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Abstract. In this note we aim to present an existence result for
radial solutions to a Schrödinger-Bopp-Podolsky system in the whole
space under the constraint of energy. In particular the problem is
depending on a parameter and we ask if, given a priori energy level,
for some value of he parameter there is a solution of the system whose
energy is the given value. The result is presented in [10] so here just
the main ideas are presented, referring the reader to the mentioned
paper for all the details and proof.
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1 Introduction

Recently a new kind of elliptic problem appeared in the mathematical
literature which considers a variant of the more classical and more studied
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Schrödinger-Poisson system. In fact in [3] the authors introduced the
following system{

−∆u+ ωu+ µϕu = |u|p−2u in R3,

−∆ϕ+ a2∆2u = 4πu2 in R3,
(1.1)

where p ∈ (2, 6), ω > 0, and a ≥ 0. The first equation is a Schödinger
type equation for the modulus u : R3 → R of a stationary wave ψ(x, t) =
u(x)e−iωt under a potential ϕ : R3 → R generated by the same wave
function, as the second equation states: in fact it can be written in the
obvious divergence form −∇

(
∇ϕ+a2∇∆ϕ

)
= 4πu2. Evidently, unless a =

0, ϕ is not the classical electrostatic potential. Indeed this was exactly the
main point of the generalized electromagnetic theory developed by Bopp
and Podolsky in order to obtain a better description, than the Maxwell
electromagnetic theory, of some physical phenomena.

In this paper we do not aim to enter in this physical detail, for which
we refer the reader to [3] where a physical and mathematical motivation
and approach to the above system is given. We are just interested here in
showing existence of solutions for the above system under suitable condi-
tion which were never considered before in the literature. For recent results
on this kind of physical system we refer the reader to [1, 4, 8, 11, 12].

We first recall that in [3] the existence of a solution has been proved
when p ∈ (2, 3), ω > 0, and a ≥ 0. We look here for radial solutions
u ∈ H1

r (R3) of (1.1). Let ∥ · ∥ be given by ∥u∥2 = ∥∇u∥22 + ω∥u∥22, and

Dr =
{
ϕ ∈ D1,2

r (R3) : ∆ϕ ∈ L2
r(R3)

}
.

It is known that for every u ∈ H1
r (R3), there exists a unique ϕu ∈ Dr

solving the second equation in (1.1), see [3]. Moreover, critical points of
the functional Φµ : H1

r (R3) → R defined by

Φµ(u) =
1

2

∫
R3

|∇u|2 + ω

2

∫
R3

|u|2 + µ

4

∫
R3

ϕuu
2 − 1

p

∫
R3

|u|p, (1.2)

are classical solutions of (1.1).
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The main result states that for suitable values c of energy, a priori fixed,
there are two family of solutions (µ−n,c, un,c) and (µ+n,c, vn,c) with n ∈ N.
More precisely

Theorem 1.1. Let p ∈ (2, 3), ω > 0, and a ≥ 0. There exists c∗ > 0 such
that:

1. For any fixed c < c∗ there exist infinitely many (µ−n,c, un,c) ∈ (0,∞)×
H1

r (R3)\{0} such that Φµ−
n,c

(un,c) = c and Φ′
µ−
n,c

(un,c) = 0, i.e., un,c
are weak solutions of (1.1) with µ = µ−n,c, having energy c, for every
n. Moreover:

(a) {µ−n,c} is a non-increasing sequence, lim
n→+∞

µ−n,c = 0 and ∥un,c∥ →
+∞ as n→ +∞, so (0,+∞) is a bifurcation point.

(b) If c < 0 and µ > µ−1,c then (1.1) has no radial weak solution
having energy c.

2. For any fixed c ∈ (0, c∗) there exist infinitely many (µ+n,c, vn,c) ∈
R×H1

r (R3) \ {0} such that Φµ+
n,c

(vn,c) = c and Φ′
µ+
n,c

(vn,c) = 0, i.e.,

vn,c are weak solutions of (1.1) with µ = µ+n,c, having energy c, for
every n. Moreover:

(a) {µ+n,c} is a non-increasing sequence, lim
n→+∞

µ+n,c = −∞ and
vn,c ⇀ 0 as n→ +∞.

(b) µ+n,c < µ−n,c for every n.

Moreover the maps c 7→ µ±n,c enjoy the following behavior:

Theorem 1.2. Under the conditions of Theorem 1.1 the following prop-
erties hold for every fixed n ∈ N (see Figure 1.1):

1. The map c 7→ µ−n,c is continuous and non-decreasing in (−∞, c∗),
and lim

c→−∞
µ−n,c = 0.
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2. The map c 7→ µ+n,c is continuous and non-decreasing in (0, c∗), and
lim
c→0+

µ+n,c = −∞.

3. For every µ ∈ (0, µ−n,0) the problem (1.1) has at least n pairs of radial
solutions with negative energy.

4. For every µ < µ+n,0 the problem (1.1) has at least n pairs of radial
solutions with positive energy.

µ

Energy

0

c∗

∄

∄

µ−1,cµ−2,cµ−n,c

µ+1,c

µ+2,c

µ+n,c

∄ •

•

•

•
•
•

Figure 1.1: Energy curves for (1.1)

In the case a = 0 this result should be compared with [2, Theorem 3.1],
where the authors show the existence of multiple solutions with positive
and negative energy for small values of the parameter µ. Moreover when
a > 0 Theorem 1.2 improves [3, Theorem 1.1] where the existence of a
nontrivial solution at a positive energy level is proved for small values of
µ.

The structure of the paper is the following. In the next Section we
give the idea of the general theory which permits to have existence of
solutions for problems where the constraint is the prescribed energy. In
the subsequent Section, we show that it is possible to applies these ideas
to the functional defined in (1.2).
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2 General theory for abstract functionals

Many problems in nonlinear pdes can be formulated in terms of varia-
tional equations, namely

Φ′(u) = 0, (2.1)

where Φ′ is the Fréchet derivative of a certain functional Φ defined on a
suitable function space X. Φ is called energy functional and the previous
equation is the related Euler-Lagrange equation.

In this context the Critical Point Theory has a major role since it gives
conditions to guarantee that a functional has critical points, then giving
solutions of a certain equation.

In general these equations are often coupled to some additional con-
straint on u (e.g. a sign constraint u > 0 or a mass constraint ∥u∥ = m)
and a huge bibliography is available on this subject.

We revise in this note how prove the existence of solutions for (2.1)
under the constraint, namely, the level (or energy) constraint Φ(u) = c,
with c ∈ R. Of course for a single functional Φ is quite improbable that
given a priori value c it is a critical value. For this reason we deal here
with a family of functionals Φµ with µ ∈ R: we ask if, given c ∈ R, at least
one functional of the family has a critical point to the level c. It is clear
then that a solution is a pair: the critical point u and the parameter µ
which selects the functional that has u as critical point at the given level
c.

In general this method applies for a family of functionals of type

Φµ := I1 − µI2,

where µ ∈ R, I1, I2 ∈ C1(X), and X is Banach space which is assumed
to be infinite-dimensional, uniformly convex, and equipped with ∥ · ∥ ∈
C1(X \ {0}).

To this aim, consider the abstract problem

Φ′
µ(u) = 0, Φµ(u) = c ∈ R, (2.2)
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in the unknowns (µ, u) ∈ R×X\{0}. The general strategy is to analyse the
nonlinear generalized Rayleigh quotient, introduced by Y. Ilyasov [6]. As
a byproduct, we obtain te structure of the solution set of (2.2), considered
with respect to µ and c:

S := {(µ, c) ∈ R2 : Φµ has a critical point at the level c}.

Let us note that some preliminary results on (2.2) can be found in [7] and
[9], where the case c = 0 has been treated.

We shall see that there exist infinitely many pairs (µn,c,±un,c) solving
(2.2). This result, which is proved via the Ljusternik-Schnirelman theory,
will be established not only for a single value of c, but for c lying in an
open interval I ⊂ R. Thus it makes sense to study the behaviour of µn,c
and un,c with respect to c ∈ I. In many cases the values µn,c depend
continuously on c, so that letting c vary we shall obtain a family of energy
curves {(µn,c, c); c ∈ I}n∈N. The properties of these energy curves will give
also informations about the existence of solutions for the unconstrained
problem Φ′

µ(u) = 0 (without the restriction on the energy) and then will
give bifurcation and multiplicity results for the problem.

Assume that I2(u) ̸= 0 for every u ∈ X \ {0} (which is the case also in
many elliptic problems), and observe that

Φµ(u) = c ⇐⇒ µ = µ(c, u) :=
I1(u)− c

I2(u)
. (2.3)

A simple computation gives

∂µ

∂u
(c, u) =

Φ′
µ(c,u)(u)

I2(u)
, ∀u ∈ X \ {0}.

Here ∂µ
∂u (c, u) denotes the Fréchet derivative of the functional u 7→ µ(c, u).

Then we have:

Φ′
µ(u) = 0, Φµ(u) = c ⇐⇒ µ = µ(c, u),

∂µ

∂u
(c, u) = 0,

i.e. solving (2.2) is reduced to find critical points (and critical values) of
the functional u 7→ µ(c, u). If we set K(c) the set of critical values of µ(c, ·),
we get a sufficient and necessary condition for the solvability of (2.2):
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Theorem 2.1. For a given c ∈ R the problem (2.2) has a solution (µ, u) if,
and only if, µ ∈ K(c) and u is the associated critical point. In particular,
if u 7→ µ(c, u) has a ground state (or least energy) level GS(c) then (2.2)
has no solution for µ < GS(c).

To find critical points (and critical levels) of µ(c, ·), we consider the
fibering map associated to the functional u 7→ µ(c, u), namely, the real-
valued function ψc,u given by

ψc,u(t) := µ(c, tu) =
I1(tu)− c

I2(tu)
, t > 0 (2.4)

for any fixed (c, u) ∈ R×X \ {0}. We assume that

(A) There exists an open set I ⊂ R such that:

1. the map (c, u, t) 7→ ψ′
c,u(t) belongs to C1(I ×X \{0}× (0,∞));

2. for every (c, u) ∈ I × X \ {0} the map ψc,u has exactly one
local minimizer t+(c, u) > 0 of Morse type or for every (c, u) ∈
I × X \ {0} the map ψc,u has exactly one local maximizer
t−(c, u) > 0 of Morse type.

It should be noted that both possibilities in (2) can occur, as we shall
see. For simplicity, assume for the moment that the first one occurs (the
other case is similar), and set t(c, u) := t+(c, u). We introduce the reduced
functional Λ ∈ C1(I ×X \ {0}) given by

Λ(c, u) := ψc,u(t(c, u)) = µ(c, t(c, u)u). (2.5)

It is easy to see that, for any c ∈ I the functional u 7→ Λ(c, u) is 0-
homogeneous, so we can restrict to find its critical point on I × S, where
S is the unit sphere in X.

If we assume that I1, I2 are even, also µ(c, ·), t(c, ·) and Λ(c, ·) are
even. In order to apply the Ljusternick-Schnirelmann theory, let us recall
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that given a nonempty symmetric and closed set F ⊂ S, the Krasnoselskii
genus of F is given by

γ(F ) := inf{n ∈ N : ∃h : F → Rn \ {0} odd and continuous}.

For every n ∈ N we set

Fn := {F ⊂ S : F is compact, symmetric, and γ(F ) ≥ n}. (2.6)

We shall assume the following condition, which contains two alternatives
in accordance with the behavior of u 7→ Λ̃(c, u):

(B) The functional u 7→ Λ̃(c, u) is bounded from below (respect. from
above) and satisfies the Palais-Smale condition at the level µn,c :=

inf
F∈Fn

sup
u∈F

Λ(c, u) (respect. at the level µn,c := sup
F∈Fn

inf
u∈F

Λ(c, u)) for

every n ∈ N.

Recall, by definition, that the functional u 7→ Λ̃(c, u) satisfies the
Palais-Smale condition at the level µ if any sequence {uk} ⊂ S such that
Λ̃(c, uk) → µ and ∂Λ̃

∂u (c, uk) → 0 has a convergent subsequence.
The main result is the following.

Theorem 2.2. Suppose that (A) holds and let c ∈ I.

1. Assume that t(c, u) is the only critical point of ψc,u, for every u ∈
X \ {0}. If u 7→ Λ(c, u) is bounded from below (respect. above) and
µ < µ1,c = inf

u∈X\{0}
Λ(c, u) (respect. µ > µ1,c = sup

u∈X\{0}
Λ(c, u)) then

there exists no u ∈ X \ {0} such that

Φ′
µ(u) = 0 and Φµ(u) = c.

2. If (B) holds then there exist infinitely many un,c ∈ X \ {0} such that

Φ′
µn,c(±un,c) = 0 and Φµn,c(±un,c) = c ∀n ∈ N.
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If, in addition, Λ(c, wn) → +∞ whenever wn ⇀ 0 in X, then
µn,c → +∞ as n→ +∞.

Remark 2.3. From the definition of µn,c we see that if (B) holds with u 7→
Λ(c, u) bounded from below (respect. above) then {µn,c} is nondecreasing
(respect. nonincreasing). Moreover, in the second case we also have µn,c =

− inf
F∈Fn

sup
u∈F

(−Λ(c, u)), as well as µn,c =

(
inf

F∈Fn
sup
u∈F

(Λ(c, u))−1

)−1

if, in

addition, Λ(c, u) is positive on S. These characterizations will provide
us at least two possible behaviors for {µn,c} as n → +∞: µn,c → 0 or
µn,c → −∞, cf. Theorem 1.1 below.

µ1,c µk,c µn,c

∄
· · · → +∞

Figure 2.1: The sequence {µn,c} provided by Theorem 2.2.

2.1 Energy curves

Then the study of µn,c with respect to c is given. The following condi-
tions on Λ shall provide the continuity of c 7→ µn,c, which gives rise to the
family of energy curves {(µn,c, c); c ∈ I}n∈N:

(C) For any u ∈ S the map c 7→ Λ(c, u) is decreasing (respect. increasing)
in I. In addition, Λ is bounded from above (respect. below) in any
compact set K ⊂ I×S. Finally, if Λ is bounded in [a, b]×S0 ⊂ I×S
then ∂Λ

∂c is also bounded and away from zero therein.

Conditions to verify (C) are given in [9]
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The following generalized Palais-Smale condition shall be required as
well:

(D) If cn → c ∈ I and {un} ⊂ S are such that {Λ(cn, un)} is bounded
and ∂Λ̃

∂u (cn, un) → 0, then {un} has a convergent subsequence.

The next result combined with the asymptotics of the maps c 7→ µn,c

provide us with some informations on the structure of the set

S := {(µ, c) ∈ R2 : Φµ has a critical point at the level c}.

Theorem 2.4. Assume (A), (B),(C) and (D). Then for every n ∈ N
the map c 7→ µn,c is decreasing (respect. increasing) and locally Lipschitz
continuous in I.

Remark 2.5. The statement of Theorem 2.4 has to be understood in the
sense that

• the map c 7→ µn,c is decreasing if, in (B), the functional u 7→ Λ̃(c, u)

is bounded below and, in (C), the map c 7→ Λ(c, u) is decreasing.

• the map c 7→ µn,c is increasing if, in (B), the functional u 7→ Λ̃(c, u)

is bounded above and, in (C), the map c 7→ Λ(c, u) is increasing.

Remark 2.6. Let us assume that t(c, u) is the only critical point of ψc,u,
for every u ∈ X \ {0}. Then the solution u1,c of (2.2) with µ = µ1,c is the
ground state solution of the problem Φ′

µ(u) = 0. In other words, whenever
achieved, the ground state level of Φµ is the value c such that µ = µ1,c.

The next results are the core of our approach. Throughout this section
we assume that (A) holds. In addition, t(c, u) can be either t+(c, u) or
t−(c, u), i.e. a nondegenerate minimizer or a nondegenerate maximizer of
ψc,u.

Lemma 2.7. The following statements hold.
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1. The map (c, u) 7→ t(c, u) belongs to C1(I ×X \ {0}) and

∂t

∂c
(c, u) =

−I ′2(t(c, u)u)u
I2(t(c, u)u)2ψ′′

c,u(t(c, u))
∀(c, u) ∈ I×X \{0}. (2.7)

In particular, for every u ∈ X \{0}, the map c 7→ t(c, u) is increasing
(respect. decreasing) if ψ′′

c,u(t(c, u))I
′
2(t(c, u)u)u < 0 (respect. > 0);

2. Λ ∈ C1(I ×X \ {0}), and for any v ∈ X

∂Λ

∂u
(c, u)v =

Φ′
Λ(c,u)(t(c, u)u)t(c, u)v

I2(t(c, u)u)
, ∀(c, u) ∈ I ×X \ {0}.

(2.8)
In particular, ∂Λ

∂u (c, u)u = 0 for any (c, u) ∈ I ×X \ {0}. Further-
more,

∂Λ

∂c
(c, u) = − 1

I2(t(c, u)u)
, (2.9)

so that for every u ∈ X \ {0} the map c 7→ Λ(c, u) is decreasing
(respect. increasing) if I2(t(c, u)u) > 0 (respect. < 0).

3. For every c > 0 the maps u 7→ t(c, u),Λ(c, u) are (−1)-homogeneous
and 0-homogeneous, respectively.

Proof. The proof is straightforward: it is based on the Implicit Function
Theorem and suitable computations. All the details are given in [9].

From (2.8) and the definition of Λ(c, u) we derive the following result:

Corollary 2.8. If ∂Λ
∂u (c, u) = 0 then

Φ′
Λ(c,u)(t(c, u)u) = 0

and
ΦΛ(c,u)(t(c, u)u) = c.

Since ∥ · ∥ ∈ C1(X \ {0}), the tangent space to S at u is given by

Tu(S) = {v ∈ X : i′(u)v = 0}
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where i(u) = 1
2∥u∥

2, and then X = Tu(S)⊕ Ru.
The interesting fact now is that the unit sphere S is a natural constraint

for Λ(x, ·).

Proposition 2.9. Let u ∈ S. Then

∂Λ̃

∂u
(c, u) = 0 if and only if

∂Λ

∂u
(c, u) = 0.

Proof. Let u ∈ S be such that ∂Λ̃
∂u (c, u) = 0. From Lemma 2.7 (2) we know

that ∂Λ
∂u (c, u)u = 0. Note that ∂Λ̃

∂u (c, u) = ∂Λ
∂u (c, u)|I×Tu(S). If w ∈ X,

then w = v + su for some v ∈ Tu(S) and s ∈ R, which implies that
∂Λ
∂u (c, u)w = ∂Λ̃

∂u (c, u)v+
∂Λ
∂u (c, u)tu = 0. Since the converse is obvious, the

proof is complete.

2.2 Proofs of Theorem 2.2 and 2.4

Let us give know the proof of the main theorems, which is a conse-
quence of our general hypotheses.

2.2.1 Proof of Theorem 2.2

(1) Take u ∈ X \ {0} such that Φ′
µ(u) = 0 and Φµ(u) = c so that

µ = I1(u)−c
I2(u)

= ψc,u(1).

Equation (2.4) give that ψ′
c,u(1) =

Φ′
ψc,u(1)

(u)u

I2(u)
=

Φ′
µ(u)u

I2(u)
= 0, i.e.

t(c, u) = 1. Thus µ = Λ(c, u) ≥ µ1,c (respect. ≤ µ1,c) as soon as
u 7→ Λ(c, u) is bounded from below (respect. above).

(2) We consider the case where (B) holds with u 7→ Λ̃(c, u) bounded
from below. By the Ljusternick-Schnirelman theorem (see e.g. [5, Corol-
lary 4.17] or [13]) there exist infinitely many un,c ∈ S such that

∂Λ

∂u
(c,±un,c) = 0 and Λ(c,±un,c) = µn,c ∀n ∈ N
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(we used here Proposition 2.9). From Corollary 2.8 and the fact that
u 7→ t(c, u) is even, the sequence vn := t(c, un,c)un,c satisfies

Φµn,c(vn,c) = c and Φ′
µn,c(vn,c) = 0 ∀n ∈ N.

Now, if (B) holds with u 7→ Λ̃(c, u) bounded from above, then we deal with
the functional u 7→ −Λ̃(c, u), which is bounded from below. The details
can be seen in [10].

Finally, the second assertion follows from [9, Lemma A.1].

2.2.2 Proof of Theorem 2.4

Let us fix n. Of course, being c 7→ Λ(c, u) decreasing in I, it is clear
that c 7→ µn,c is nonincreasing in I.

Fixed an interval [a, b] ⊂ I, we show that there exist T > 0 such
that for all c ∈ [a, b] there exists a Palais-Smale sequence {uk,c} of the
functional u 7→ Λ̃(c, u) at the level µn,c satisfying

{uj,c} ⊂ Sa,T := {u ∈ S : Λ(a, u) ≤ T}.

If it were not true, we could find a sequence {ck} ⊂ [a, b] such that for
any k there exists a Palais-Smale sequence {uj,ck} of the functional u 7→
Λ̃(ck, u) at the level µn,ck and {uj,ck} ̸⊂ Sa,T . Thus we can extract a
sequence {uk} ⊂ S such that Λ(ck, uk) is bounded, ∂Λ̃

∂u (ck, uk) → 0 and
Λ(a, uk) → +∞. Since ck → c we infer by (D) that {uk} is compact and
hence the set K = {(a, uk) : k ∈ N} is compact too, and this contradicts
(C). Therefore

µn,c = inf
F∈F̃n

sup
u∈F

Λ(c, u),

where F̃n = {F ∈ Fn : F ⊂ Sa,T }. Now, by the mean value theo-
rem we have |Λ(c2, u) − Λ(c1, u)| = ∂Λ

∂c (θ, u)|c2 − c1|, where θ := θ(u) ∈
(min{c1, c2},max{c1, c2}). Since c 7→ Λ(c, u) is decreasing, we infer that
Λ is bounded in [a, b] × Sa,T , and by (C) there exist M,m > 0 such that
m|c2−c1| ≤ |Λ(c2, u)−Λ(c1, u)| ≤M |c2−c1| for c1, c2 ∈ [a, b] and u ∈ ST .
It follows that m|c2− c1| ≤ |µn,c1 −µn,c2 | ≤M |c2− c1| for c1, c2 ∈ [a, b], so



Critical points at prescribed energy level 17

that c 7→ µn,c is decreasing and locally Lipschitz continuous. In a similar
way we can prove the result whenever c 7→ Λ(c, u) is increasing in I.

3 Application to the Schrödinger-Bopp-Podolsky
functional

The previous general theory can be applied to the functional Φµ given
in (1.2) for the Schrödinger-Bopp-Podolsky system. In fact we can write

Φµ(u) = I1(u)− µI2(u), u ∈ H1
r (R3), µ ∈ R

with

I1(u) =
1

2

∫
R3

|∇u|2 + ω

2

∫
R3

|u|2 − 1

p

∫
R3

|u|p,

and

I2(u) =
µ

4

∫
R3

ϕuu
2.

Straightforward computations show that all the assumptions (A), (B), (C)
and (D) of the previous section are satisfied. The details can be found in
the paper [10].

We are not going to show the details, since are quite technical. Actually
in [10] three class of functional of type I1−µI2 with different assumptions
on I1 and I2 are treated in order to satisfy the general conditions (A),
(B), (C) and (D). Here we just say that the results in Theorem 1.1 and
Theorem 1.2 are obtained by combining the general result of the abstract
Theorem 2.2 and Theorem 2.4 and some straightforward computations
which are typical of the Schrödinger-Bopp-Podolsky system. In fact what
happens for the Schrödinger-Bopp-Podolsky system is that we can apply
the general theory with two intervals I1 = (−∞, 0) and I2 = (0, c∗).

In fact assumption (A) can be used with

• I1 = (−∞, 0), where a unique nondegenerate maximum, t−(c, u), for
ψc,u exists, and
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• I2 = (0, c∗) where a unique nondegenerate minimum , t+(c, u), for
ψc,u exists.

and then obtain the two families of solutions stated in Theorem 1.1.
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