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where 2∗ = 2N/(N−2) is critical Sobolev exponent. Using variational techniques
in combination with changing variables, penalization method and Moser iteration
we prove the existence of positive solutions.
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ear Schrödinger equations, bounded states.
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1 Introduction

In this paper, we are concerned with standing wave solutions of time-
dependent quasilinear Schrödinger equations

i
∂ψ

∂t
= −∆ψ + V̂ (y)ψ − [∆(|ψ|2)]ψ −K(x)

ψ

|ψ|
Hψ(|ψ|, |φ|) in RN ,

i
∂φ

∂t
= −∆φ+ V̂ (y)φ− [∆(|φ|2)]φ−K(x)

φ

|φ|
Hφ(|ψ|, |φ|) in RN ,

where V (y) = V̂ (y)+λ, ψ = eiλtu and φ = eiλtv. This class of systems has
been studied recently due to its importance in various areas, for instance,{

−∆u+ V (x)u− [∆(u2)]u = K(x)Hu(u, v) in RN ,

−∆v + V (x)v − [∆(v2)]v = K(x)Hv(u, v) in RN ,
(S)

where N ≥ 3, V and K are bounded continuous nonnegative functions,
and, the primitive of nonlinearity,H : ([0,∞)×[0,∞)) → R is a p−homoge-

neous function of class C1 with 4 < p < 22∗, where 2∗ is the critical Sobolev
exponent. Such class of systems arise in various branches of mathemati-
cal physics and are related to the existence of solitary wave solutions for
nonlinear Schrödinger equations and Klein-Gordon equations (for details
see for example [7, 22]).

Our study was originated by recent works concerning the study of non-
linear Schrödinger equations by using purely variational approach, see [25].
The semilinear case has also been studied extensively in recent years, see
for example [7, 21, 25] and references therein. For quasilinear Schrödinger
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equations we refer the reader to the recent papers [11, 23] and their ref-
erences for a discussion on the subject. We found some works involving
system, but the most of them used variational methods to study some
class of Schrödinger equations with coercive potentials or potential with
positive infimum, we indicate for further studies which treat concentra-
tion problems, [9, 10, 13, 19], and for studies with constant potentials [5].
Our work has contributed to study some class of systems of quasilinear
Schrödinger equations with bounded potentials, we prove the existence of
positive solutions for this class of system. In order to apply variational
arguments and to overcome the lack of compactness of the associated en-
ergy functional some authors have assumed that the potential is coercive
and bounded away from zero. Here, in this paper our main purpose is
to extend and complement the results in [3, 14] to System (S) with no
coercivity condition and with possible vanishing potential. This class of
problems treated here has several difficulties. First, there is the usual lack
of compactness of the Sobolev embedding, since our domain is a whole
space RN . Second, since we are interested in vanishing and bounded po-
tentials, it is challenging to find an adequate variational framework with
an associated functional energy which critical points correspond to weak
solutions of system quasilinear (S). Although the approach is similar to
that used in the scalar case, for the system case, in addition to the difficulty
in handle the coupled terms, the truncation argument differs completely
from the scalar case.

In the rest of this paper we will assume that V,K : RN → R are
bounded, non negative and continuous functions satisfying:

(V0)

λ1 := inf
(u,v)∈H, ||(u,v)||L=1

||(u, v)||2H > 0,

where

H :=

{
(u, v) ∈ H1(RN )×H1(RN ) :

∫
RN

V (x)
(
u2 + v2

)
dx < +∞

}
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is a Hilbert space when endowed with the inner product〈
(u, v), (ϕ, φ)

〉
H :=

∫
RN

(∇u∇ϕ+ V (x)uϕ+∇v∇φ+ V (x)vφ) dx,

∀ (u, v), (ϕ, φ) ∈ H. And its correspondent norm

||(u, v)||2H :=

∫
RN

(| ∇u |2 +V (x)u2+ | ∇v |2 +V (x)v2) dx, ∀ (u, v) ∈ H.

We consider L := L2(RN )× L2(RN ) equipped with the norm
||(u, v)||2L := ||u||2

L2(RN )
+ ||v||2

L2(RN )
(cf. [27]).

Remark 1.1. We can drop the hypothesis (V0), if the potential V is a
constant.

For the potential V and the function K, firstly, we assume that

(V1) There exist λ > 0 , µ > 0 and R > 0, such that
∃ xo ∈ BR(0) :=

{
x ∈ RN : |x| < R

}
such thatK(xo) > 0 and

0 < µ ≤ K(x) ≤ V (x) ≤ λ ≤ 2p

p− 2
< kp =

2p

p− 4
, for all |x| ≥ R.

We also impose for K, a similar hypothesis used in [3], namely,

(V2) There exist γ > µ and R > 0, such that

sup
|x|≥R

R(N−2)

|x|(N−2)
K(x) ≤ γ.

Let be 2∗ = 2N/(N − 2) the critical Sobolev exponent. It was firstly
proved in an earlier work of J. Liu et al. [23] that 2(2∗) = 4N/(N − 2)

behaves as a critical exponent for the modified Schrödinger equations of
the form

∆u+ V (x)u− u∆(u2) = |u|p−2u in RN ,

in the sense that this equation has no positive solution with
∫
u2|∇u|2 dx <

∞ in H1(RN ) provided that x · ∇V (x) ≥ 0 and p ≥ 2(2∗) (see also [15,16]
for related problems involving critical growth). In order to state our main
result let us introduce the assumptions on the p−homogeneous function
H that we assume throughout this article:
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(H0) There exists 0 < c0 ≤ µp/2 such that

| Hu(u, v) | + | Hv(u, v) | ≤ c0 (u
p−1 + vp−1), ∀u, v ≥ 0.

(H1) Hu(0, 1) = Hv(1, 0) = 0.

(H2) Hu(1, 0) = Hv(0, 1) = 0.

(H3) Huv(u, v) > 0, ∀u, v > 0.

Throughout this paper a positive solution (u, v) of (S) means that
u > 0 and v > 0 in RN . We now state the main result concerning the
existence of solutions of system (S).

Theorem 1.2. Suppose that (V0), (H0)− (H3) are satisfied. Then, there
exists γ∗ > 0 such that (S) has a positive weak solution for any potentials
that satisfy (V1)− (V2) with γ ≤ γ∗.

Remark 1.3. (a) A typical example of p−homogeneous function H

satisfying our hypotheses is given by

H(u, v) = Q(u, v)p/l with p ≥ l and Q(u, v) is a l-homogeneous
function satisfying

Q(u, v) =
∑

αi+βi=l

aiu
αivβi , u, v ≥ 0,

where i ∈ I (#I < ∞), αi ≥ 2, βi ≥ 2, N = 3, 4 ≤ l ≤ p < 22∗

and ai > 0 .

(b) For some R > 0 let V,K be bounded, non negative and continuous
functions which are constants for all |x| ≤ R and such that 0 < µ ≤
K(x) ≤ V (x) ≤ λ < kp :=

2p
p−4 for all |x| ≥ R. It is easy to see that

V,K satisfy assumptions (V0)− (V2).

We use variational approach to get a positive solution to the presented
system (S). Initially, we modify the system S by penalization techniques
to obtain another system (AS) with non linearities which satisfies some
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properties. But the Euler-Lagrange functional associated to (AS) system,
Î, is not well defined in space H. So, it is necessary to make a change
of variable. In subsection 3, we use change of variable to get a suitable
functional J well defined in an appropriate Hilbert space. To conclude the
proof of our main result, in sixth step, we will show that this critical point
of J will eventually be a solution of the original system with the help of an
uniform L∞−estimate which will be obtained via Moser iteration scheme.

2 Variational Setting

2.1 Penalization method: The auxiliary system

Since here we are interested in the existence of positive solutions of (S)
in the sense that each coordinate is a positive function, we redefine the non
linearity H(t, s) as H(t, s) = 0 if t ≤ 0 or s ≤ 0. Using the definition of
the weighted Sobolev space H and the Sobolev embedding theorem, the
following embedding are continuous by condition (V0):

H ↪→ H1(RN )×H1(RN ) ↪→ Lq(RN )× Lq(RN ), 2 ≤ q ≤ 2∗, N ≥ 3.

We are looking for solutions of (S) defined in RN . We observe that formally
(S) is the Euler-Lagrange equation associated to the energy functional

I(u, v) =
1

2

∫
RN

[(
1 + 2|u|2

)
|∇u|2 +

(
1 + 2|v|2

)
|∇v|2

]
dx

+
1

2

∫
RN

V (x)
(
|u|2 + |v|2

)
dx−

∫
RN

K(x)H(u, v) dx,

but the functional I is not well defined in H1(RN ) because of the term
|u|2|∇u|2. Moreover, we have the following difficulties: lack of compactness
because our equation (S) is defined in whole RN , the pontential V is
bounded and can vanish in BR(0). So we will make some modifications
which are appropriated to obtain a new class of problems where we are able
to apply the mountain–pass argument (cf. [4, 24]). For that, first we will
consider a reformulation of the problem following a penalization argument
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used in Alves [2], for the scalar case see an argument introduced by del Pino
and Felmer [12]. Let us denote by χΛ the characteristic function of the
set Λ ⊂ RN . For that, we formulate our problem in the weighted Sobolev
space H and we introduce an auxiliary system modifying the gradient
(Hu(u, v), Hv(u, v)) for a C1 gradient, for which we can guarantee that
Cerami sequences for the associated functional, J , of the auxiliary system
are bounded and that J has a critical point in H.

Remark 2.1. 1. Using condition (H0), we have

|pH(u, v)| ≤ 3c0 (u
p + vp) , ∀u, v ≥ 0. (2.1)

Moreover, if 4 < p < 2∗ we get Hu(u, v), Hv(u, v) ∈ Lp/(p−1)(RN )
for all u, v ∈ Lp(RN ).

2. By assumptions (H1)−(H2), we deduce thatHu(u, v) = Hv(u, v) = 0

if either u = 0 or v = 0. In addition, by the homogeneity of H,

pH(u, v) = uHu(u, v) + vHv(u, v), for all u, v ≥ 0,

and thus, H(u, 0) = H(0, v) = 0, for all u, v ≥ 0.

3. From the hypotheses (H2) − (H3), we see that Hu(u, v), Hv(u, v)

are non negative functions for u, v ≥ 0 , and thus thanks to the
homogeneity property, the same holds for H(u, v).

4. By assumption (V1), Z =
{
x ∈ RN : V (x) = 0

}
is a compact set.

We recall that Z can be empty set.

Let R given in (V1), Λ = BR(0) ⊂ RN and k = kp = 2p/(p− 4) > 2.
Let a > 0 be a real constant which will be chosen appropriately. Let us
consider the cutoff function

η : R → R decreasing and C1,

η(t) = 1, ∀t ∈ (−∞, a],

η(t) = 0, ∀t ∈ [5a,+∞),

|η′
(t)| ≤ 1/5a, ∀t ∈ R.

(2.2)
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Now, consider Ĥ :
(
RN \ Λ

)
× R× R → R given by

Ĥ(x, t, s) :=
η(
∣∣∣(K(x))1/2(t, s)

∣∣∣)H(t, s)

+
(
1− η

(∣∣∣(K(x))1/2(t, s)
∣∣∣))A(x)K(x)

2k

(
t2 + s2

)
,

where

A(x) := max

{
2kH(t, s)

K(x)(t2 + s2)
: (s, t) ∈ R2 and a ≤

√
K(x)(t2 + s2) ≤ 5a

}
.

Thus, from (1), A(x) → 0 uniformly as a → 0. Note that Ĥ is well
defined, nonnegative and is of class C1 (cf. item 3, Remark 2.1). We can
now define G : RN × R× R → R given by

G(x, t, s) := χΛ(x)H(t, s) + (1− χΛ(x)) Ĥ(x, t, s)

where χΛ denotes the characteristic function of the set Λ. Thus, G is a
p-homogeneous function on Λ and G(x, t, s) ≥ 0, ∀(x, t, s) ∈ RN ×R×R.
Moreover, for fixed x ∈ RN the function (t, s) 7→ G(x, t, s) is of class C1

and for each fixed (t, s) ∈ R2, the function x 7→ G(x, s, t) is Lebesgue
measurable in RN .

Lemma 2.2. The function G satisfies the following properties:

pG(x, u, v) = uGu(x, u, v) + vGv(x, u, v), ∀ x ∈ Λ, (2.3)

Moreover, for k = kp = 2p/(p−4), we can choose the constant a sufficiently
small such that

2G(x, u, v) ≤ uGu(x, u, v)+vGv(x, u, v) ≤
K(x)

k

(
u2 + v2

)
, ∀ x ∈ RN \Λ.

(2.4)

Proof. Using the definition of G, we have that G(x, u, v) = H(u, v) for all
x ∈ Λ, and consequently (2.3) holds.

Observe that G(x, u, v) = Ĥ(x, u, v) for all x ∈ RN \ Λ, besides that
from the definition of the function Ĥ, we have for all x ∈ RN \ Λ
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Ĥu = η
(∣∣∣K1/2(u, v)

∣∣∣)Hu(u, v) +
K

k
uA(x)

(
1− η

(∣∣∣K1/2(u, v)
∣∣∣))

+ η
′
(∣∣∣K1/2(u, v)

∣∣∣) (K1/2u(u2 + v2)−1/2
)
[H(u, v)]

+ η
′
(∣∣∣K1/2(u, v)

∣∣∣) (K1/2u(u2 + v2)−1/2
)[

−A(x)
(
K(x)

2k
(u2 + v2)

)]
(2.5)

and

Ĥv = η
(∣∣∣K1/2(u, v)

∣∣∣)Hv(u, v) +
K

k
vA(x)

(
1− η

(∣∣∣K1/2(u, v)
∣∣∣))

+ η
′
(∣∣∣K1/2(u, v)

∣∣∣) (K1/2v(u2 + v2)−1/2
)
[H(u, v)]

+ η
′
(∣∣∣K1/2(u, v)

∣∣∣) (K1/2v(u2 + v2)−1/2
)[

−A(x)
(
K

2k
(u2 + v2)

)]
(2.6)

They imply that

uĤu + vĤv = pη
(∣∣∣K1/2(u, v)

∣∣∣)H(u, v)

+A(x)

[
K

k
(u2 + v2)

](
1− η

(∣∣∣K1/2(u, v)
∣∣∣))

+ η
′
(∣∣∣K1/2(u, v)

∣∣∣) (K1/2(u2 + v2)1/2
)
[H(u, v)]

+ η
′
(∣∣∣K1/2(u, v)

∣∣∣) (K1/2(u2 + v2)1/2
)[

−A(x)
(
K

2k
(u2 + v2)

)]
.

(2.7)

Therefore,

uĤu + vĤv ≥ pη
(∣∣∣K1/2(u, v)

∣∣∣)H(u, v)

+A(x)

[
K

k
(u2 + v2)

](
1− η

(∣∣∣K1/2(u, v)
∣∣∣))

≥ 2Ĥ(x, u, v) for all x ∈ RN \ Λ.
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Observe that

pH(u, v)
K
2k (u

2 + v2)
≤ 3c0

|u|p + |v|p
K
2k (u

2 + v2)
≤ 5p6kc0a

p−2

µp/2
≤ Cap−2.

Where (u, v) ∈ R2 such that a ≤
√
K(x)(u2 + v2) ≤ 5a and C > 0 is a

real constant. Since p > 4 then, we can conclude that taking a sufficiently
small, we get

pH(u, v)
K(x)
2k (u2 + v2)

≤ 1.

Beside that we recall that A(x) ≥ 0 and A(x) → 0 uniformly as a→ 0 for
all x ∈ RN \ Λ. From (2.7)

uĤu + vĤv

K
2k (u

2 + v2)
= η

(∣∣∣K1/2(u, v)
∣∣∣) pH(u, v)

K
2k (u

2 + v2)
+ 2A(x)

(
1− η

(∣∣∣K1/2(u, v)
∣∣∣))

+ η
′
(∣∣∣(K1/2(u, v)

∣∣∣) (K1/2(u2 + v2)1/2
)[ H(u, v)

K
2k (u

2 + v2)
−A(x)

]
.

Therefore,
uĤu + vĤv

K
2k (u

2 + v2)
≤ 2.

That is,
uĤu + vĤv ≤

K

k
(u2 + v2) for all x ∈ RN \ Λ.

We can now introduce the auxiliary system{
−∆u+ V (x)u− [∆(u2)]u = K(x)Gu(x, u, v) in RN ,

−∆v + V (x)v − [∆(v2)]v = K(x)Gv(x, u, v) in RN .
(AS)

The Euler-Lagrange functional associated with (AS), Î is given by

Î(u, v) =
1

2

∫
RN

[(
1 + 2|u|2

)
|∇u|2 +

(
1 + 2|v|2

)
|∇v|2

]
dx

+
1

2

∫
RN

V (x)
(
|u|2 + |v|2

)
dx−

∫
RN

K(x)G(x, u, v) dx,
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As before, since the functional Î is not well defined in the space H we have
to perform a suitable change of variable to get a new problem, which the
associated functional is well defined in a new class of the function space
defined in the next section.

2.2 Changing the variable

From the variational point of view, the second difficulty that we have
to deal with is to find an appropriate variational setting in order to apply
minimax methods to study the existence of nontrivial solutions of (AS).
However, it should be pointed out that we may not apply directly such
methods since the natural associated functional Î is not well defined in
the usual Sobolev spaces. To overcome this difficulty, we follow the idea
developed by Liu, Wang and Wang in [23], that is, we make the change of
variables w = f−1(u), z = f−1(v) where f is defined by

f
′
(t) =

1

(1 + 2f2(t))1/2
on [0,∞), f(t) = −f(−t) on (−∞, 0].

Proposition 2.3. Basic properties of the change of variable f(t) are listed
below:

(1) f is a uniquely defined C∞ function and invertible.

(2) |f ′(t)| ≤ 1 for all t ∈ R.

(3) |f(t)| ≤ |t| for all t ∈ R.

(4) f(t)/t→ 1 as t→ 0.

(5) f(t)/
√
t→ 21/4 as t→ +∞.

(6) f(t)/2 ≤ tf ′(t) ≤ f(t) for all t ≥ 0.

(7) |f(t)| ≤ 21/4|t|1/2 for all t ∈ R.

(8) the function f2(t) is strictly convex.
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(9) there exists a positive constant C such that

|f(t)| ≥

{
C|t|, |t| ≤ 1

C|t|1/2, |t| ≥ 1.

(10) there exist positive constants C1 and C2 satisfying

|t| ≤ C1|f(t)|+ C2|f(t)|2 for all t ∈ R.

(11) |f(t)f ′(t)| ≤ 1/
√
2 for all t ∈ R.

(12) f2(λs) ≤ λ2f2(s), for all s ∈ R and λ ≥ 1.

(13) The function f(t)f ′(t)t−1 is decreasing for t > 0.

(14) The function f3(t)f ′(t)t−1 is increasing for t > 0.

Proof. The proof of items (1)–(11) and (13)–(14) can be seen in [17,
Proposition 2.2, Corollary 2.3] (see also [11, 23]). For item (12) one can
see [18, Lemma 2.1].

Thus, after this change we obtain the following functional

J(w, z) : = Î(f(w), f(z)) =
1

2

∫
RN

(
|∇w|2 + V (x)f2(w)

)
dx

1

2

∫
RN

(
|∇z|2 + V (x)f2(z)

)
dx−

∫
RN

G(x, f(w), f(z)) dx,

which is well defined on H. Moreover, nontrivial critical points of J corres-
pond precisely to the positive weak solutions of the system (AS). As in
[26] (see also [18]) we see that if (w, z) is a weak solution for (MS) then
u = f(w), v = f(z) is a weak solution for (AS). Our goal here is to prove
the existence of a critical point (w, z) for J , associated with the system,{

−∆w = f ′(w) [Gu(x, f(w), f(z))− V (x)f(w)] in RN ,

−∆z = f ′(z) [Gv(x, f(w), f(z))− V (x)f(z)] in RN .
(MS)
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Remark 2.4. 1. Using Remark (2.1) and the property (7), Proposition
(2.3), we have

2|pG(x, f(w), f(z))| ≤ 3c0 (|f(w)|p + |f(z)|p) ≤ 2p/43c0

(
|w|p/2 + |z|p/2

)
,

for all f(w), f(z) ≥ 0, x ∈ Λ.

Moreover, Gu(x, f(w), f(z)), Gv(x, f(w), f(z)) ∈ Lp/(p−1)(RN )

for all(w, z) ∈ H, x ∈ Λ.

3 Compactness results

3.1 Mountain-pass geometry

Proposition 3.1. Suppose that (H0) − (H3) and (V0) − (V1) hold. The
Euler-Lagrange functional J associated with (MS) satisfies the following
conditions:

1. J is well defined and continuous in H.

2. J is Gateaux-differentiable in H and its derivative is given by

J ′(w, z)(ϕ, φ) =

∫
RN

(
∇w∇ϕ+ V (x)f(w)f ′(w)ϕ

)
dx

+

∫
RN

(
∇z∇φ+ V (x)f(z)f ′(z)φ

)
dx−

∫
RN

Gu(x, f(w), f(z))f
′(w)ϕ dx

−
∫
RN

Gv(x, f(w), f(z))f
′(z)ϕ dx, for all (w, z), (ϕ, φ) ∈ H.

3. For (w, z) ∈ H, J ′(w, z) ∈ H′ and if (wn, zn) → (w, z) in H then
J ′(wn, zn) → J ′(w, z) in the weak-∗topology of H′, that is, for each
(ϕ, φ) ∈ H we have

⟨J ′(wn, zn), (ϕ, φ)⟩ → ⟨J ′(w, z), (ϕ, φ)⟩.

Proof. The proof is essentially the same as in [17, Proposition 2.5].
It is standard to prove that J satisfies the mountain pass geometry, we

include the proof for ready reference. See [24,25] for more details. For this



218 João Marcos do Ó, Olímpio H. Miyagaki, Cláudia R. Santana

next result we consider the functional Q : H → R defined by

Q(w, z) =

∫
RN

(
|∇w|2 + V (x)f2(w) + |∇z|2 + V (x)f2(z)

)
dx (3.1)

and the set
S(ρ) := {(w, z) ∈ H : Q(w, z) = ρ2}.

Remark 3.2.

From the item (3) Proposition (2.3), the functional Q(w, z) ∈ C1 and
Q(w, z) ≤ ||(w, z)||2H.

There is a real constant β > 0 such that β||(w, z)||2H ≤ Q(w, z)+(Q(w, z))2
∗/2.

For further details to consult [1].

Lemma 3.3. (Mountain–pass geometry) Suppose that (H0) − (H3) and
(V0)− (V1) hold. The functional J has the Mountain Pass geometry, that
is, J satisfies

1. Exists ρ, α > 0, such that J(w, z) ≥ α if (w, z) ∈ S(ρ),

2. For any (w, z) ∈ H, w, z > 0 with compact support on Λ, there is
0 < θ < 1 such that J(tθw, tθz) → −∞ as t→ +∞.

Proof. From Remark 2.4 we have that

|pG(x, f(w), f(z))| ≤ 3c0 (|f(w)|p + |f(z)|p) for all x ∈ Λ.

By the Sobolev imbedding∫
Λ
K(x)G(x, f(w), f(z)) dx =

∫
Λ
K(x)H(f(w), f(z)) dx

≤ C0

∫
RN

(|f(w)|p + |f(z)|p) dx

≤ C1

∫
RN

(
|w|p/2 + |z|p/2

)
dx ≤ C2Q(w, z)p/4,

where C0, C1, C2 are positive constants. Using above estimate, we have
that choose ρ > 0 small enough such that D =

(
1
2 − λ

2k − C2ρ
(p−4)/2

)
> 0.
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Let α = Dρ2. Then exists ρ, α > 0 such that J(u, v) ≥ α, for all (u, v) ∈
∂B(0, ρ).

J(w, z) =
1

2
Q(w, z)−

∫
Λ
K(x)G(x, f(w), f(z)) dx

−
∫
RN\Λ

K(x)G(x, f(w), f(z)) dx

≥ 1

2
Q(w, z)− C2Q(w, z)p/4 −

∫
RN\Λ

λ
V (x)

2k

(
f2(w) + f2(z)

)
dx

≥
((

1

2
− λ

2k

)
ρ2 − C2ρ

p/2

)
=

(
1

2
− λ

2k
− C2ρ

(p−4)/2

)
ρ2.

Now, we will prove (2). Consider θ > 0 such that 1/p < θ < 1/2. From
the definition of G, G(x, f(w), f(z)) = H(f(w), f(z)) for x ∈ Λ. So,

pG(x, f(w), f(z)) = f(w)Gu(x, f(w), f(z)) + f(z)Gv(x, f(w), f(z))

wherex ∈ Λ.

Therefore we have
d

dt

{
G(x, tθf(w), tθf(z))

}
= pθ

1

t
G(x, tθf(w), tθf(z))

≥ 1

t
G(x, tθf(w), tθf(z)). (3.2)

Observe that pθ > 1 and from (H2) − (H3) and the definition of G, we
have G(x, f(w), f(z)) = H(f(w), f(z)) > 0 where x ∈ Λ (cf. Remark 2.1
(3)).
The inequality (3.2) implies that G(x, tθf(w), tθf(z)) ≥ tQ̃(x, f(w), f(z))

for some function Q̃. Then for t > 1, we have

J(tθw, tθz) ≤ 1

2
t2θ
∫
Λ

(
|∇w|2 + V (x)f2(w) + |∇z|2 + V (x)f2(z)

)
dx

−
∫
Λ
tK(x)Q̃(x, f(w), f(z)) dx.

Since 2θ < 1, we conclude that for any (w, z), (ϕ, φ) ∈ H \ (0, 0) fixed,
w, z > 0 with compact support on Λ, we have

J(tθf(w), tθf(z)) → −∞ as t→ +∞.

This completes the proof.
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3.2 The Cerami condition

In order to apply critical point theory to prove the existence of weak
solutions of (AS), we first need to study some compactness property of
functional J .

Lemma 3.4. Suppose that (H0)− (H3) and (V0)− (V1) hold. Then, any
Cerami sequence for J is bounded in H.

Proof. Let (wn, zn) ⊂ H be a Cerami sequence for J , that is,

|J(wn, zn)| ≤ c and (1 + ||(wn, zn)||) ||J ′(wn, zn)|| → 0 as n → ∞ in H′.

Therefore

⟨J ′(wn, zn), (ψ, ϕ)⟩ =∫
RN

(
∇wn∇ψ + V (x)f(wn)f

′(wn)ψ
)
dx

+

∫
RN

(
∇zn∇ϕ+ V (x)f(zn)f

′(zn)ϕ
)
dx

−
∫
RN

K(x)
(
Gu(f(wn), f(zn))f

′(wn)ψ
)
dx

−
∫
RN

K(x)
(
Gv(f(wn), f(zn))f

′(zn)ϕ
)
dx

for all (w, z), (ψ, ϕ) ∈ H.

We can note that
(
f(wn)
f ′(wn)

, f(zn)f ′(zn)

)
∈ H because from the property item (6),

Proposition (2.3), and the estimates below∣∣∣∣∇( f(wn)f ′(wn)

)∣∣∣∣ = (1 + 2f2(wn)

1 + 2f2(wn)

)
|∇wn| ;∣∣∣∣∇( f(zn)f ′(zn)

)∣∣∣∣ = (1 + 2f2(zn)

1 + 2f2(zn)

)
|∇zn|.

Moreover,
∥∥∥( f(wn)

f ′(wn)
, f(zn)f ′(zn)

)∥∥∥ ≤ 2||(wn, zn)||. Therefore, we have〈
J ′(wn, zn),

(
f(wn)

f ′(wn)
,
f(zn)

f ′(zn)

)〉
=

∫
RN

K(x) (Gu(f(wn), f(zn))f(wn) +Gv(f(wn), f(zn))f(zn)) dx+ on(1)
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Let the function Q defined in (3.1). Thus,

Q(wn, zn) +

∫
RN

2f2(wn)

1 + 2f2(wn)
|∇wn|2 dx+

∫
RN

2f2(zn)

1 + 2f2(zn)
|∇zn|2 dx

=

∫
RN

K(x) (Gu(f(wn), f(zn))f(wn) +Gv(f(wn), f(zn))f(zn)) dx+ on(1)

and
1

2
Q(wn, zn) =

∫
RN

K(x)G(x, f(wn), f(zn)) dx+On(1).

Consider Ω = RN \ Λ. Recalling that k = kp = 2p/(p− 4), we have(
1

2
− 2

p

)
Q(wn, zn) ≤

∫
Λ
K(x) (G(x, f(wn), f(zn))) dx

+

∫
Λ
K(x)

(
−1

p
[f(wn)Gu(x, f(wn), f(zn))]

)
dx

+

∫
Λ
K(x)

(
−1

p
[f(zn)Gv(x, f(wn), f(zn))]

)
dx

+

∫
Ω
K(x) (G(x, f(wn), f(zn))) dx

+

∫
Ω
K(x)

(
−1

p
[f(wn)Gu(x, f(wn), f(zn))]

)
dx

+

∫
Ω
K(x)

(
−1

p
[f(zn)Gv(x, f(wn), f(zn))]

)
dx

+On(1) + on(1).

Using (2.3), (2.4), the condition (V1), we deduced that(
1

2
− 2

p

)
Q(wn, zn) ≤

λ(p− 2)

2pk

∫
Ω

(
V (x)f2(wn) + V (x)f2(zn)

)
dx

+On(1) + on(1),

(3.3)

which implies that(
1

k
− λ(p− 2)

2pk

)
Q(wn, zn) ≤ On(1) + on(1).

Using that λ < 2p/(p− 2) and remark (3.2), we have (wn, zn) is bounded
in H.
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Lemma 3.5. Suppose that (H0)−(H3) and (V0)−(V1) hold. Let (wn, zn)⇀
(w, z). Then

1.

lim
n→∞

∫
RN

V (x)f2(wn) dx =

∫
RN

V (x)f2(w) dx,

lim
n→∞

∫
RN

V (x)f2(zn) dx =

∫
RN

V (x)f2(z) dx.

(3.4)

2. Moreover, if (wn, zn) ⊂ H be an arbitrary Cerami sequence of J .
Then, (w, z) (w, z) ∈ H is a critical point for the functional J .

Proof. From Lemma 3.4, up to a subsequence, we can assume that there
exists (w, z) ∈ H such that Let be R > 0 given in (V1). For each ε > 0,
let r > R be such that

4

(
1− λ

k

)−1

ω
1/N
N C

(∫
r≤|x|≤2r

max (|w(x)|, |z(x)|)2
∗
dx

)1/2∗

<
ε

8
,

where C ≥ ||(wn, zn)||H is a positive constant and ωN is the volume
of the unitary ball in RN . Let ξ = ξr ∈ C∞

0 (RN , [0, 1]), be a function
verifying supp ξ ⊆ Bc

r(0), ξ ≡ 1 in Bc
2r(0), 0 < ξ < 1 if r < |x| < 2r and

|ξ′(x)| ≤ 1

r
, for allx ∈ RN .

Since (wn, zn) is bounded in H, |ξ(x)| ≤ 1 and using the property (6),
Proposition (2.3),so we get that the sequence (ξ (f(wn)/f ′(wn), f(zn)/f ′(zn)))
is also bounded, and hence J ′(un, vn) · (ξ (f(wn)/f ′(wn), f(zn)/f ′(zn))) =
on(1), that is,∫
RN

(
∇wn∇

(
ξf(wn)

f ′(wn)

)
+∇zn∇

(
ξf(zn)

f ′(zn)

))
dx

+

∫
RN

[
V (x)f(wn)f

′(wn)

(
ξf(wn)

f ′(wn)

)
+ V (x)f(zn)f

′(zn)

(
ξf(zn)

f ′(zn)

)]
dx =∫

RN

K(x)

(
f ′(wn)

(
ξf(wn)

f ′(wn)

)
Gu(x, f(wn), f(zn))

)
dx

+

∫
RN

K(x)

(
f ′(zn)

(
ξf(zn)

f ′(zn)

)
Gv(x, f(wn), f(zn))

)
dx

+ on(1).



Nonlinear Schrödinger equations with bounded potentials 223

Since ξ ≡ 0 in Br(0) and Λ = BR(0), the last equality combined with the
property (2.4) and condition (V1) yields∫
|x|≥r

((
1 +

2f2(wn)

1 + 2f2(wn)

)
|∇wn|2 +

(
1 +

2f2(zn)

1 + 2f2(zn)

)
|∇zn|2

)
dx

+

∫
|x|≥r

(
V (x)f2(wn) + V (x)f2(zn)

)
ξ dx ≤

≤ λ

k

∫
|x|≥r

(
V (x)f2(wn) + V (x)f2(zn)

)
ξ dx−

∫
|x|≥r

(
f(wn)

f ′(wn)

)
∇wn∇ξ dx

−
∫
|x|≥r

(
f(zn)

f ′(zn)

)
∇zn∇ξ dx+ on(1).

and so, using the Proposition (2.3), property (6), we have(
1− λ

k

)∫
|x|≥2r

(
|∇wn|2 + V (x)f2(wn) + |∇zn|2 + V (x)f2(zn)

)
ξ dx

≤ 2

r

∫
r≤|x|≤2r

(|wn||∇wn|+ |zn||∇zn|) dx+ on(1).

(3.5)

Here we have used assumption (V1) to guarantee that λ < k. By Holder’s
inequality,

∫
r≤|x|≤2r

|wn||∇wn|dx ≤ ||∇wn||L2(RN )

(∫
r≤|x|≤2r

|wn|2 dx

)1/2

∫
r≤|x|≤2r

|zn||∇zn|dx ≤ ||∇zn||L2(RN )

(∫
r≤|x|≤2r

|zn|2 dx

)1/2

.

Due to the Rellich-Kondrachov Compactness Theorem, we have that (wn, zn) →
(w, z) as n→ ∞ in L2(B2r \Br) and using that (wn, zn) is bounded, it
follows that

lim sup
n

∫
r≤|x|≤2r

|wn||∇wn|dx ≤ C

(∫
r≤|x|≤2r

|w|2 dx

)1/2

lim sup
n

∫
r≤|x|≤2r

|zn||∇zn|dx ≤ C

(∫
r≤|x|≤2r

|z|2 dx

)1/2

.

(3.6)
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On the other hand, using again Holder’s inequality

(∫
r≤|x|≤2r

|w|2 dx

)1/2

≤

(∫
r≤|x|≤2r

|w|2∗ dx

)1/2∗

|B2r \Br|1/N

(∫
r≤|x|≤2r

|z|2 dx

)1/2

≤

(∫
r≤|x|≤2r

|z|2∗ dx

)1/2∗

|B2r \Br|1/N .

(3.7)

Recalling that |B2r \Br| ≤ |B2r| = ωN2
NrN , from (3.6) and (3.7)

lim sup
n

∫
r≤|x|≤2r

|wn||∇wn|dx ≤ 2ω
1/N
N rC

(∫
r≤|x|≤2r

|w|2∗ dx

)1/2∗

lim sup
n

∫
r≤|x|≤2r

|zn||∇zn| dx ≤ 2ω
1/N
N rC

(∫
r≤|x|≤2r

|z|2∗ dx

)1/2∗

.

(3.8)
By choosing r > 0 in (3.5), (3.5) and (3.8), it implies that

lim supn
∫
|x|≥2r( |∇wn|

2 + V (x)f2(wn) + |∇zn|2 + V (x)f2(zn)) dx <
ε

4
.

Therefore,

lim sup
n

∫
|x|≥2r

K(x) (f(wn)Gu(x, f(wn), f(zn)))) dx

+ lim sup
n

∫
|x|≥2r

K(x) (f(zn)Gv(x, f(wn), f(zn))) dx

≤ ε

4
.

(3.9)

Observe that Gu(x, f(wn), f(zn)), Gv(x, f(wn), f(zn)) ∈ Lp/(p−1)(RN ) for
x ∈ B2r(0). Now, using the Sobolev compact embedding and Dominated
Convergence Theorem, they lead to

lim
n→∞

∫
|x|≤2r

K(x) (f(wn)Gu(x, f(wn), f(zn)) + f(zn)Gv(x, f(wn), f(zn))) dx =∫
|x|≤2r

K(x) (f(w)Gu(x, f(w), f(z)) + f(z)Gv(x, f(w), f(z))) dx.

(3.10)



Nonlinear Schrödinger equations with bounded potentials 225

and

lim
n→∞

∫
|x|≤2r

V (x)f2(wn) dx =

∫
|x|≤2r

V (x)f2(w) dx.

lim
n→∞

∫
|x|≤2r

V (x)f2(zn) dx =

∫
|x|≤2r

V (x)f2(z) dx.

(3.11)

Hence, we can conclude that , as n→ ∞∫
RN

K(x)Gu(x, f(wn), f(zn))f(wn) dx→
∫
RN

K(x)Gu(x, f(wn), f(zn))f(w) dx,∫
RN

K(x)Gv(x, f(wn), f(zn))f(zn) dx→
∫
RN

K(x)Gv(x, f(wn), f(zn))f(z) dx,

(3.12)
and

lim
n→∞

∫
RN

V (x)f2(wn) dx =

∫
RN

V (x)f2(w) dx.

lim
n→∞

∫
RN

V (x)f2(zn) dx =

∫
RN

V (x)f2(z) dx.

(3.13)

From (3.12) we have that

lim
n→∞

∫
RN

K(x) (f(wn)Gu(x, f(wn), f(zn))) dx+

lim
n→∞

∫
RN

K(x) (f(zn)Gv(x, f(wn), f(zn))) dx =∫
RN

K(x) (f(w)Gu(x, f(w), f(z)) + f(z)Gv(x, f(w), f(z))) dx.

(3.14)

Finally, Let’s prove that (w, z) ∈ H is a critical point for the functional J .
In fact,

⟨J ′(wn, zn), (ψ, ϕ)⟩ → ⟨J ′(w, z), (ψ, ϕ)⟩ for all (w, z),

and (ψ, ϕ) ∈ C∞
0 (RN ).

The results follows from (3.13) and (3.14).
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Hereafter, we denote by B the ball in RN with center 0 and radius R/2,
that is, B = BR/2(0), the set Λ = BR(0) and by J0 : H1

0 (B)×H1
0 (B) → R

the functional

J0(w, z) =
1

2

∫
B

(
|∇w|2 +max

B
(V (x), 1) f2(w)

)
dx

+
1

2

∫
B

(
|∇z|2 +max

B
(V (x), 1) f2(z)

)
dx−

∫
B
K(x)H(f(w), f(v)) dx.

Moreover, we denote by d the mountain level associated with J0, that is,

d = inf
γ∈Γ

max
t∈[0,1]

J0(γ(t)),

where

Γ = {γ ∈ C
(
[0, 1], H1

0 (B)×H1
0 (B)

)
: γ(0) = 0 and γ(1) = e},

with e ∈ H1
0 (B)×H1

0 (B) \ {(0, 0)} verifying J0(e) < 0.

Remark 3.6. We observe that J(w, z) ≤ J0(w, z) for all w, z ∈ H1
0 (B).

In particular we have J(e) ≤ J0(e) < 0. We denote by mJ the mountain
pass level associated with J , that is,

mJ = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

where

Γ = {γ ∈ C
(
[0, 1], H1

0 (B)×H1
0 (B)

)
: γ(0) = 0 and γ(1) = e}.

It is easily seen that mJ ≤ d.

In order to prove the existence of a nontrivial critical point for J we
will use the following version of the Mountain Pass theorem, which is a
consequence of the Ekeland Variational Principle as developed in [28] (see
also [6], [20]).
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Proposition 3.7. Le E be a Banach space and Φ ∈ C(E,R), Gateaux-
differentiable for all v ∈ E with G-derivative Φ′ continuous from the norm
topology of E to the weak ∗ topology of E′. Suppose also that Φ satisfies
Cerami condition and Φ(0) = 0. Let S be a closed subset of E which
disconnects (archwise) E. Let v0 = 0 and v1 ∈ E be points belonging to
distinct connected components of E\S. Suppose that

inf
S

Φ ≥ α > 0 and Φ(v1) ≤ 0.

Then, Φ possesses a critical value c which can be characterized as

c := inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)) ≥ α,

where
Γ = {γ ∈ C ([0, 1], E) : γ(0) = 0 and γ(1) = v1}.

Lemma 3.8. Let be (w, z) ∈ H a critical point of the functional J at the
minimax level mJ . Then (w, z) satisfies the estimate

∥ (w, z) ∥2H ≤ β−1

(
1

k
− λ(p− 2)

2pk

)−1

d

+

(
β−1

(
1

k
− λ(p− 2)

2pk

)−1
)2∗/2

d2
∗/2.

Proof. It is enough to combine remarks (3.2) and (3.3) with definition of
d and the fact that mJ ≤ d.
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Lemma 3.9. If {(w, z)} ∈ H is a point critical of the functional J , then
w, z ≥ 0.

Proof. Observe that〈
J ′(w, z),

(
f(w)

f ′(w)
,
f(z)

f ′(z)

)〉
= Q(w, z) +

∫
RN

2f2(w)

1 + 2f2(w)
|∇w|2 dx+

∫
RN

2f2(z)

1 + 2f2(z)
|∇z|2 dx

−
∫
RN

K(x) (Gu(f(w), f(z))f(w) +Gv(f(w), f(z))f(z)) dx

= 0.

Let the function Q defined in (3.1). Thus,

Q(w, z) +

∫
RN

2f2(w)

1 + 2f2(w)
|∇w|2 dx+

∫
RN

2f2(z)

1 + 2f2(z)
|∇z|2 dx

=

∫
RN

K(x) (Gu(f(w), f(z))f(w) +Gv(f(w), f(z))f(z)) dx.

Hence, we have

Q(w−, z−) +

∫
RN

2f2(w−)

1 + 2f2(w−)
|∇w−|2 dx+

∫
RN

2f2(z−)

1 + 2f2(z−)
|∇z−|2 dx

=

∫
RN

K(x)
(
Gu(f(w

−), f(z−))f(w−) +Gv(f(w
−), f(z−))f(z−)

)
dx.

Now, from the definition of the non linearities H,G and properties of the
function f , we have Hu(f(w

−), f(z−) = Hv(f(w
−), f(z−) = 0 and

Gu(f(w
−), f(z−)) = Gv(f(w

−), f(z−)) = 0 and the inequality (2.4), we
have

Q(w−, z−) ≤
∫
Λ
K(x)Hu(f(w

−), f(z−))f(w−) dx

+

∫
Λ
K(x)Hv(f(w

−), f(z−))f(z−) dx

+

∫
RN\Λ

K(x)Gu(f(w
−), f(z−))f(w−) dx

+

∫
RN\Λ

K(x)Gv(f(w
−), f(z−))f(z−) dx

≤ 0.
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Recall that ||(w, z)||2H ≤ β−1Q(w, z) +
(
β−1Q(w, z)

)2∗/2. Therefore, we
conclude ||(u−, v−)||H = 0.

We have proved up this moment the following result:

Proposition 3.10. There is a critical point (φ, ϕ) ∈ H with φ, ϕ non
negative functions associated to the functional

J(w, z) =
1

2
Q(w, z)−

∫
RN

K(x)G(x, f(w), f(z)) dx, (w, z) ∈ H.

at the critical level
mJ = inf

γ∈Γ
max
t∈[0,1]

J(γ(t))

where
Γ = {γ ∈ C ([0, 1],H) : γ(0) = 0 and γ(1) = e},

with e ∈ H1
0 (B)×H1

0 (B) \ {(0, 0)} verifying, J0(e) < 0.

Proof. It follows from Proposition 3.7.

4 Finding a positive solution

In this section, we show some qualitatives properties of (AS) systems
solutions which are necessary to we get positive solutions by Maximum
Principle. The next proposition establishes an important estimate involv-
ing the L∞(RN ) norm for solutions (w, z) of the system (AS). Here, we
used the Moser iteration scheme which was adapted to our problem from
the classical paper [8]).

Proposition 4.1. Let Y ∈ Lq(RN ), 2q > N, and (w, z) ∈ H ⊂ H1(RN )×
H1(RN ) be a weak solution of the problem{

−∆w = f ′(w) [Gu(x, f(w), f(z))− a(x)f(w)] in RN ,

−∆z = f ′(z) [Gv(x, f(w), f(z))− b(x)f(z)] in RN ,
(4.1)
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where Gu, Gv : RN × R× R → R are a continuous functions verifying

|Gu(x, f(w), f(z))|+ |Gv(x, f(w), f(z))| ≤ Y (x) (|w|+ |z|) , a.e.

for all w, z ≥ 0, and a, b are nonnegative continuous functions in RN .
Then exists a constant M =M(N, q, ||Y ||Lq(RN )) > 0 such that

||(w, z)||∞ = max (||w||∞, ||z||∞)

≤M ||max (|w(x)|, |z(x)|) ||L2∗ (RN ).
(4.2)

Proof. For each m ∈ N and β > 1, let us consider the subsets of RN ,

Am = {x ∈ RN : |z|β−1 ≤ m} and Bm = RN \Am,

and the function

zm =

{
z|z|2(β−1) in Am,

m2z in Bm.

Since z|z|2(β−1) = m2z on ∂Am, using standard properties of Sobolev
spaces we can conclude that zm ∈ H1(RN ). From

∫
RN V (x)z2m(x) dx <∞,

we have zm ∈ H, and an easy calculation yields that

∇zm =

{
(2β − 1)|z|2(β−1)∇z in Am

m2∇z in Bm
(4.3)

So,∫
RN

∇z∇zm dx = (2β − 1)

∫
Am

|z|2(β−1)|∇z|2 dx+m2

∫
Bm

|∇z|2 dx. (4.4)

Taking zm as a test function in (4.1) we have,∫
RN

(
∇z∇zm + b(x)f(z)f ′(z)zm

)
dx =

∫
RN

Gv(x, f(w), f(z))f
′(z)zm dx.

Considering

ωm =

{
z|z|β−1 inAm
mz inBm = RN \Am.
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by a similar argument it follows that

∇ωm =

{
β|z|β−1∇z inAm
m∇z inBm

(4.5)

and ωm ∈ H. Observe that∫
RN

|∇ωm|2 dx = β2
∫
Am

|z|2(β−1)|∇z|2 dx+m2

∫
Bm

|∇z|2 dx. (4.6)

From (4.4) and (4.6)∫
RN

|∇ωm|2 dx −
∫
RN

∇z∇zm dx =

=

∫
Am

(
β2 − 2β + 1

)
|z|2(β−1)|∇z|2 dx.

Using (4.4), we get the inequality(
2β − 1

)∫
Am

|z|2(β−1)|∇z|2 dx ≤
∫
RN

(
∇z∇zm + b(x)f(z)f ′(z)zm

)
dx,

which leads to∫
RN

|∇ωm|2 dx ≤[(
β2 − 2β + 1

)
(2β − 1)

+ 1

]∫
RN

(
∇z∇zm + b(x)b(x)f(z)f ′(z)zm

)
dx.

Using (4.1), it follows that∫
RN

|∇ωm|2 dx ≤ β2

(2β − 1)

∫
RN

Gv(x, f(w)f(z))f
′(z)zm dx.

≤ β2
∫
RN

Gv(x, f(w)f(z))f
′(z)zm dx.

Let S be the best constant which verifies

||z||2
L2∗ (RN )

≤ S

∫
RN

|∇z|2 dx for all z ∈ H1(RN ).

Using the definition of vm it follows that |zm| ≤ |z|2β−1. Then,

|Gv(x, f(w)f(z))f ′(z)zm| ≤ 2Y (x)max (|w(x)|, |z(x)|)2β
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and therefore we have[∫
Am

|ωm|2
∗
](N−2)/N

≤ Sβ2
∫
RN

2Y (x)max (|w(x)|, |z(x)|)2β dx.

If 1/q1 + 1/q = 1, from Holder’s inequality,[∫
Am

|ωm|2
∗
](N−2)/N

≤

2Sβ2||Y ||Lq(RN )

[∫
RN

|max (|w(x)|, |z(x)|) |2βq1 dx
]1/q1

.

Since |ωm| ≤ |z|β in RN and |ωm| = |z|β in Am, it follows that

[∫
Am

(
|z|β

)2∗](N−2)/N

≤

2Sβ2||Y ||Lq(RN )

[∫
RN

|max (|w(x)|, |z(x)|) |2βq1 dx
]1/q1

.

Taking the limit as m → ∞ and using Monotone Convergence Theorem,
we obtain

||z||2β2∗β ≤ 2Sβ2||Y ||Lq(RN )||max (|w(x)|, |z(x)|) ||2β2βq1 .

and

||z||2∗β ≤ β1/β
(
2S||Y ||Lq(RN )

)1/(2β)
||max (|w(x)|, |z(x)|) ||2βq1 . (4.7)

Since N/(N − 2) > q1, set σ = N/(q1(N − 2)). When β = σ in (4.7), we
have: 2q1β = 2∗ and

||z||2∗σ ≤ σ1/σ
(
2S||Y ||Lq(RN )

)1/(2σ)
||max (|w(x)|, |z(x)|) ||2∗ . (4.8)

When β = σ2 in (4.7) we get 2q1β = 2∗σ and

||z||2∗σ2 ≤ σ2/σ
2
(
2S||Y ||Lq(RN )

)1/(2σ2)
||max (|w(x)|, |z(x)|) ||2∗σ. (4.9)
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The inequalities (4.8) and (4.9) imply that

||z||2∗σ2 ≤ σ
1
σ
+ 2

σ2

(
2S||Y ||Lq(RN )

) 1
2

(
1
σ
+ 1

σ2

)
||max (|w(x)|, |z(x)|) ||2∗ . (4.10)

An iteration argument, replacing β by σj in (4.7), lead us to

||z||2∗σj ≤ σ
∑j

l=1
l

σl

(
2S||Y ||Lq(RN )

) 1
2

(∑j
l=1

1

σl

)
||max (|w(x)|, |z(x)|) ||2∗ .

(4.11)
Once that

∞∑
j=1

j

σj
=

σ

(σ − 1)2

1

2

∞∑
j=1

1

σj
=

1

2

1

(σ − 1)
,

it follows from (4.11)

||z||i ≤ σσ/(σ−1)2
(
2S||Y ||Lq(RN )

)1/(2(σ−1))
||max (|w(x)|, |z(x)|) ||2∗ ,

for all i ≥ 2∗. Since
||z||∞ = lim

i→∞
||z||i,

we get
||z||∞ ≤M ||max (|w(x)|, |z(x)|) ||2∗ ,

where

M = max
(
1, σσ/(σ−1)2 (2S||Y ||q)1/(2(σ−1))

)
with σ =

N(q − 1)

q(N − 2)
.

By a similar argument to that used above, we can also prove that

||w||∞ ≤M ||max (|w(x)|, |z(x)|) ||2∗

which complete the proof of Proposition 4.1.
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Lemma 4.2. If (w, z) ∈ H is a critical point of the functional J , then
w, z > 0.

Proof. If (w, z) ∈ H is a critical point of J , from Lemma 3.9 we have
w, z ≥ 0. By Proposition 4.1 we obtain w, z ∈ L∞(RN ), and therefore the
result follows with help of the Maximum Principle.

Lemma 4.3. For any R > 1, any bound state solution (w, z) with w, z > 0

of (AS) satisfies

||(w, z)||∞ ≤ M̃δ1/2.

where

δ := S

β−1

(
1

k
− λ(p− 2)

2pk

)−1

d+

(
β−1

(
1

k
− λ(p− 2)

2pk

)−1
)2∗/2

d2
∗/2

 .
Proof. If (w, z) is a bound state solution of (MS) with w > 0 e z > 0,
then it satisfies the following system{

−∆w = f ′(w) [Gu(x, f(w), f(z))− b(x)f(w)] in RN ,

−∆z = f ′(z) [Gv(x, f(w), f(z))− b(x)f(z)] in RN ,

where Gu, Gv : RN × R× R → R and b : RN → R are given by

Gu(x, f(w), f(z)) = χΛ(x)K(x)Hu(f(w), f(z))

+ (1− χΛ(x)) η
(∣∣∣K(x)1/2(f(w), f(z))

∣∣∣)K(x)Hu(f(w), f(z))

+ (1− χΛ(x)) η
′
(∣∣∣K(x)1/2(f(w), f(z))

∣∣∣) f(w)

(f(w)2 + f(z)2)1/2
B1(w, z),

Gv(x, f(w), f(z)) = χΛ(x)K(x)Hv(f(w), f(z))

+ (1− χΛ(x)) η
(∣∣∣K(x)1/2(f(w), f(z))

∣∣∣)K(x)1/2Hv(f(w), f(z))

+ (1− χΛ(x)) η
′
(∣∣∣K(x)1/2(f(w), f(z))

∣∣∣) f(z)

(f(w)2 + f(z)2)1/2
B1(w, z),

b(x) = V (x)− (1− χΛ(x))
1

k
K(x)A(x)

(
1− η

(∣∣∣K(x)1/2(f(w), f(z))
∣∣∣))

+ (1− χΛ(x)) η
′
(∣∣∣K(x)1/2(f(w), f(z))

∣∣∣) K(x)1/2

(f(w)2 + f(z)2)1/2
B2(w, z).
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where χΛ is the characteristic function of the set Λ, η was defined in (2.2)
and the functionsB1, B2 are defined byB1(w, z) := K(x)1/2H(f(w), f(z)),
and B2(w, z) :=

[
A(x)K(x) 1

2k

(
f(w)2 + f(z)2

)]
. Observe that it is easy

to see that Gu and Gv are continuous functions.

Taking a sufficiently small, we can conclude that b(x) is a non negative
function, ∫

RN

b(x)(f2(w) + f2(z)) dx < +∞.

Besides that, V (x) is a bounded function and using the Remark 2.1, we
have the following inequalities

|Gu(x, f(w), f(z))| ≤ |χΛ(x)K(x)Hu(f(w), f(z))|

+
∣∣∣(1− χΛ(x)) η

(∣∣∣K(x)1/2(f(w), f(z))
∣∣∣)K(x)Hu(f(w), f(z))

∣∣∣
+

∣∣∣∣(1− χΛ(x)) η
′
(∣∣∣K(x)1/2(f(w), f(z))

∣∣∣) f(w)

(f(w)2 + f(z)2)1/2
B1(w, z)

∣∣∣∣
≤ C1

(
|f(w)|(p−2) + |f(z)|(p−2)/2

)
(|f(w)|+ |f(z)|)

+
C2

a2
(|f(w)|p + |f(z)|p) |f(w)|

≤ C3

(
|w|(p−2)/2 + |z|(p−2)/2

)
(|w|+ |z|) .

and

Gv(x, f(w), f(z)) ≤ χΛ(x)K(x)Hv(f(w), f(z))

+ (1− χΛ(x)) η
(∣∣∣K(x)1/2(f(w), f(z))

∣∣∣)K(x)1/2Hv(f(w), f(z))

+ (1− χΛ(x)) η
′
(∣∣∣K(x)1/2(f(w), f(z))

∣∣∣) f(z)

(f(w)2 + f(z)2)1/2
B1(w, z)

≤ C1

(
|f(w)|(p−2) + |f(z)|(p−2)

)
(|f(w)|+ |f(z)|)

+
C2

a2
(|f(w)|p + |f(z)|p) |f(z)|

≤ C3

(
|w|(p−2)/2 + |z|(p−2)/2

)
(|w|+ |z|) ,

where C1, C2 are real positive constants such that C1 = 2c0 supΛK(x),
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C2 = 30c0/(pµ) and C3 = max(C1, C2). Therefore,

|Gu(x, f(w), f(z))|+ |Gv(x, f(w), f(z))| ≤ |Y (x)| (|w|+ |z|) in RN .

With Y given by

Y (x) = C (max(w(x), z(x)))(p−2)/2 .

where C is a positive constant such that C = 2C3. A direct computation

shows that Y ∈ Lq(RN ) for q =
22∗

(p− 2)
> N/2. From the Sobolev

inequality and the Lemma 3.8, we get

||Y ||q ≤ C ∥ (w, z) ∥(p−2)/2
2∗ ≤ C

(
S1/2 ∥ (w, z) ∥H

)(p−2)/2
≤ Cδ(p−2)/4,

Now, from the proof of Proposition 4.1, we get

M = max
(
1, σσ/(σ−1)2 (2S||Y ||q)1/(2(σ−1))

)
≤ max

(
1, σσ/(σ−1)2

(
2SCδ(p−2)/4

)1/(2(σ−1))
)

:= M̃.

Observe that M̃ does not depend on R, w or z.

Lemma 4.4. Let (w, z) ∈ H a bound state solution for the system (AS)
with w, z positive functions and the potential V is non negative bounded
continuous functions satisfying (H0)− (H3). Then w and z satisfy

|max(w(x), z(x))| ≤ RN−2||(w, z)||∞
|x|N−2

≤ RN−2M̃δ1/2

|x|N−2

for all x ∈ RN \BR(0).

Proof. Consider the harmonic function ψ :
(
RN \BR(0)

)
−→ R such that

ψ(x) =
RN−2||(w, z)||∞

|x|N−2
.
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Observe that the function ψ satisfies

−∆ψ = 0.

Therefore
−∆ψ +

(
1− λ

k

)
V (x)f(ψ)f ′(ψ) ≥ 0.

Now, take as a test function

ϕ =

{
(w − ψ)+ if x ∈ RN \BR(0),

0 if x ∈ BR(0),

and

φ =

{
(z − ψ)+ if x ∈ RN \BR(0),

0 if x ∈ BR(0).

Observe that

w ≤ ψ in ∂BR and z ≤ ψ in ∂BR(0),

then we can conclude that ϕ, φ ∈ H1(RN ). Besides that

J ′(w, z)(ϕ, φ)−
∫
RN\BR(0)

λ

k

(
V (x)f(w)f ′(w)ϕ+ V (x)f(z)f ′(z)φ

)
≤ 0.

Consider Ω := {x ∈ RN \ BR(0) : min{w, z} > ψ}. Hence, combining
these estimates

0 ≥
∫
Ω
(∇w −∇ψ)∇ϕ+

(
1− λ

k

)
V (x)(f(w)f ′(w)− f(ψ)f ′(ψ))ϕ dx

+

∫
Ω
(∇z −∇ψ)∇φ+

(
1− λ

k

)
V (x)(f(z)f ′(z)− f(ψ)f ′(ψ))φdx

≥
∫
Ω

(
1− λ

k

)[
V (x)(f(w)f ′(w)− f(ψ)f ′(ψ))ϕ

]
dx

+

∫
Ω

(
1− λ

k

)[
V (x)(f(z)f ′(z)− f(ψ)f ′(ψ))φ

]
dx.

Using that f2(t) is strictly convex, we have that ff ′ is a increasing
function and so

V (x)(f(w)f ′(w)− f(ψ)f ′(ψ))ϕ ≥ 0 and

V (x)(f(z)f ′(z)− f(ψ)f ′(ψ))φ ≥ 0 in Ω.

Thus, the set Ω is empty and the proof is complete.
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5 Proof of Theorem 1.2 completed

Proof. From Lemmas 3.4 and 3.5, problem (AS) has a bound state solution
(w, z) ∈ H1(RN ) × H1(RN ) with w, z positive functions. Therefore, it is
enough to show that (w, z) satisfies the inequality |K(x)1/2(f(w), f(z))| ≤
a. Using the hyphotesis (V2),

K(x)
(
|f(w)|2 + |f(z)|2

)
≤ K(x) (|w|+ |z|) ≤ 2K(x)

R(N−2)M̃δ1/2

|x|(N−2)

≤ γ ˜2Mδ1/2.

for all |x| ≥ R. Consider γ∗ = a2/
(

˜2Mδ1/2
)
. Observe that the con-

stant M̃ not depend on R, w or z, see Lemma 4.3. So, for all γ with
0 < γ ≤ γ∗ , we have that Gu(x, f(w), f(z)) = Hu(f(w), f(z)) and
Gv(x, f(w), f(z)) = Hv(f(w), f(z)), because η(|K(x)1/2(f(w), f(z))|) ≡ 1

for all |x| ≥ R. Hence, we complete the proof.
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