(Ω) is complete (see [4, 5, 6]), fn −→ f ,
for some f , and thus xn := |fn(x) − x0| −→ |f(x) − x0| =: a. Since xn

converges to a, for each r > 0 there exists n0 such that if n > n0 then
a − xn ∈ Vr(0) and thus |a − xn| < αr. Hence a < xn + αr ≤ L + αr. It
follows that a ≤ L, i.e., f ∈ A, thus proving that A is a closed subset of
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G(Ω). We did not use the fact that L ∈ R but the reason why it appears
here is that when considering some differential equations, compositions of
generalized maps is necessary. In [9] it was shown that this results in the
classical composition of maps. Since domains of generalized functions are
Ω̃c, the real bound L will guarantee that compositions of maps are allowed.
Consequently, if f ∈ A then |f(x)| ≤ L + |x0| proving that ∥f∥ ≤ 1, i.e.,
A ⊂ B1(0).

Suppose that for each ε ∈ I we have a map Tε : Aε −→ Aε, with
Aε = {h ∈ C(Ω,R) : |h(x) − x0ε| < L}, which is a contraction with
Lipschitz constant Kε < λ ∈ ]0, 1[, the latter being independent of ε. It
is clear that with these settings Tn, with n ∈ Ñ , is a well defined and
continuous map in G(Ω) and Tn+m = Tn ◦ Tm, n,m ∈ Ñ . In particular,
Tn+1 = T ◦ Tn, observing that 1 must be seen as an element of Ñ .

Another classical situation is the following. Let Ω ⊂ Rn be open and

relatively compact. For each ε ∈ I, let Tε(x)(t) = x0ε+
t∫

t0ε

h(s, x(s))ds, t ∈

Ω, h ∈ C∞(Rn+1) and Aε = C(Ω,Rn) (see [22, 23] and [24, Theorem
3.1]). In this case, there exists n0ε ∈ N, such that Tn0ε

ε is a contraction
with Lipschitz constant Kε ≤ λ < 1, the latter being real and fixed. If
n0 := [(n0ε)], then define T = [(Tn0ε

ε )] and thus reducing it to the case of
the previous paragraph, a classical argument.

Theorem 3.5 (The Generalized Fixed Point Theorem). Let Ω ⊂
RN , A ⊂ G(Ω)∩B1(0) a close subset. For each ε ∈ I, let Aε = C∞(Ω)∩A,
initial conditions taken for that specific ε, and (Tε) a net of functionals
from Aε to its self. If there exists k ∈ Ñ such that each T kε

ε is Lipschitz
with Lipschitz constant Kε < λ ∈ ]0, 1[, then T = (T kε

ε ) is well defined,
continuous and has a unique fixed point x̃ ∈ A.

Proof. The proof uses what was already discussed and also freely facts
about the topology.

Choose any x ∈ A and consider the hypersequence (Tn(x)). Given r >

0 and m ∈ N, choose n0 ∈ Ñ such that λn0 · α−1 ∈ V4mNr(0) = V4Nr1(0),
where r1 = 4N(m−1)r. If n, s > n0 then, writing n = n0 + k, s = n0 + l,
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we have that |Tn(x) − T s(x)|(t) ≤ λn0 · |T k(x) − T l(x)|(t) ≤ λn0 · α−1 ∈
V4Nr1(0). Setting F (t) = (T k(x) − T l(x))(t), with t ∈ Ωm, we have that
F ∈ B1(0) ∩ W 0

m,4Nr1
(0) and hence |F ′′(t)| ≤ α−0.5r1 . Without loss of

generality, we may considering N = 1, obtaining, since Ω̃m is open, F (t+

α2r1)−F (t) = F ′(t) ·α2r1+ F ′′(c)
2 ·α4r1 and thus |F ′(t)| =

∣∣∣∣F (t+α2r1 )−F (t)
α2r1

+

F ′′(c)
−2 ·α2r1

∣∣∣∣ ≤ 2α4r1

α2r1
+ α−0.5r1

2 ·α2r1 < αr1 . This proves that F ∈ W 1
m,r1(0) =

W 1
m,4m−1r(0). By induction, we have that F ∈ Wm

m,r(0). This proves that
(Tn(x)) is a Cauchy hypersequence and hence converges. Since Tn+1 =

T ◦ Tn and T is continuous, the limit is a fixed point of T .

In case compositions of maps are not involved, the theorem still holds
if A ⊂ BR(0), R > 1 (It always holds since estimates are made in Ω̃m).
Together with the other tools, it makes the Generalized Differential Cal-
culus developed in [3, 9] (see also [26]) a useful tool to generalize most
classical results. For example, one can prove the local, and hence the
global, existence of geodesics in M̃c (see the next section). Let’s formalize
the argument used in the last part of the proof of the theorem since it is
a useful tool to be considered in Generalized Analysis.

Definition 3.6. The Down Sequencing Argument
Let f ∈ G(Ω), with Ω ⊂ Rn. If f ∈ W 0

m,r(0) with r > 0 and p0 ∈ Nn then
f ∈ W

|p0|
m,s (0), where s = 4−n|p0| · r, i.e., W 0

m,r(0) ⊂ W
|p0|
m,s (0).

Using the DSA, another proof of a fact already mentioned can be
given: If f is moderate and negligible at level 0, then f is negligible.
This can be considered a statement about rigidity. In fact, such an f ∈
W 0

m,r, ∀ m, r > 0 and hence DSA gives what was claimed. In other
words

⋂
r>0

W 0
m,r = {0}, showing that these sets serve as a basis for the

sharp topology. Let’s consider the example that inspired the Generalized
Fixed Point Theorem. Consider the following equation from [39, 40].

ẍ(t) = f(x(t))δ(t) + h(t), x(−1) = x0, ẋ(−1) = ẋ0
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with h, f ∈ C∞(R) and δ the Dirac function. This is a typical differential
equations from Physics and Engineering having a product of distributions
in its data and does not allow the use of classical tools to obtain a solu-
tion. Let b > 0, C > 0 a positive constant limiting the L1 norm of the

δ−net, M :=
1∫

−2

1∫
−2

|h(r)|drds, L := b + M + |ẋ0| + ∥f∥ · C and 1 + a =

min{ b
C·∥f∥+|ẋ0| ,

1
2CK , 2}, where K is a Lipschitz constant of f on a com-

pact subset of R containing Ω = ]− 1− a
2 ,

a
2 [. The norm ∥f∥ is also taken

over the same compact subset. Let A = {x = (x1, · · · , xn) ∈ C∞(Ω̃c, R̃n) :

xi ∈ G(Ω) and |x(t) − x0| ≤ L}. Since C∞(Ω̃c, R̃n) ∼= (C∞(Ω̃c, R̃))n we
have that A ⊂ (G(Ω))n and the latter is a complete metric space (see
[4, 5, 6]). From what we already discussed, it follows that A is a closed sub-
space of a complete algebra. Define Aε accordingly and let Tε be defined in

Aε by Tε(x)(t) = x0ε+ẋ0(t+1)+
∫ t
−1

∫ s
−1 f(x(r))ρε(r)drds+

1∫
−1

s∫
−1

h(r)drds.

We have that |Tε(x)(t) − x0ε| = |ẋ0ε(t + 1) +
∫ t
−1

∫ s
−1 f(x(r))ρε(r)drds +

t∫
−1

s∫
−1

h(r)drds| ≤ |ẋ0ε| · (|t|+ 1)

+
∫ t
−1

∫ s
−1 |f(x(r))ρε(r)|drds +

t∫
−1

s∫
−1

|h(r)|drds ≤ |ẋ0ε| · (2 + a) + (2 +

a) · ∥f∥ · C + M = |ẋ0ε| + M + (1 + a)(|ẋ0ε| + ∥f∥ · C) ≤ |ẋ0ε| +

M + b + ∥f∥ · C) = L. It is also Lipschitz: |Tε(x)(t) − Tε(x̃)(t)| =

|
∫ t
−1

∫ s
−1(f(x(r)) − f(x̃(t)))ρε(t)drds| ≤ ∥f∥ · KC · (2 + a) · |x(t) − x̃(t)|

≤ 2∥f∥C · (1 + a) · K|x(t) − x̃(t)| ≤ K|x(t) − x̃(t)|. It follows that the
T they define is Lipschitz and hence well defined and continuous in G(Ω).
The first part shows that T maps A into itself. Hence we are in the setting
of the Generalized Fixed Point Theorem. We have a Lipschitz map and
the corresponding hypersequence has a fixed point which is a solution for
the system.

Supposing h = 0, expand δ at collision time t = 0 and chose the
mollifier such that ρ(0) = 1. The equation to be solved is

ẍ(t) = f(x(t))α−1, x(−1) = x0, ẋ(−1) = ẋ0
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Its solution is obtained just as in the classical case but using General-
ized Differential Calculus. Albeit, the solution might not be a Colombeau
generalized function since it might only be defined on a membrane. This
happens because the Theory of Generalized Differential Calculus strictly
contains the Theory of Colombeau Generalized Functions (see [3] for an
explicit example). What classically is perceived as a singularity, might not
be the case in the generalized environments.

4 Generalized Manifolds

In this section, α will stand for an index and not for our standard
gauge defined in the previous section. In [9] the definition of a generalized
manifold was given and proved that each such manifold had a maximal
G−atlas. These manifolds were denoted short by G−manifolds and the
atlas by G−atlas. In case the underlying field is R, we have a real gener-
alized manifold and in case the underlying field is C we have a complex
generalized manifold. The topology in Rn is the sharp topology and dif-
ferentiability is in the sense of Generalized Differential Calculus ([3, 9]).
Other notions such as diffeomorphism and continuity are those defined in
[3, 4, 5, 9].

Definition 4.1. Let M be a non-void set. A G-atlas of dimension n and
class C∞ of M is a family A = {(Uλ, φλ)}λ∈Λ verifying the following
conditions:

1. For every λ ∈ Λ the map φλ : Uλ −→ Rn is a bijection of the open
subset ∅ ≠ Uλ ⊂ M onto the open subset φλ(Uλ) ⊂ Rn.

2. M =
⋃
λ∈Λ

Uλ

3. For every pair α, β ∈ Λ, with Uα,β = Uα ∩ Uβ ̸= ∅, the subsets
φα(Uα,β) and φβ(Uα,β) are open contained in Rn such that φβ ◦φ−1

α :

φα(Uαβ) −→ φβ(Uα,β) is a diffeomorphism of class C∞.
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• The pair (Uλ, φλ) is denominated a local chart (or coordinate system)
of A.

• If U ⊂ M and φ : U −→ u(U) is a homeomorphism of U , where
φ(U) is an open set of Rn, the pair (U , φ) is said to be compatible
with A if for each pair (Uλ, φλ) ∈ A with Wλ = U ∩ Uλ ̸= ∅ we have
that φ ◦ φ−1

λ : φλ(Wλ) −→ φ(Wλ) is a diffeomorphism of class C∞,
where φλ(Wλ) and φ(Wλ) are open subsets of Rn.

A Generalized Manifold, or G−manifold, is a set M with a G−atlas
defined on it. A G−manifold M with a maximal G−atlas is called a
G−differential structure of M . If clear from the context, the prefix G
will be omitted. The topology on the G−manifold is the one that makes
all charts simultaneously homeomorphisms. Our first step in setting the
foundations of the Generalized Differential Geometry is settling the invari-
ance of the dimension of a G−manifold.

Theorem 4.2. [Dimension Invariance [52]] Let (M,A) be a G-manifold.
Then, the dimension of a G-atlas A is constant in each connected compo-
nent of M .

Proof. Suppose there are two intersecting local charts (Uα, ϕα) and (Uβ, ϕβ)

belonging to the G-atlas A = {(Uα, ϕα)}α∈Λ, such that ϕα(Uα) ⊂ Rm, and
ϕβ(Uβ) ⊂ Rn. If Uα,β = Uα ∩ Uβ ̸= ∅, then we have that ϕβ ◦ ϕ−1

α :

ϕα(Uαβ) −→ ϕβ(Uαβ) is a diffeomorphism and therefore its differential in
a point p ∈ ϕα(Uαβ), D(ϕβ ◦ ϕ−1

α )(p) : Rm −→ Rn, is a R−isomorphism of
R−modules. Since R is a commutative ring with unity, it follows from a
result of [13] that n = m.

Let A = {(Uα, ϕα), α ∈Λ}, be an altlas of a C∞ n-dimensional con-
nected submanifold M of RN . Suppose that for each α ∈ Λ we have that
ϕα(Uα) = Ω0 = Br(0) ⊂ Rn, the open ball of fixed radius r > 0 centered
at the origin. Denote by M̃c the subset of R̃N

c ⊂ RN constructed from M

(see the previous sections). We saw that M is discretely embedded in M̃c

as constants nets. Recall from [9] that R̃N
c ⊂ B1(0), the ball of radius 1



Fixed Point Theorem and Generalized Geometry 97

centered at the origin and that the image of RN under this map is a grid
of equidistant points. We denote by Λ̃ the set of maps from I =]0, 1] into
Λ and, for λ ∈ Λ̃, we denote by

Uλ = the strongly internal set ⟨Uλ(ε)⟩ contained in R̃N
c

ϕλ = (ϕλ(ε))ε∈I

ϕλ : Uλ −→ R̃n
c , defined by ϕλ([(pε)]) = [(ϕλ(ε)(pε))]

For p = [(pε)] ∈ M̃c, consider the set {q ∈ M : ∃ εn → 0, pεn →
q}. Algebraically this can be written as: Given q0 ∈ Rn, we have that
q0 ∈ {q ∈ M : ∃ εn → 0, pεn → q} if and only if there exists e ∈ B(R)
such that e · p ≈ e · q0 (extending the notion of association to Kn in the
obvious way). This is a compact subset of M to which we shall refer as
the support of the point p and denote it by supp(p). It follows that there
exists a complete set of orthogonal idempotents {ex : x ∈ supp(p)}, such
that

p =
∑

x∈supp(p)

ex · p, with ex · p ≈ ex · x

For example, if p = [(pε)] = [(sin(1ε ))] then supp(p) = [−1, 1]. On the
other hand, if p ∈ B1(0) then supp(p) = {0}. Although supp(p) might
be uncountable, nevertheless the sum above is well defined and can be
thought of as a history of events: multiplying by idempotents one sees its
behavior along a specific path. It generalizes the concept of interleaving.
The support of elements belonging to a halo of a point in Rn consists of
only that single point.

Proposition 4.3. Suppose that for each α ∈ Λ the map α and its inverse
are classical Lipschitz functions with respect to the norms of RN and Rn.
Then the following hold.
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1. The topology of M̃c is induced by the topology of Rn.

2. If λ ∈ Λ̃ has finite range then Uλ is an open subset of M̃c.

3. ⟨Ω0⟩ is an open subset of R̃n
c

4. If λ ∈ Λ̃ has finite range then ϕλ : Uλ −→ ⟨Ω0⟩ ⊂ R̃n is a isometry
w.r.t to the sharp topologies of Rn and RN .

5. M̃c =
⋃
λ∈Λ̃

Uλ, with λ of finite range.

6. If λ1, λ2 ∈ Λ̃ are of finite range and Uλ1,λ2 := Uλ1 ∩ Uλ2 ̸= ∅ then
ϕλ2 ◦ ϕ

−1
λ1

is a C∞ diffeomorphism on its domain ϕλ1(Uλ1,λ2).

Proof. Let p = [(pε)] ∈ M̃c. Since supp(p) is compact, there exist a finite
number of α ∈ Λ such that supp(p) is contained in the union of the
corresponding Uα’s. Let δ be a Lebesgue number of this covering and
choose a finite number of qi ∈ supp(p) such that supp(p) ⊂

⋃
i
Bδ1(qi),

with δ1 = δ
2 . Starting with q1, define λ(ε) = αq1 ∈ Λ, where αq1 is such

that Bδ1(q1) ⊂ Uαq1
and pε ∈ Bδ1(q1).

For λ(ε) not yet defined, continue defining λ(ε) = αq2 ∈ Λ, where αq2

is such that Bδ1(q2) ⊂ Uαq2
and pε ∈ Bδ1(q2). Since there are a finite

number of qi’s, this process ends in a finite number of steps. If λ is not
defined on I then there exists a sequence (εn), converging to 0, with
pεn → q ∈ supp(p). Since the balls Bδ1(qi) cover supp(p), there exists a
n0 such that n > n0 implies that pεn is in the ball Bδ(qi0), say. But this
is a contradiction, since, for these ε’s, λ(ε) was already defined. Hence,
we defined a λ ∈ Λ̃ such that pε ∈ Uλ(ε), ε ∈ I and the distance to the
boundary is bigger than δ

2 . It follows that p ∈ Uλ, with λ being of finite
range.

For each λ(ε) there exists an open subset Uλ(ε) ⊂ RN such that Uλ(ε) =

M ∩Uλ(ε). Setting Uλ = ⟨Uλ(ε)⟩, we have that Uλ = M̃c∩Uλ, with Uλ an
open subset of RN , proving that M̃c has the induced topology. The fact
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that strongly internal sets are open can be found in [46]. This settles the
proof of the first three and the fifth items.

To finish the proof, we prove the forth and sixth items. We first prove
that ϕλ is well defined. In fact, since local charts and their inverses are
classical Lipschitz functions, and the λ’s are of finite range, it follows easily
that ∥p− q∥ = ∥ϕλ(p)− ϕλ(q)∥, i.e., the ϕα’s are isometries considered as
maps from a subset of R̃N to a subset of R̃n. From this it follows that
if dist(p, (Uλ)

c) is an invertible then dist(ϕα(p), (⟨Ω0⟩)c) is an invertible,
thus proving that ϕλ is well defined and its image is in Uλ. Surjectivity,
injectivity and continuity are now obvious. The map resulting from a
change of coordinates, is a homeomorphism that stems from a net whose
elements are all infinitely differentiable taking value in a bounded subset
of Rn. Hence it originates a diffeomorphism.

The condition that all charts have the same image is not necessary. We
could just suppose that there exists r > 0 such that Br(0) ⊂ Rn contains
all of them. The (Uλ, ϕλ) are called local charts of M̃c. If λ is constant
then Uλ is called a principal chart.

Theorem 4.4. Let M be a submanifold of RN of dimension n, and sup-
pose that its local charts and their inverses are classical Lipschitz functions
with respect to the norms of RN and Rn. Then (M̃c,A), A = {(Uλ, ϕλ) :

λ ∈ Λ̃ of finite range} is a generalized submanifold of RN of codimension
N − n containing M as a discrete subset. Moreover, each local chart is
an isometry in the sharp topologies and the geometry of M̃c extends in a
natural way the geometry of M .

Proof. Only the last part of the theorem needs to be proved. To see this, we
use Lemma A.1 of [66] which state that for each compact subset of K ⊂ M

its Riemannian metric satisfies a ∥p − q∥ ≤ distM (p, q) ≤ C · ∥p − q∥, for
some C > 0, p, q ∈ K and distM the Riemannian metric of M . This
implies that local charts are isometries.

Using Whitney’s Embedding Theorem, the above theorem extends to
abstract manifolds.
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5 Differential Functions on G−manifold

A one dimensional G−manifold shall be referred to as a curve. This
definition agrees with the notion of a history given in [9], only now we
parametrize the history. If M is an n−dimensional G−manifold and p ∈
M then the tangent vectors and space at p are defined just as in the
classical way (see [52]). The tangent space we shall also denote by TpM .
Furthermore, it is easily proved that TpM is a free R−module which is
R−isomorphic to Rn.

As in the classical case, one defines the tangent bundle of M and
denote it by TM . It is easily seen that if M is a classical n-dimensional
manifold then (̃TM)c = TM̃c is a G−manifold of dimension n2.

Given another G−manifold N , define a differential function between
M and N using the same classical definition. In case N = R we call
a differentiable function a scaler field and if N = Rn, with n > 1, then
we call such a map a vector valued map, being a vector field if also the
dimension of M equals n.

The notions of an immersion and an embedding are defined completely
analogous as in classical geometry. Using the Chain rule of Colombeau
Generalized Calculus it follows easily that composition of differentiable
maps between G−manifolds also satisfy the Chain Rule (see [52]). We
recall a Linear Algebra results (see [32]).

Lemma 5.1. Let A : Rn −→ Rn be a R−linear map. Then A is injective
if and only if it is surjective if and only if det(A) ∈ Inv(R).

We sum up, without proofs, some of the most classical theorems that
also hold for G−manifolds. Some of the proofs rely on the previous lemma
and the fact that Inv(R) is open (see [52]).

Theorem 5.2. Let M1,M2 and M3 be G-manifolds. If f : M1 −→ M2 and
g : M2 −→ M3 are differentiable applications at p ∈ M1 and f(p) ∈ M2,
respectively, then g ◦ f : M1 −→ M3 is differentiable at p and D(g ◦ f)p =
(Dg)f(p) ◦Dfp.
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Theorem 5.3. Let M1 and M2 be n-dimensional G-manifolds and f :

M1 −→ M2 a map of class C∞, such that for p0 ∈ M1 we have that Dfp0 :

Tp0M1 −→ Tf(p0)M2, is an isomorphism. Then f is a local diffeomorphism
of class C∞.

Theorem 5.4. Let f : M −→ N be an immersion at p of class C∞, where
M and N are G-manifolds of dimension m and n, respectively. Then there
exist local coordinate systems around p and f(p), such that

f(x1, ..., xm) = (x1, ..., xm, 0, ..., 0).

Theorem 5.5. If f : M −→ N is an generalized embedding, then f(M)

is an G-submanifold of N .

Definition 5.6. Let f : Ω̃c ⊂ Rn −→ Rm be a differentiable map, where
Ω is an open subset of Rn. A point a ∈ Rm is called a regular value of f
if for each x ∈ f−1(a) the derivative f ′(x) : Rn → Rm is surjective.

Theorem 5.7. Let Ω be an open subset of Rm ×Rn and f : Ω̃c −→ Rn be
a application of class C∞, where Ω̃c ⊂ Rm ×Rn. If a ∈ Im(f) is a regular
value of f , then:

1. f−1(a) is an m−dimensional G-submanifold of Rm × Rn.

2. For each p ∈ f−1(a), we have that Tp(f
−1(a)) = ker(f

′
(p)).

Let’s look at some examples of G−manifolds.

EXAMPLES

1. Consider M = Graf(f), where f : Ω ⊂ Rn −→ R, a C∞−function
with bounded first derivate. Denote by ϕ : M −→ Ω the projection
ϕ(p) = x, where p = (x, f(x)) ∈ M . If q = (y, f(y)) ∈ M then
∥ϕ(p)− ϕ(q)∥ = ∥x− y∥ < ∥p− q∥. On the other hand

∥ϕ−1(x)− ϕ−1(y)∥2 = ∥(x, f(x))− (y, f(y))∥2 = ∥x− y∥2 + |f(x)−
f(y)|2 ≤ ∥x− y∥2 + ∥∇f(p0)∥ · ∥x− y∥)2 ≤ (1 + C) · ∥x− y∥2

This proves that the conditions of Proposition 4.3 are satisfied and
thus M̃c is a G−submanifold of Rn+1.
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2. Let M ⊂ Rn be a codimension one submanifold with an atlas whose
elements are graphs. Then, by Theorem 3 of the previous section,
we have that M̃c is a G−submanifold of Rn+1. Hence, this is true if
M is a m−dimensional surface of Rn. In particular, this holds if M
is the pre image of a regular value of a C∞ differentiable function
f : Rn −→ R.

3. Let M = Sn
r ⊂ Rn be an n−dimensional sphere of radius r. It can be

parametrized by graphs such that derivates of the functions involved
are bounded. Hence, by the previous example, we have that M̃c is
a G−submanifold of Rn+1. One can cover M just with two local
charts but this can not be done with M̃c. This example inspired
the construction of the non principal charts and the notion of the
support of a generalized point seen in the previous section.

4. The sphere S = S1(0) contained in Rn is a generalized manifold
whose local charts do not come from subsets of Rn. In fact, S is an
open subset of Rn because given x ∈ S and y ∈ B1(0) we have that
∥x + y∥ = max{∥x∥, ∥y∥} = 1, since ∥x∥ = 1 > ∥y∥. Consequently,
we can take local charts to be the identity map with domain B1(x).
Since these balls are either equal or disjoint, it follows that they form
an atlas for S.

5. Let f ∈ G(Ω) with Ω ⊂ Rn. We know (see [9]) that f can be viewed
as a differentiable map Ω̃c −→ R and its differential at each point is
a R−linear map from Rn to R. A value a ∈ Im(f) is said to be a
regular value of f if for each x ∈ f−1(a) we have that Df is surjective.
This only happens if, writing ∇f(x) = (z1, · · · , zn), the ideal in R
generated by z1, · · · , zn equals R. In particular, this is the case if
∥∇f(x)∥22 ∈ Inv(R). If a is a regular value of f set M = f−1(a).
We assert that M is a submanifold of Rn. In fact, just like in the
classical case, we can use the Implicit Function Theorem (see [3]) to
prove that at every point M is locally a graph over a subset of Ω̃c.
The standard classical argument still holds to complete the assertion.
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An example of such a function is f(x) = ∥x∥22 and the value in
question is a = 1. In this case we have that ∥∇f(x)∥22 = 4∥x∥22 =

4 ∈ Inv(R).

6. The halo of any point in Kn is a generalized manifold which is not
classical. In [9] an example of a function f ̸≡ 0 is given such that
f ′ ≡ 0. This function is f(x) = α−2 ln(∥x∥) which is not a Colombeau
generalized function. This f is constant on spheres SR(0) and the
only point where it is not locally constant is x0 = 0⃗. This f is
easily modified such that it is of class Ck. Since the origin is the
only points where such spheres accumulate, and spheres are clopen,
we have that Graf(f)−{⃗0} is a generalized manifold but Graf(f)

is not a generalized manifold.
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