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Abstract. In this paper is provided a proof, using a technique
based on energy methods, of the continuity of bounded solutions
for the advection-diffusion equations ut + (b(x, t)uk+1)x = µ(t)uxx

∀x ∈ R, t > 0, with initial data u(·, 0) = u0 ∈ L1(R) ∩ L∞(R).
In respect of the arbitrary advective speed term, it is only assumed
that b(x, t) is limited. Also, some known results about existence of
solutions of this problem are revised and a discussion of some open
problems is presented .
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1 Introduction

Consider the following initial value problem

ut + (b(x, t)uk+1)x = µ(t)uxx ∀x ∈ R, t > 0,

u(·, 0) = u0 ∈ L1(R) ∩ L∞(R), (1.1)
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for some positive function µ(t) ∈ C0([0,∞)) and k ≥ 0 constant. Here b

is an arbitrary continuously differentiable advection fields satisfying

b(·, t) ∈ L∞
loc([0,∞), L∞(R)) ∀x ∈ R, t ≥ 0, (1.2)

that is, |b(x, t)| < B(t) ∀x ∈ R and t ≥ 0 for some B ∈ C0[0,∞).
The main objective of this work is to emphasize some known results

about existence of solutions of (1.1), prove the continuity of bounded so-
lutions to this initial value problem in Lq norm, and discuss some open
problems for this equation. Here, by a bounded solution of (1.1) - (1.2)
in [0, T∗), for some T∗ < ∞, we mean u(·, t) ∈ L∞

loc([0, T∗), L
∞(R)) that

solves the equation (1.1) in the classical sense and satisfies u(·, t) → u(·, 0)
in L1

loc(R), as t → 0.
Equations as (1.1) that combines effects of the advective and diffusive

terms have been widely studied due to their applications in several areas
[2, 3, 5, 8, 9, 10, 12, 14, 15].

We start observing that, if k = 1 and the function b is constant in
the problem (1.1), the Hopf-Cole transformation transforms the nonlinear
Burger’s equation in the linear heat equation associated, thus obtaining an
explicit solution for it [7]. The Burger’s equation is a simplified version of
the Navier-Stokes equation and it has been used to model gas dynamics and
traffic flow as one of the simplest nonlinear model equation for analyzing
combined effect of nonlinear advection and diffusion. In this work, we
allow the advective term to explicitly depends on x. This detail makes the
analysis more interesting and the asymptotic behaviour of solutions and
their properties difficult to describe [2, 8].

Before presenting the result of this work, some comments of what is
known about the existence of solutions will be discussed. For the local
(in time) existence of solutions to the problem (1.1) - (1.2), see e.g. [11],
[13], Ch. 7. When b does not explicitly depend on x or, more generally,
when b depends on x with ∂b(x, t)/∂x ≥ 0 for all x ∈ R and t ≥ 0, and
k = 0 in (1.1), it has already been proven that for each 1 ≤ p0 ≤ p ≤ ∞,
∥u(·, t)∥Lp(R) is monotonically decreasing on t, and ∥u(·, t)∥L∞(R) ≤ C(p0)
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∥u(·, t)∥Lp0 (R)t
−1/2p0 . In this case, the solutions will not only be defined

for all time, but they will also decay as t goes to infinity, [1, 6, 3, 12].
Besides that, the global existence of solutions to the problem (1.1) with
k = 0 and b = b(x, t) limited (not assuming ∂b(x, t)/∂x ≥ 0), was proved
in [2]. Moreover, in a recent work [15], the global existence for solutions
of (1.1) - (1.2) with 0 ≤ k < 1/n, where n is the dimension of the spatial
variable was demonstrated. In [8], for 0 ≤ k < 2, and only assuming that
b(x, t) and ∂b(x, t)/∂x are limited, was proved that any given solution to
problem (1.1) is globally defined. Moreover, it should be noted that the
results presented in [8], up to section 3, are also valid for the problem
defined in Rn, with 0 ≤ k < 2/n in (1.1).

In this paper, following the lines of [2], [3], and [15], supposing that
u(·, t) is a bounded solution to the problem (1.1) and just assuming that
the advection fields b is limited (1.2), we are interested in qualitative prop-
erties, such as derivative regularity and the continuity of u(·, t) on the Lp

norm, for all k ≥ 0, and p ≥ 1. These results are important to obtain
further properties of solutions to the equations considered here or spacial
cases of such equations. It is also relevant to mention that the results
present here are also valid for the problem defined in Rn and the proof is
similar.

This article is organized as follows. In Section 2, we introduce some
definitions, notations and results that will be used in this paper. More-
over, we show that u(·, t) satisfies ∥u(·, t)∥Lp(R) ≤ K(p, t)∥u(·, 0)∥Lp(R), for
p ≥ 1, where K(p, t) is a constant that only depends of p and t and∫ t
t0
µ(τ)

∫
R |ux(·, t)|2dx < ∞. In Section 3, we present the proof that

u(·, t) ∈ C0([0, T ∗), Lp(R)), for all k ≥ 0, p ≥ 1. In Section 4, we list
some open problems related to the problem (1.1).

2 Preliminary Tools

2.1 Cut-off and regularizing functions
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To prove the results present in this paper it will also be necessary
to define some cut-off functions and regularizing functions. Then, given
R > 0, ϵ > 0, let ζR,ϵ ∈ C2(R) be the cut-off function

ζR,ϵ(x) = e−ϵ
√
1+x2 − e−ϵ

√
1+R2 if |x| < R (2.1)

and ζR,ϵ(x) = 0 if |x| ≥ R. Also let R,S > 0 be given, define ζR,S ∈ C2(R)
be a cut-off function satisfying: 0 ≤ ζR,S ≤ 1 everywhere, and

ζR,S =


0 if |x| < R

2
1 if R < |x| < R+ S

0 if |x| > R+ 2S

(2.2)

with |ζ ′R,S(x)| ≤ C/R if |x| < R and |ζ ′R,S(x)| ≤ C/S if R + S < |x| <
R + 2S for some constant C independent of R,S. Finally, giving R > 0,
let

ζR(x) = ζ(x/R), (2.3)

where ζ ∈ C2(R) is such that ζ(x) = 1 if |x| ≤ 1/2, ζ(x) = 0 if |x| > 1,
0 ≤ ζ(x) ≤ 1, ∀x ∈ R. It will be important to note that

|ζ ′R(x)| <
C

R
,C ∈ R ; |ζ ′R(x)| → 0 and ζR(x) → 1 as R → ∞, ∀x ∈ R.

In order to define one regularizing function, we consider a function W ∈
C1(R) such that W ′(v) ≥ 0 ∀ v ∈ R, W (0) = 0 and W (v) = sgn(v),
for |v| ≥ 1. For each δ > 0, we define the regularizing function Wδ(v) =

W
(v
δ

)
. Let Lδ ∈ C2(R) be the regularized absolute value function

Lδ(u) =

∫ u

0
W

(v
δ

)
dv. (2.4)

Observe that

0 ≤ Lδ(u) ≤ |u|, L′
δ(u) ≤ C

|u|
δ
, |L′

δ(u)| ≤ 1, and 0 ≤ L′′
δ (u) ≤

C

δ
,

where C ∈ R and, as δ → 0,

L′
δ(u) → sgn(u), |u|L′′

δ (u) → 0 and Lδ(u) → |u|, uniformly in u.



24 P. L. Guidolin, L. Schütz, J. S. Ziebell

2.2 Fundamental properties

In this subsection, some preliminary required results to ensure our main
result will be presented.

Proposition 2.1. Let u(·, t) ∈ L∞
loc([0, T∗), L

∞(R)) be any given solution
to problem (1.1) under hypothesis (1.2) and let p ≥ 1. Then,

∥u(·, t)∥LP (R) ≤ exp

{
(p− 1)

2
S2k
∞ (t)

∫ t

0

B(τ)2

µ(τ)
dτ

}
∥u(·, 0)∥Lp(R),

for S∞(t) = sup{∥u(·, τ)∥L∞(R), 0 ≤ τ ≤ t}.

Proof. Let 0 < t0 < t < T∗ and consider ζR,ϵ and Lδ(u) defined in (2.1) and
(2.4). Consider p ≥ 1. Then, multiplying equation (1.1) by Φ′

δ(u)ζR,ϵ(x),
for Φδ(u) = Lp

δ(u) and integrating the result in [t0, t] × BR, where BR =

{x ∈ R | |x| < R}, by Fubini’s theorem, integration by parts and Young’s
inequality, letting t0 → 0, δ → 0, and R → ∞ we

∥u(·, t)∥p
LP (R)≤ ∥u(·, 0)∥p

LP (R)+
p(p− 1)

2
S2k
∞ (t)

∫ t

0

B(τ)2

µ(τ)

∫
R
|u(·, 0)|pdxdτ,

where B(t) is given in (1.2).
By Gronwall’s Lemma, we get the result.

Remark 2.2. Note that, if p = 1, ∥u(·, t)∥L1(R) ≤ ∥u(·, 0)∥L1(R).

Proposition 2.3. Let u(·, t) ∈ L∞
loc([0, T∗), L

∞(R)) be any given solution
to problem (1.1) under hypothesis (1.2). Then∫ t

0
µ(τ)

∫
R
|ux(·, τ)|2dxdτ < ∞

for all 0 < t < T∗.

Proof. Let 0 < t0 < t < T∗, and consider the functions ζR(x) defined in
(2.3). Then, multiplying equation (1.1) by 2uζR, integrating the result in
[t0, t] × BR, where BR = {x ∈ R||x| < R}, and applying integration by
parts, we obtain
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∫
BR

ζR(x)u(x, t)
2dx+ 2

∫ t

t0

µ(τ)

∫
BR

ζR(x)u
2
xdxdτ

+ 2

∫ t

t0

µ(τ)

∫
BR

ζ ′R(x)uxudxdτ

≤ 2

∫ t

t0

∫
BR

ζ ′R(x)u
(k+2)bdxdτ + 2

∫ t

t0

∫
BR

ζR(x)|ux||uk+1||b(x, τ)|dxdτ

+

∫
BR

ζR(x)|u(x, t0)|2dx.

From Young’s inequality,∫
BR

ζR(x)u(x, t)
2dx+

∫ t

t0

µ(τ)

∫
BR

ζR(x)|ux(x, τ)|2dxdτ

+ 2

∫ t

t0

µ(τ)

∫
BR

ζ ′R(x)uxudxdτ

≤ 2

∫ t

t0

∫
BR

ζ ′R(x)u
(k+2)bdxdτ +

∫ t

t0

µ(τ)−1

∫
BR

ζR(x)|u|2(k+1)|b|2dxdτ

+

∫
BR

ζR(x)|u(x, t0)|2dx.

Then, by the definitions (2.3), and taking R → ∞, and t0 → 0,

∫
R
|u(x, t)|2dx+

∫ t

0
µ(τ)

∫
R
|ux|2dxdτ ≤

∫
R
|u(x, 0)|2dx

+ S2k
∞ (t)

∫ t

t0

B(τ)2

µ(τ)

∫
R
|u(x, 0)|2dx.

Thereby, ∫ t

0
µ(τ)

∫
R
|ux(·, τ)|2dxdτ < ∞, ∀t ∈ [0, T∗)

as we claim.

Remark 2.4. We also note that is valid∫ t

0
µ(τ)

∫
R
|u(·, τ)|p−2|ux(·, τ)|2dxdτ < ∞,

for p > 2. The proof is in [15].
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3 Main theorem

Theorem 3.1. Let u(·, t) ∈ L∞
loc([0, T∗), L

∞(R)) be any solution of (1.1)
that satisfies (1.2). Then u(·, t) ∈ C0([0, T∗), L

p(R)), for p ≥ 1

Proof. The proof of Theorem 3.1 will first be done for p = 1. Note that is
sufficient to prove that, given ϵ > 0 arbitrary, we can find R = R(ϵ, T ) ≫ 1

in order to have ∥u(·, t)∥L1(|x|>R) < ϵ for all 0 < t ≤ T < T∗. So, let 0 <

T < T∗ be given and take ζR,S ∈ C2(R) as in (2.2). Given 0 < t0 < t ≤ T ,
δ > 0, let Lδ ∈ C2(R) be the regularized absolute value function introduced
in equation (2.4).

Multiplying the pde in (1.1) by L′
δ(u(x, t))ζR,S and integrating the

result in (t0, t)×BR,S , we have

∫ t

t0

∫
BR,S

uτL
′
δ(u)ζR,S(x)dxdτ +

∫ t

t0

∫
BR,S

(b(x, τ)uk+1)x(L
′
δ(u)ζR,S)dxdτ

=

∫ t

t0

µ(τ)

∫
BR,S

uxxL
′
δ(u)ζR,Sdxdτ,

where BR,S = {x ∈ R : R/2 < |x| < R + 2S}. By Fubini’s Theorem and
applying integration by parts,∫

BR,S

Lδ(u(x, t))ζR,S(x)dx+

∫ t

t0

µ(τ)

∫
BR,S

L′′
δ (u)u

2
xζR,Sdxdτ

=

∫
BR,S

Lδ(u(x, t0))ζR,S(x)dx+

∫ t

t0

∫
BR,S

b(x, τ)uk+1L′′
δ (u)uxζR,Sdxdτ

+

∫ t

t0

∫
BR,S

b(x, τ)uk+1L′
δ(u)ζ

′
R,Sdxdτ −

∫ t

t0

µ(τ)

∫
BR,S

L′
δ(u)uxζ

′
R,Sdxdτ.

(3.1)

Applying Young’s Inequality in the second term of the right side of
equation (3.1) we obtain∫ t

t0

∫
BR,S

b(x, τ)uk+1L′′
δ (u)uxζR,Sdxdτ ≤ 1

2

∫ t

t0

µ(τ)

∫
BR,S

|L′′
δ (u)|u2xζR,Sdxdτ



Continuity of solutions of advection-diffusion equations in R 27

+
1

2

∫ t

t0

µ(τ)−1B(τ)

∫
BR,S

|L′′
δ (u)||u|2(k+1)ζR,Sdxdτ.

Noting that the second term on the left side of equation (3.1) is positive,
we obtain∫

BR,S

Lδ(u(x, t))ζR,S(x)dx ≤
∫
BR,S

Lδ(u(x, t0))ζR,S(x)dx

+
1

2

∫ t

t0

µ(τ)−1B(τ)

∫
BR,S

|L′′
δ (u)||u|2(k+1)ζR,Sdxdτ

+

∫ t

t0

|B(τ)|2
∫
BR,S

|u|k+1|L′
δ(u)||ζ ′R,S |dxdτ

+

∫ t

t0

µ(τ)

∫
R/2<|x|<R

|L′
δ(u)||ux||ζ ′R,S |dxdτ︸ ︷︷ ︸
J1

+

∫ t

t0

µ(τ)

∫
R+S<|x|<R+2S

|L′
δ(u)||ux||ζ ′R,S |dxdτ︸ ︷︷ ︸

J2

.

Let ϵ > 0 be given. Then, by Young’s inequality, (J1) and (J2) can be
written as

|J1| ≤
ϵ

2

C2

R2

∫ t

t0

µ(τ)Area({x ∈ R :
R

2
≤ |x| ≤ R})dτ

+
ϵ−1

2

∫ t

t0

µ(τ)

∫
R
2
<|x|<R

|ux|2dxdτ

≤ ϵ

2
C2 3π

4

∫ t

t0

µ(τ)dτ +
ϵ−1

2

∫ t

t0

µ(τ)

∫
R
2
<|x|<R

|ux|2dxdτ

and

|J2| ≤
ϵ

2

C2

S2

∫ t

t0

µ(τ)Area(BR,S)dτ +
ϵ−1

2

∫ t

t0

µ(τ)

∫
R+S<|x|<R+2S

|ux|2dxdτ

≤ ϵ

2

C2

S2
π

(
3R2

4
+ 2RS + 3S2

)∫ t

t0

µ(τ)dτ

+
ϵ−1

2

∫ t

t0

µ(τ)

∫
BR,S

|ux|2dxdτ.
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Then, letting t0 → 0, δ → 0 and S → ∞ (in this order) we have

∫
|x|>R

|u(x, t)|dx ≤
∫
|x|>R/2

|u0|dx+
ϵ−1

2

∫ t

0
µ(τ)

∫
R
2
≤|x|≤R

|ux|2dxdτ

+
ϵ

2
C
∫ t

t0

µ(τ)dτ,

where C is a constant.

Therefore, as u0 ∈ L∞(R), by (1.2) and Propositions 2.1 and 2.3, there
exists R > 0 sufficiently large (depending on ϵ, T ) so that

∫
|x|>R

|u(x, t)|dx ≤ ϵ

(
2 +

C
2

∫ t

0
µ(τ)dτ

)

for all 0 < τ ≤ t. As ϵ can be taking arbitrary small, u ∈ C0([0, T∗), L
1(R)).

Now, multiplying the pde in (1.1) by Φ′
δ(u)ζR,S , where Φ(u) = Lδ(u)

p,
and following the same steps as above, by Proposition 2.1 and Remark
2.4, we obtain that u ∈ C0([0, T∗), L

p(R)), for p > 1, and the proof is now
complete.

4 Open questions

We close our discussion of problem (1.1) with some open questions:

1. Is it possible to guarantee global existence for solutions of the pro-
blem (1.1) when k ≥ 2?

2. For which k ≥ 1

n
it is possible to guarantee global existence for

solutions of the problem (1.1) in Rn just assuming that the |b(x, t)| <
B(t).

We believe that the previous questions may play an important role in the
continuation of the research in this area.
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