Matemática
 Contemporânea

(C) 2023

Stationary Schrödinger equations involving critical growth and vanishing potential

Marco Souto
(i) 1
${ }^{1}$ Federal University of Campina Grande, R. Aprigio Veloso 882, CEP58109-970, Campina Grande - PB, Brazil

Dedicated to Professor Pedro Ubilla on the occasion of his 60th birthday

Abstract

We establish the existence of positive solutions for a class of stationary nonlinear Schrödinger equations involving critical growth in the sense of the Sobolev embedding and potentials, which may decay to zero at infinity. We use min-max techniques combined with an appropriate truncated argument and a priori estimate.

Keywords: Vanishing potentials, critical growth.
2020 Mathematics Subject Classification: 35J20, 35J60, 35B33.

1 Introduction

We prove the existence of positive solutions for stationary Schrödingertype equations of the form

$$
\left\{\begin{array}{l}
-\Delta u+V(x) u=f(u) \quad \text { in } \mathbb{R}^{N} \tag{1.1}\\
u>0 \text { in } \mathbb{R}^{N} \text { and } u \in D^{1,2}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

This class of nonlinear elliptic equations in \mathbb{R}^{N} has been intensively studied in recent years, motivated by a wide variety of problems in mathematics and physics, in particular for the search for standing wave solutions by considering different approaches (see [1, 3, 4, 5, 7, 8]).

In this paper we report a joint work with J.M. do Ó and P. Ubilla which can be seen as a natural completion of recent works [1,3], where the subcritical case for a certain class of vanishing potentials was studied. We mention that V. Benci and G. Cerami in [6] studied standing wave solutions of the critical problem $-\Delta u+a(x) u=u^{(N+2) /(N-2)}$ in \mathbb{R}^{N} involving vanishing potential requiring also that $a \in L^{N / 2}\left(\mathbb{R}^{N}\right)$. They proved this problem has at least one solution if $\|a\|_{L^{N / 2}}$ is sufficiently small. We point out that if $a(x) \approx|x|^{-\theta}$ with $0<\theta<p-2$ is in the class of potentials satisfying our assumptions, but $a \notin L^{N / 2}\left(\mathbb{R}^{N}\right)$ if $\theta \leq 2$, that is, $a(x)$ does not belongs to Benci-Cerami class (see Example 1.2).

We focus our study on the following model problem involving critical growth

$$
\left\{\begin{array}{l}
-\Delta u+V_{\lambda}(x) u=|u|^{2^{*}-2} u+\gamma|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}, \\
u>0 \text { in } \mathbb{R}^{3}, u \in D^{1,2}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

depending on $p \in\left(2,2^{*}\right)$, the potential $V_{\lambda}(x)=Z(x)+\lambda V(x)$ and the positive real paramenter λ. Here $N \geq 3$ and $2^{*}=2 N /(N-2)$ is the critical exponent for the classical Sobolev embedding. This potential $V_{\lambda}=Z+\lambda V$ appears in some recent works to study a class of nonlinear Schrödinger equations. For instance, $[2,4,5]$ and references therein, for the case where the potential is bounded away from zero. In the present paper, the potential $V_{\lambda}=Z+\lambda V$ may decay to zero at infinity in some direction (Z with compact support, for instance). To state our main results, let us describe in a more precise way the assumptions on the potential V :

$$
\begin{equation*}
Z(x) \text { and } V(x) \text { are continuous and nonnegative functions; } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
V(x) \equiv 0 \text { in some ball } B_{r_{1}}\left(x_{1}\right) \subset \mathbb{R}^{N} ; \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\liminf _{|x| \rightarrow \infty}|x|^{p-2} V(x)>0 ; \tag{3}
\end{equation*}
$$

Our first result for equation $\left(\mathcal{P}_{\lambda, \gamma}\right)$ is the following.
Theorem 1.1. Suppose that $\left(V_{1}\right)-\left(V_{3}\right)$ are satisfied and $2<p<2^{*}$. Then, there exists $\gamma^{*}>0$ such that for any $\gamma \geq \gamma^{*}$ there exists $\lambda^{*}=\lambda^{*}(\gamma)>0$ such that $\left(\mathcal{P}_{\lambda, \gamma}\right)$ possesses a positive solution for all $\lambda \geq \lambda^{*}$.

Let us give some examples which illustrate the above result.
Example 1.2. Given $C>0,0<\theta<p-2$ and $R_{o}>0$, we can check that any continuous and nonnegative function $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $V(x)=C /|x|^{\theta}$ for all $|x| \geq R_{o}$ verifies (V_{3}).

Remark 1.3. One can see that under our assumptions, the natural functional of $\left(\mathcal{P}_{\lambda, \gamma}\right)$ is not well defined. To face this difficulty, we propose a suitable modification on the nonlinearity $f_{\gamma}(s):=|u|^{2^{*}-2} u+\gamma|u|^{p-2} u$ such that the energy functional associated to the modified problem has compactness and allow us to prove the existence of a ground state solution by using the min-max techniques. Next, by choosing a sufficiently large γ, we verify that the solution to the auxiliary problem is indeed a solution to our original problem $\left(\mathcal{P}_{\lambda, \gamma}\right)$.

Using a similar approach as in Theorem 1.1, with some minor modifications, a more general result for the following problem can be proved.

$$
\left\{\begin{align*}
&-\Delta u+W_{\lambda}(x) u=|u|^{2^{*}-2} u+\gamma|u|^{p-2} u \text { in } \mathbb{R}^{N}, \\
& u>0 \text { in } \mathbb{R}^{3}, u \in D^{1,2}\left(\mathbb{R}^{N}\right),
\end{align*}\right.
$$

where W_{λ} verifies the following hypotheses:

$$
\begin{equation*}
\inf _{z \in \mathbb{R}^{N}} \int_{B_{1}(z)} W_{\lambda}(x) d x<1 \tag{4}
\end{equation*}
$$

There exists $R_{o}>0$ and $C>0$ such that $\inf _{|x| \geq R_{o}} W_{\lambda}(x)|x|^{p-2}>C \lambda$.

Theorem 1.4. Suppose that $\left(V_{4}\right)-\left(V_{5}\right)$ are satisfied and $2<p<2^{*}$. Then, there exist $\gamma^{*}>0$ such that for all $\gamma \geq \gamma^{*}$ there is a $\lambda^{*}=\lambda^{*}(\gamma)>0$ such that $\left(\mathcal{Q}_{\lambda, \gamma}\right)$ possesses a positive solution for all $\lambda \geq \lambda^{*}$.

Example 1.5. As an example of a class of potentials which satisfies conditions $\left(V_{4}\right)-\left(V_{5}\right)$ is given by $W_{\lambda}(x)=\lambda^{2} /\left(\lambda|x|^{\theta}+1\right)$ where $0<\theta<p-2$ for $|x-z| \geq r_{1}$ and W_{λ} bounded in $|x-z| \leq r_{o}$ uniformly in $\lambda>0$. Notice that W_{λ} does not verifies $\left(V_{1}\right)-\left(V_{3}\right)$.

Notation: Let us introduce the following notations:

- $C, \tilde{C}, C_{1}, C_{2}, \ldots$ denote positive constants (possibly different).
- $B_{R}\left(x_{0}\right)$ denotes the open ball centered at x_{0} and radius $R>0$.
- The norms in $L^{p}\left(\mathbb{R}^{N}\right)$ and $L^{\infty}\left(\mathbb{R}^{N}\right)$ will be denoted respectively by $\|\cdot\|_{p}$ and $\|\cdot\|_{\infty}$.

Outline: In the Section 2, we consider some auxiliary functionals and we obtain estimates for their mountain pass levels. Section 3 is devoted to a study of a $L^{2^{*}}$-estimate on the solutions of some auxiliary problem and its L^{∞}-estimate is done in the Section 4. We conclude the proof of Theorem 1.1 in the Section 5.

2 Preliminaries

We start observing that from $\left(V_{1}\right)$, we can introduce the natural Hilbert space

$$
E=\left\{v \in \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} V_{\lambda}(x) v^{2} d x<\infty\right\}
$$

endowed with the scalar product and norm given, respectively, by

$$
\langle u, v\rangle_{\lambda}=\int_{\mathbb{R}^{N}}\left(\nabla u \cdot \nabla v+V_{\lambda}(x) u v\right) d x, \quad\|u\|_{\lambda}^{2}=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+V_{\lambda}(x) u^{2}\right) d x .
$$

An initial difficulty that appears to attach variational problems like $\left(\mathcal{P}_{\lambda, \gamma}\right)$ in the case that the potential converges to zero at infinity is that,
in general, we do not have the embedding " $E \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$ " for $2 \leq p<2^{*}$ and the Euler-Lagrange functional associated to $\left(\mathcal{P}_{\lambda, \gamma}\right)$ is not well defined in E. For this reason, we will consider an auxiliary problem defined in bounded domains.

From $\left(V_{2}\right)$, without loss of generality, we suppose that $V(x)=0$ for all $x \in B_{1}(0)$. Now let us consider the energy functional $I_{0}: H_{o}^{1}\left(B_{1}(0)\right) \rightarrow \mathbb{R}$ defined by

$$
I_{0}(u)=\frac{1}{2}\|\nabla u\|_{L^{2}\left(B_{1}(0)\right)}^{2}+\frac{1}{2} \int_{B_{1}(0)} Z(x) u^{2} d x-\frac{\gamma}{p} \int_{B_{1}(0)}|u|^{p} d x .
$$

It is clear that I_{0} is well defined, belongs to class C^{1} and does not depend on λ. Moreover, under our assumptions one can verify that I_{0} has the mountain pass geometry and thus it is well defined the mountain pass level,

$$
d_{\gamma}=\inf _{v \in H_{o}^{1}\left(B_{1}(0)\right)} \max _{t>0} I_{0}(t v) .
$$

Next, we have a crucial upper bound estimate on this min-max level d_{γ}.

Proposition 2.1. There exist constants $C_{p}>0$ and $\gamma_{o}>0$ such that for all $\gamma \geq \gamma_{o}$ it holds

$$
0<d_{\gamma} \leq \frac{C_{p}}{\gamma^{\frac{2}{p-2}}}
$$

In particular $d_{\gamma} \rightarrow 0$ as $\gamma \rightarrow+\infty$.
Proof. Let $v_{o} \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ such that $0 \leq v_{o} \leq 1$ and define

$$
a:=\left\|\nabla v_{o}\right\|_{L^{2}\left(B_{1}(0)\right)}^{2}+\int_{B_{1}(0)} Z(x) v_{o}^{2} d x, \quad b:=\left\|v_{o}\right\|_{L^{p}\left(B_{1}(0)\right)}^{p} .
$$

Let us estimate $\max _{t>0} I_{0}\left(t v_{o}\right)$. It is clear that the function $h(t):=I_{0}\left(t v_{o}\right)$ has a unique critical point which is a global maximum point. Indeed, $h^{\prime}(t)=0$ is equivalent to $a=\gamma b t^{p-2}$. Thus, there is a unique $t>0$ such that $h^{\prime}(t)=0$. We also have for $\gamma>0$ sufficiently large,

$$
2 h(1)=a-\frac{2 \gamma b}{p}<0 .
$$

If t_{o} is the critical point of $h(t)$, it is easy to check that $h(t)$ is increasing in $\left(0, t_{o}\right)$ and it is decreasing in $\left(t_{o}, \infty\right)$. Then, since $h(1)<0$, we must have $t_{o}<1$ such that

$$
\max _{t>0} h(t)=h\left(t_{o}\right),
$$

which implies

$$
h\left(t_{o}\right)=\frac{a t_{o}^{2}}{2}-\frac{\gamma b t_{o}^{p}}{p}=\left(\frac{1}{2}-\frac{1}{p}\right) \gamma b t_{o}^{p}=\frac{C_{p}}{\gamma^{\frac{2}{p-2}}}
$$

where,

$$
C_{p}:=\frac{a^{\frac{p}{p-2}}}{b^{\frac{2}{p-2}}}\left(\frac{1}{2}-\frac{1}{p}\right),
$$

which completes our proof.

From Proposition 2.1, we can choose $\gamma^{*}>0$ such that for all $\gamma \geq \gamma^{*}$ it holds

$$
\begin{equation*}
d_{\gamma}<\min \left\{1, \frac{p-2}{2 p}, \frac{p-2}{2 p} S^{\frac{N}{N-1}}\right\}, \tag{2.1}
\end{equation*}
$$

where S is the best constant for the Sobolev embedding $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right) \hookrightarrow$ $L^{2^{*}}\left(\mathbb{R}^{N}\right)$, that is,

$$
S=\inf \left\{\|\nabla v\|_{2}^{2}: v \in \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right),\|v\|_{2^{*}}=1\right\} .
$$

3 Auxiliary problem

We begin this section by recalling that since we deal with a class of potentials that may decay to zero at infinity, the variational method cannot be applied because the natural Euler-Lagrange functional associated with Problem $\left(\mathcal{P}_{\lambda, \gamma}\right)$ is not well defined on the space E. To overcome this difficulty, we are going to modify the critical nonlinearity $f_{\gamma}(s):=$ $|u|^{2^{*}-2} u+\gamma|u|^{p-2} u$ as follows: choose $R \geq 1$ and define

$$
g(x, s)=\left\{\begin{array}{llll}
f_{\gamma}(s), & \text { if } & x \in B_{R} & \text { or }
\end{array} f_{\gamma}(s) \leq \frac{V_{\lambda}(x)}{p} s, ~ 子 \quad \text { and } \quad f_{\gamma}(s)>\frac{V_{\lambda}(x)}{p} s .\right.
$$

Let us consider the auxiliar problem

$$
\begin{equation*}
-\Delta u+V_{\lambda}(x) u=g(x, u), \text { in } \mathbb{R}^{N} \tag{AP}
\end{equation*}
$$

It is easy to check that $g(x, s)$ is a Carathéodory function and its primitive

$$
G(x, s)=\int_{0}^{s} g(x, \tau) d \tau
$$

is such that

$$
G(x, s)=F_{\gamma}(s) \quad \text { if } \quad x \in B_{R} \quad \text { or } \quad f_{\gamma}(s) \leq \frac{V_{\lambda}(x)}{p} s
$$

where

$$
F_{\gamma}(s)=\int_{0}^{s} f_{\gamma}(\tau) d \tau=\frac{|s|^{2^{*}}}{2^{*}}+\frac{\gamma|s|^{p}}{p}
$$

Moreover, since $f(s) / s$ is increasing for $s>0$ and decreasing if $s<0$, one can see that

$$
\begin{gather*}
s g(x, s) \leq|s|^{2^{*}}+\gamma|s|^{p}, \quad \text { for all } s \in \mathbb{R} \tag{1}\\
s g(x, s)-p G(x, s) \geq\left[\frac{1}{p}-\frac{1}{2}\right] V_{\lambda}(x) s^{2}, \quad \text { for all } s \in \mathbb{R} \tag{2}\\
s g(x, s) \leq \frac{V_{\lambda}(x)}{p} s^{2}, \quad \text { for all } s \in \mathbb{R} \text { and } x \in B_{R}^{c} \tag{3}
\end{gather*}
$$

Using standard arguments, from condition $\left(g_{3}\right)$, the corresponding energy functional $J: E \rightarrow \mathbb{R}$ is given by

$$
J(u)=\frac{1}{2}\|u\|_{\lambda}^{2} d x-\int_{\mathbb{R}^{N}} G(x, u) d x
$$

is well defined and of class C^{1} with

$$
J^{\prime}(u) v=\int_{\mathbb{R}^{N}}\left(\nabla u \nabla v+\int_{\mathbb{R}^{N}} V_{\lambda}(x) u v\right) d x-\int_{\mathbb{R}^{N}} g(x, u) v d x \text { for all } u, v \in E .
$$

From our assumptions, one can see that J fulfills the mountain pass geometry, and then the min-max level

$$
c_{\lambda, \gamma}=\inf _{v \in E} \max _{t>0} J(t v)
$$

is well defined, and satisfies $0<c_{\lambda, \gamma} \leq d_{\gamma}$ due to $J(v) \leq I_{0}(v)$ for all $v \in H_{0}^{1}\left(B_{1}(0)\right)$. We can use the Ekeland Variational Principle [11] to produces a Palais-Smale sequence $\left(u_{n}\right) \subset E$ at the ninimax level $c_{\lambda, \gamma}$, that is,

$$
\begin{equation*}
J\left(u_{n}\right) \rightarrow c_{\lambda, \gamma} \text { and } J^{\prime}\left(u_{n}\right) \rightarrow 0 . \tag{3.1}
\end{equation*}
$$

Lemma 3.1. The sequence $\left(u_{n}\right)$ is bounded in E and $\left\|\nabla u_{n}\right\|_{2} \leq 1$ for large n.

Proof. Indeed, using (3.1) for n big enough, we have

$$
c_{\lambda, \gamma}+1+\left\|u_{n}\right\|_{\lambda} \geq J\left(u_{n}\right)-\frac{1}{p} J^{\prime}\left(u_{n}\right) u_{n} .
$$

From $\left(g_{2}\right)$, it is easy to check that

$$
\begin{aligned}
d_{\gamma}+1+\left\|u_{n}\right\|_{\lambda} \geq & \left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{N}}\left[\left|\nabla u_{n}\right|^{2}+V_{\lambda}(x) u_{n}^{2}\right] d x \\
& +\int_{\mathbb{R}^{N}}\left[\frac{1}{p} g\left(x, u_{n}\right) u_{n}-G\left(x, u_{n}\right)\right] d x \\
\geq\left(\frac{1}{2}-\frac{1}{p}\right)\left(1-\frac{1}{p}\right) & \int_{\mathbb{R}^{N}} V_{\lambda}(x) u_{n}^{2} d x+\left(\frac{1}{2}-\frac{1}{p}\right)\left\|\nabla u_{n}\right\|_{2}^{2} .
\end{aligned}
$$

This last inequality show that $\left(u_{n}\right)$ is bounded in E. Besides, using (2.1), for all n large enough, we have

$$
\begin{equation*}
\left\|\nabla u_{n}\right\|_{2}^{2} \leq\left(d_{\gamma}+o_{n}(1)\right) \frac{p-2}{2 p} \leq 1 \tag{3.2}
\end{equation*}
$$

which completes the proof.
Lemma 3.2. Up to a subsequence, we have that $\left(u_{n}\right)$ converges in $L^{2^{*}}\left(\mathbb{R}^{N}\right)$.
Proof. We may suppose that $u_{n} \rightharpoonup u$ weakly in $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right),\left|\nabla u_{n}\right|^{2}$ and $\left|u_{n}\right|^{2^{*}}$ converge tightly to μ and ν, where μ and ν are bounded nonnegative measures on \mathbb{R}^{3}. Moreover, $u_{n} \rightarrow u$ in $L_{l o c}^{r}\left(\mathbb{R}^{N}\right)$, for all $2 \leq r<2^{*}$. Then, in view of Lions concentration compactnes principle (see [14, Lemma I.1], page 158), we have

1. there exists a sequence $\left(\nu_{j}\right)_{j \in \mathbb{N}}$ in $\mathbb{R}_{+},\left(x_{j}\right)_{j \in \mathbb{N}}$ in \mathbb{R}^{N} such that

$$
\nu=|u|^{2^{*}}+\sum_{j=1}^{\infty} \nu_{j} \delta_{x_{j}} ;
$$

2. besides, we have

$$
\mu \geq|\nabla u|^{2}+S \sum_{j=1}^{\infty} \nu_{j}^{\frac{1}{N}} \delta_{x_{j}} .
$$

Let $\phi \in C_{o}^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ such that $\phi(x)=1$, if $|x| \leq 1 / 2$ and $\phi(x)=0$ if $|x| \geq 1$. For each $\varepsilon \in(0,1)$ let us consider

$$
\phi_{\varepsilon}(x)=\phi\left(\frac{x-x_{j}}{\varepsilon}\right) .
$$

Notice that if $2 \leq r<2^{*}$,

$$
\lim _{n} \int_{\mathbb{R}^{N}} \phi_{\varepsilon}\left|u_{n}\right|^{r} d x=\int_{\mathbb{R}^{3}} \phi_{\varepsilon}|u|^{r} d x:=B_{\varepsilon, u, r}
$$

and for each fixed $u \in E$, we have $\operatorname{supp}\left(\phi_{\varepsilon}\right) \subset B(0,1)$ and $\left.\left|\phi_{\varepsilon}\right| u\right|^{r}\left|\leq|u|^{r}\right.$. Thus by Lebesgue's dominated convergence theorem,

$$
\lim _{\varepsilon \rightarrow 0} B_{\varepsilon, u, r}=0
$$

From (g_{1}), we get

$$
\left|\int_{\mathbb{R}^{N}}\left(u_{n} \phi_{\varepsilon}\right) g\left(x, u_{n}\right) d x\right| \leq \gamma \int_{\mathbb{R}^{N}} \phi_{\varepsilon}\left|u_{n}\right|^{q+1} d x+\int_{\mathbb{R}^{N}} \phi_{\varepsilon} u_{n}^{2^{*}} d x
$$

and consequently

$$
\limsup _{n}\left|\int_{\mathbb{R}^{N}}\left(u_{n} \phi_{\varepsilon}\right) g\left(x, u_{n}\right) d x\right| \leq C\left(B_{\varepsilon, u, q+1}+\int_{\mathbb{R}^{N}} \varphi_{\varepsilon} d \nu\right) .
$$

By using a Hölder indquality we obtain

$$
\left|\int_{\mathbb{R}^{N}} u_{n} \nabla \phi_{\varepsilon} \nabla u_{n} d x\right| \leq \varepsilon^{-1}\left(\int_{\left|x-x_{j}\right| \leq 2 \varepsilon} u_{n}^{2} d x\right)^{\frac{1}{2}}\left(\int_{\left|x-x_{j}\right| \leq 2 \varepsilon}\left|\nabla u_{n}\right|^{2} d x\right)^{\frac{1}{2}} .
$$

As $\left(u_{n}\right)$ is bounded in E, we have

$$
\left|\int_{\mathbb{R}^{N}} u_{n} \nabla \phi_{\varepsilon} \nabla u_{n} d x\right| \leq C\left(\int_{\left|x-x_{j}\right| \leq 2 \varepsilon} u_{n}^{2} d x\right)^{\frac{1}{2}}, \text { for all } n, \varepsilon
$$

and

$$
\limsup _{n}\left|\int_{\mathbb{R}^{N}} u_{n} \nabla \phi_{\varepsilon} \nabla u_{n} d x\right| \leq C\left(\int_{\left|x-x_{j}\right| \leq 2 \varepsilon} u^{2} d x\right)^{\frac{1}{2}}, \text { for all } \varepsilon
$$

which shows that

$$
\lim _{\varepsilon \rightarrow 0}\left(\limsup _{n}\left|\int_{\mathbb{R}^{N}} u_{n} \nabla \phi_{\varepsilon} \nabla u_{n} d x\right|\right)=0
$$

Now, we can see that

$$
\begin{aligned}
& o_{n}(1)=J^{\prime}\left(u_{n}\right)\left(u_{n} \phi_{\varepsilon}\right)=\int_{\mathbb{R}^{N}} \nabla u_{n} \nabla\left(u_{n} \phi_{\varepsilon}\right) d x+\int_{\mathbb{R}^{N}} V(x) u_{n}\left(u_{n} \phi_{\varepsilon}\right) d x \\
&-\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right)\left(u_{n} \phi_{\varepsilon}\right) d x \\
&=\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} \phi_{\varepsilon} d x+\int_{\mathbb{R}^{N}} V_{\lambda}(x) u_{n}^{2} \varphi_{\varepsilon} d x+\int_{\mathbb{R}^{N}} u_{n} \nabla \phi_{\varepsilon} \nabla u_{n} d x \\
&-\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) \cdot u_{n} \phi_{\varepsilon} d x
\end{aligned}
$$

or,

$$
\begin{array}{r}
\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} \phi_{\varepsilon} d x+\int_{\mathbb{R}^{3}} V_{\lambda}(x)
\end{array} u_{n}^{2} \phi_{\varepsilon} d x=-\int_{\mathbb{R}^{N}} u_{n} \nabla \phi_{\varepsilon} \nabla u_{n} d x .
$$

Passing to the limit as $n \rightarrow \infty$, we have

$$
\left|\int \phi_{\varepsilon} d \mu+B_{\varepsilon, u, 2}-\int \phi_{\varepsilon} d \nu\right| \leq C\left[B_{\varepsilon, u, q+1}+\left(\int_{\left|x-x_{j}\right| \leq \varepsilon} u^{2} d x\right)^{1 / 2}\right]
$$

for all ε. Passing to the limit as $\varepsilon \rightarrow 0$

$$
\mu\left(\left\{x_{j}\right\}\right)=\nu\left(\left\{x_{j}\right\}\right)=\nu_{j} .
$$

Combining with part (2) of Lions Lemma,

$$
\mu\left(\left\{x_{j}\right\}\right) \geq S \nu_{j}^{1 / N}
$$

we have

$$
\nu_{j} \geq S \nu_{j}^{1 / N}
$$

and thus, if $\nu_{j}>0$ we obtain

$$
\nu_{j}^{\frac{N-1}{N}} \geq S
$$

which implies that

$$
\begin{equation*}
\mu\left(\left\{x_{j}\right\}\right)=\nu_{j} \geq S^{\frac{N}{N-1}} . \tag{3.3}
\end{equation*}
$$

We know that, $c_{\lambda, \gamma}+o_{n}(1)=J\left(u_{n}\right)-\frac{1}{p} J^{\prime}\left(u_{n}\right) u_{n}$, and then

$$
\begin{aligned}
c_{\lambda, \gamma}= & {\left[\frac{1}{2}-\frac{1}{p}\right]\left\|\nabla u_{n}\right\|_{2}^{2}+\left[\frac{1}{2}-\frac{1}{p}\right] \int_{\mathbb{R}^{N}} V_{\lambda}(x) u_{n}^{2} \phi_{\varepsilon} d x } \\
& +\int_{\mathbb{R}^{N}}\left(\frac{1}{p} u_{n} g\left(x, u_{n}\right)-G\left(x, u_{n}\right)\right) d x+o_{n}(1) \\
& \geq\left[\frac{1}{2}-\frac{1}{p}\right] \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} \phi_{\varepsilon} d x+o_{n}(1)+o_{\varepsilon}(1) .
\end{aligned}
$$

Passing to the limit as $n \rightarrow+\infty$, we obtain

$$
c_{\lambda, \gamma} \geq\left[\frac{1}{2}-\frac{1}{p}\right] \int_{\mathbb{R}^{N}} \phi_{\varepsilon} d \mu+o_{\varepsilon}(1) .
$$

Taking to the limit as $\varepsilon \rightarrow 0$, we have

$$
c_{\lambda, \gamma} \geq\left[\frac{1}{2}-\frac{1}{p}\right] \mu\left(\left\{x_{j}\right\}\right) .
$$

We also note that assumption (3.3) implies that, if $\nu_{j}>0$ we can deduce

$$
c_{\lambda, \gamma} \geq\left[\frac{1}{2}-\frac{1}{p}\right] S^{\frac{N}{N-1}},
$$

which is a contradiction with the inequality $c_{\lambda, \gamma} \leq d_{\gamma}$ and (2.1). Then $\nu_{i}=0$ for all i and, u_{n} converges to u in $L^{2^{*}}\left(\mathbb{R}^{N}\right)$.

Lemma 3.3. The following limits hold for the sequence $\left(u_{n}\right)$:

$$
\begin{align*}
\lim _{n} \int_{\mathbb{R}^{N}} V_{\lambda}(x) u_{n}^{2} d x & =\int_{\mathbb{R}^{N}} V_{\lambda}(x) u^{2} d x, \tag{3.4}\\
\lim _{n} \int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) u_{n} d x & =\int_{\mathbb{R}^{N}} g(x, u) u d x, \tag{3.5}\\
\lim _{n} \int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) v d x & =\int_{\mathbb{R}^{N}} g(x, u) v d x, \forall v \in E \tag{3.6}\\
\lim _{n} \int_{\mathbb{R}^{N}} G\left(x, u_{n}\right) d x & =\int_{\mathbb{R}^{N}} G(x, u) d x . \tag{3.7}
\end{align*}
$$

Proof. We start with the following claim:

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \int_{|x| \geq r}\left[\left|\nabla u_{n}\right|^{2}+V_{\lambda}(x) u_{n}^{2}\right] d x=0, \text { uniformly in } n . \tag{3.8}
\end{equation*}
$$

In fact, let us consider a cut-off function $\eta \in C_{0}^{\infty}\left(B_{r}^{c},[0,1]\right)$ such that $\eta(x)=1$ for all $|x| \geq 2 r$ and $|\nabla \eta(x)| \leq 2 / r$ for all $x \in \mathbb{R}^{3}$. Since $\left(u_{n}\right)$ is bounded in E, the sequence $\left(\eta u_{n}\right)$ is also bounded in E, and then $J^{\prime}\left(u_{n}\right)\left(\eta u_{n}\right)=o_{n}(1)$, that is,
$\int_{\mathbb{R}^{N}} \nabla u_{n} \nabla\left(\eta u_{n}\right) d x+\int_{\mathbb{R}^{N}} V_{\lambda}(x) u_{n}\left(\eta u_{n}\right) d x=\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right)\left(\eta u_{n}\right) d x+o_{n}(1)$.
Since $\eta(x)=0$ for all $|x| \leq r$, using $\left(g_{3}\right)$ we obtain

$$
\begin{aligned}
\int_{|x| \geq r} \eta\left[\left|\nabla u_{n}\right|^{2}+V_{\lambda}(x) u_{n}^{2}\right] d x \leq \frac{1}{p} \int_{|x| \geq r} & \eta V_{\lambda}(x) u_{n}^{2} d x \\
& -\int_{|x| \geq r} u_{n} \nabla u_{n} \nabla \eta d x+o_{n}(1),
\end{aligned}
$$

which implies

$$
\begin{align*}
&\left(1-\frac{1}{p}\right) \int_{|x| \geq r} \eta\left[\left|\nabla u_{n}\right|^{2}+V_{\lambda}(x) u_{n}^{2}\right] d x \\
& \leq \int_{r \leq|x| \leq 2 r}\left|u_{n}\right|\left|\nabla u_{n}\right| d x+o_{n}(1) . \tag{3.9}
\end{align*}
$$

Using Hölder inequality, we can estimate

$$
\int_{r \leq|x| \leq 2 r}\left|u_{n}\right|\left|\nabla u_{n}\right| d x \leq\left\|\nabla u_{n}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}\left(\int_{r \leq|x| \leq 2 r}\left|u_{n}\right|^{2} d x\right)^{1 / 2}
$$

Since $u_{n} \rightarrow u$ strongly in $L^{2}\left(B_{2 r} \backslash B_{r}\right)$ and $\left\|\nabla u_{n}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \leq 1$ (see Lemma 3.1), it follows that

$$
\begin{equation*}
\limsup _{n} \int_{r \leq|x| \leq 2 r}\left|u_{n}\right|\left|\nabla u_{n}\right| d x \leq\left(\int_{r \leq|x| \leq 2 r}|u|^{2} d x\right)^{1 / 2} \tag{3.10}
\end{equation*}
$$

On the other hand, Hölder inequality implies

$$
\left(\int_{r \leq|x| \leq 2 r}|u|^{2} d x\right)^{1 / 2} \leq\left(\int_{r \leq|x| \leq 2 r}|u|^{2^{*}} d x\right)^{1 / 2^{*}}\left|B_{2 r} \backslash B_{r}\right|^{1 / N}
$$

which together with (3.10) yields

$$
\begin{equation*}
\limsup _{n} \int_{r \leq|x| \leq 2 r}\left|u_{n}\right|\left|\nabla u_{n}\right| d x \leq\left|B_{2 r} \backslash B_{r}\right|^{1 / N}\left(\int_{r \leq|x| \leq 2 r}|u|^{2^{*}} d x\right)^{1 / 2^{*}} \tag{3.11}
\end{equation*}
$$

(3.9) and (3.11) show the claim.

Since $u_{n} \rightarrow u$ strongly in $L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{N}\right)$, (3.4) follows from (3.8). To prove (3.5)-(3.6), we can use (3.4) together with condition $\left(g_{3}\right)$.

Using Lemmas 3.2 and 3.3 we can show that u is a weak solution for the problem

$$
-\Delta u+V_{\lambda}(x) u=|u|^{2^{*}-2} u+g(x, u), \mathbb{R}^{N}
$$

and

$$
\|u\|_{\lambda}^{2}=\int_{\mathbb{R}^{N}}|u|^{2^{*}} d x+\int_{\mathbb{R}^{N}} g(x, u) u d x
$$

Now passing to the limit in

$$
\left\|\nabla u_{n}\right\|_{2}^{2}+\int_{\mathbb{R}^{N}} V_{\lambda}(x) u_{n}^{2} d x=\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2^{*}} d x+\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) u_{n} d x+o_{n}(1)
$$

we conclude that

$$
\lim _{n}\left\|u_{n}\right\|_{\lambda}^{2}=\|u\|_{\lambda}^{2} .
$$

Then u_{n} converges to u in E and $J(u)=c_{\lambda, \gamma}$. Therefore u is a ground state solution to auxiliary problem $(\mathcal{A P})$ which depends on R and satisfies

$$
\|\nabla u\|_{2}^{2} \leq d_{\gamma} \frac{p-2}{2 p}, \text { for all } R>1
$$

Furthermore, it follows

$$
\begin{equation*}
\|u\|_{2^{*}}^{2} \leq S^{-1}\|\nabla u\|_{2}^{2} \leq d_{\gamma} \frac{p-2}{2 p S} \tag{3.12}
\end{equation*}
$$

independent on the choice of $R>1$. Combining Proposition 2.1 and (3.12) we have that

$$
\begin{equation*}
\|u\|_{2^{*}} \leq C \gamma^{-\frac{1}{p-2}} . \tag{3.13}
\end{equation*}
$$

4 A priori estimates in the $L^{\infty}\left(\mathbb{R}^{N}\right)$ norm

We derive some a priori L^{∞}-estimates for the solutions of Auxiliary Problem $(\mathcal{A P})$. For that we follow some extraordinary ideas due to E . De Giorgi, J. Nash and J. Moser, to obtain regularity results that were discovered in the mid 1950's and early 1960's. For more details see for example [9, 12, 13].

Theorem 4.1. Let u be a solution to ($\mathcal{A P}$) then

$$
\|u\|_{\infty} \leq C \gamma^{\frac{2 N p-(8+4 N)}{\left(2^{*}-p\right)(p-2)(N-2)}},
$$

where C is a positive constant.
Before we prove the above estimate we will need to provide some crucial results. First let us state a version of

Lemma 4.2. Let $b: \mathbb{R}^{N} \mapsto \mathbb{R}$ be a nonnegative measurable function and let $h \in L_{\text {loc }}^{q}\left(\mathbb{R}^{N}\right)$ such that

$$
[h]_{q}=\sup _{z \in \mathbb{R}^{N}}\left(\int_{B_{2}(z)}|h|^{q} d x\right)^{1 / q}<\infty
$$

where $3 \leq N<2 q$. Suppose that $v \in E$ is a weak solution to the problem

$$
\begin{equation*}
-\Delta v+b(x) v=h(x) \text { in } \mathbb{R}^{N} \tag{4.1}
\end{equation*}
$$

Then we have

$$
\sup _{x \in B_{1}(z)}|v(x)| \leq C[h]_{q}\left(\int_{B_{2}(z)}|v|^{2^{*}} d x\right)^{1 / 2^{*}} \text { for all } z \in \mathbb{R}^{N}
$$

where C depends only on q (it does not depend on b or v).

Proposition 4.3. Let the potential $V_{o}: \mathbb{R}^{N} \mapsto \mathbb{R}$ be a nonnegative measurable function and the nonlinear term $g(x, s)$ be a Caratheodory function such that some $\alpha_{o}, \beta_{o}>0$,

$$
|g(x, s)| \leq \alpha_{o}|s|^{2^{*}-1}+\beta_{o}|s| \quad \text { for all } \quad(x, s) \in \mathbb{R}^{N} \times \mathbb{R}
$$

Suppose that $u \in E$ is a weak solution to the problem

$$
\begin{equation*}
-\Delta u+V_{o}(x) u=g(x, u) \text { in } \mathbb{R}^{N} \tag{4.2}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\frac{2 N^{2}}{N^{2}-4} \alpha_{o}\|u\|_{2^{*}}^{2^{*}-2} \leq S \tag{C}
\end{equation*}
$$

Then there is Λ such that

$$
\|u\|_{\infty} \leq \Lambda\|u\|_{2^{*}}^{2},
$$

where Λ does not depend on V or u, indeed Λ depends only on β_{o}. In addition we have $\Lambda=O\left(\beta_{o}\right)$ as $\beta_{o} \rightarrow \infty$.
(See [10] - Proposition 4.3).
Proof. For each $n \in \mathbb{N}$, let us consider the sets

$$
A_{n}=\left\{x \in \mathbb{R}^{N}:|u|^{2^{*}-2} \leq n^{2}\right\} \quad \text { and } \quad B_{n}=\mathbb{R}^{N} \backslash A_{n} .
$$

and define the function $v_{n} \in E$ by

$$
v_{n}=|u|^{2^{*}-2} u \quad \text { in } A_{n} \quad \text { and } \quad v_{n}=n^{2} u \text { in } B_{n} .
$$

Observe that $v_{n} \in E, v_{n} u \leq|u|^{2^{*}}$ in \mathbb{R}^{N},

$$
\begin{equation*}
\nabla v_{n}=\left(2^{*}-1\right)|u|^{2^{*}-2} \nabla u \text { in } A_{n} \text { and } \nabla v_{n}=n^{2} \nabla u \text { in } B_{n} . \tag{4.3}
\end{equation*}
$$

Then, using v_{n} as a test function in (4.2),

$$
\int_{\mathbb{R}^{N}}\left[\nabla u \nabla v_{n}+V_{o}(x) u v_{n}\right] d x=\int_{\mathbb{R}^{3}} g(x, u) v_{n} d x .
$$

From (4.3) we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \nabla u \nabla v_{n} d x=\left(2^{*}-1\right) \int_{A_{n}}|u|^{2^{*}-2}|\nabla u|^{2} d x+n^{2} \int_{B_{n}}|\nabla u|^{2} d x \tag{4.4}
\end{equation*}
$$

Now consider

$$
\omega_{n}=|u|^{\frac{2}{N-2}} u \text { in } A_{n} \text { and } \omega_{n}=n u \text { in } B_{n}
$$

Note that $\omega_{n}^{2}=u v_{n} \leq|u|^{2^{*}}, \quad 0 \leq V_{o}(x) \omega_{n}^{2}=V_{o}(x) u v_{n}$ in \mathbb{R}^{N}. Moreover,

$$
\nabla \omega_{n}=\frac{N}{N-2}|u|^{\frac{2}{N-2}} \nabla u \text { in } A_{n} \quad \text { and } \quad \nabla \omega_{n}=n \nabla u \text { in } B_{n}
$$

Thus,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|\nabla \omega_{n}\right|^{2} d x=\frac{N^{2}}{(N-2)^{2}} \int_{A_{n}} u^{2^{*}-2}|\nabla u|^{2} d x+n^{2} \int_{B_{n}}|\nabla u|^{2} d x \tag{4.5}
\end{equation*}
$$

Combining (4.4) and (4.5), we obtain

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left[\left(\left|\nabla \omega_{n}\right|^{2}+V_{o}(x) \omega_{n}^{2}\right] d x\right. & -\int_{\mathbb{R}^{N}}\left[\nabla u \nabla v_{n}+V_{o}(x) u v_{n}\right] d x \\
& =\frac{4}{(N-2)^{2}} \int_{A_{n}} u^{2^{*}-2}|\nabla u|^{2} d x
\end{aligned}
$$

From (4.4), we extract the inequality

$$
\left(2^{*}-1\right) \int_{A_{n}} u^{2^{*}-2}|\nabla u|^{2} d x \leq \int_{\mathbb{R}^{N}}\left[\nabla u \nabla v_{n}+V_{o}(x) u v_{n}\right] d x
$$

and then

$$
\int_{\mathbb{R}^{N}}\left[\left|\nabla \omega_{n}\right|^{2}+V_{o}(x) \omega_{n}^{2}\right] d x \leq \frac{N^{2}}{N^{2}-4} \int_{\mathbb{R}^{N}}\left[\nabla u \nabla v_{n}+V_{o}(x) u v_{n}\right] d x
$$

Since u a weak solution to (4.2), we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left[\left|\nabla \omega_{n}\right|^{2}+V_{o}(x) \omega_{n}^{2}\right] d x \leq \frac{N^{2}}{N^{2}-4} \int_{\mathbb{R}^{N}} g(x, u) v_{n} d x \tag{4.6}
\end{equation*}
$$

Observe that $g(x, u) v_{n} \leq \alpha_{o}|u|^{2^{*}-1}\left|v_{n}\right|+\beta_{o}\left|u \| v_{n}\right|=\alpha_{o}|u|^{2^{*}-2} w_{n}^{2}+\beta_{o} w_{n}^{2}$ in \mathbb{R}^{N}. From the Hölder inequality, we get

$$
\begin{array}{r}
\int_{\mathbb{R}^{N}}\left[\left|\nabla \omega_{n}\right|^{2}+V_{o}(x) \omega_{n}^{2}\right] d x \leq \frac{N^{2}}{N^{2}-4} \alpha_{o} \int_{\mathbb{R}^{N}}|u|^{2^{*}-2} w_{n}^{2} d x \\
+\frac{N^{2}}{N^{2}-4} \beta_{o} \int_{\mathbb{R}^{N}} w_{n}^{2} d x \\
\leq \frac{N^{2}}{N^{2}-4} \alpha_{o}\|u\|_{2^{*}}^{2^{*}-2}\left\|w_{n}\right\|_{2^{*}}^{2}+\frac{N^{2}}{N^{2}-4} \beta_{o} \int_{\mathbb{R}^{N}} \omega_{n}^{2} d x .
\end{array}
$$

Combining this last inequality with the Sobolev inequality bellow

$$
S\left\|w_{n}\right\|_{2^{*}}^{2} \leq \int_{\mathbb{R}^{N}}\left|\nabla \omega_{n}\right|^{2} d x \leq \int_{\mathbb{R}^{N}}\left[\left|\nabla \omega_{n}\right|^{2}+V_{o}(x) \omega_{n}^{2}\right] d x,
$$

under hypothesis (\mathcal{C}), we have

$$
\left[\int_{A_{n}}\left|\omega_{n}\right|^{2^{*}} d x\right]^{\frac{2}{2^{*}}} \leq\left[\left.\int_{\mathbb{R}^{N}}\left|\omega_{n}\right|\right|^{2^{*}} d x\right]^{\frac{2}{2^{*}}} \leq \frac{2 N^{2}}{N^{2}-4} \beta_{o} S^{-1} \int_{\mathbb{R}^{N}} \omega_{n}^{2} d x
$$

which together with the fact that $\left|\omega_{n}\right| \leq|u|^{\frac{N}{N-2}}$ in \mathbb{R}^{N} and $\left|\omega_{n}\right|=|u|^{\frac{N}{N-2}}$ in A_{n} implies

$$
\begin{equation*}
\left[\int_{A_{n}}|u|^{\frac{2 N^{2}}{(N-2)^{2}}} d x\right]^{\frac{2}{2^{* 2}}} \leq\left(\frac{2 N^{2}}{(N-2)^{2}} \beta_{o} S^{-1}\right)^{\frac{1}{2^{*}}}\left[\int_{\mathbb{R}^{N}}|u|^{2^{*}} d x\right]^{\frac{1}{2^{*}}} \tag{4.7}
\end{equation*}
$$

Passing to the liminf in (4.7) and using Fatou's lemma we obtain

$$
\begin{equation*}
\|u\|_{\frac{2 N^{2}}{(N-2)^{2}}} \leq\left(\frac{2 N^{2}}{(N-2)^{2}} \beta_{o} S^{-1}\right)^{\frac{1}{2^{*}}}\|u\|_{2^{*}} \tag{4.8}
\end{equation*}
$$

Thus $u \in L^{\frac{2 N^{2}}{(N-2)^{2}}}\left(\mathbb{R}^{N}\right) \cap L^{2^{*}}\left(\mathbb{R}^{N}\right)$, which implies that $h=\alpha_{o}|u|^{2^{*}-1}+$ $\beta_{o}|u| \in L_{l o c}^{\frac{2 N^{2}}{N^{2}-4}}\left(\mathbb{R}^{N}\right)$. Moreover, from (4.8) and condition (C), we obtain

$$
[h]_{\frac{2 N^{2}}{N^{2}-4}} \leq \alpha_{o}\|u\|_{\frac{2 N^{2}}{(N-2)^{2}}}^{2^{*}}+C \beta_{o}[u]_{\frac{2 N^{2}}{N^{2}-4}} .
$$

Since $\frac{2 N^{2}}{N^{2}-4}<2^{*}$, we have

$$
\left(\int_{B_{2}(z)}|u|^{\frac{2 N^{2}}{N^{2}-4}} d x\right)^{\frac{N^{2}-4}{2 N^{2}}} \leq\left[\left(\int_{B_{2}(z)}|u|^{2^{*}} d x\right)^{\frac{N}{N+2}}\left(\int_{B_{2}(z)} d x\right)^{\frac{2}{N+2}}\right]^{\frac{N^{2}-4}{2 N^{2}}}
$$

and then $[u]_{\frac{2 N^{2}}{N^{2}-4}} \leq\left|B_{2}(0)\right|^{\frac{N-2}{N^{2}}}\|u\|_{2^{*}}$. So, using (\mathcal{C}) once more we have

$$
\begin{array}{r}
{[h]_{\frac{2 N^{2}}{N^{2}-4}} \leq \alpha_{o}\left(\frac{2 N^{2}}{(N-2)^{2}} \beta_{o} S^{-1}\right)^{\frac{N+2}{2 N}}\|u\|_{2^{*}}^{2^{*}-1}+C \beta_{o}\left|B_{2}(0)\right|^{\frac{N-2}{N^{2}}}\|u\|_{2^{*}}} \\
=\alpha_{o}\left(\frac{2 N^{2}}{(N-2)^{2}} \beta_{o} S^{-1}\right)^{\frac{N+2}{2 N}}\|u\|_{2^{*}}^{2^{*}-2}\|u\|_{2^{*}}+C \beta_{o}\left|B_{2}(0)\right|^{\frac{N-2}{N^{2}}}\|u\|_{2^{*}} \\
C\left(\beta_{o}^{\frac{N+2}{2 N}}+\beta_{o}\right)\|u\|_{2^{*}} .
\end{array}
$$

From Lemma 4.2 there exists a positive constant Λ which depends only on α_{o} and β_{o} such that

$$
\|u\|_{\infty} \leq \Lambda\|u\|_{2^{*}}^{2}
$$

and the proof is completed.

4.1 Proof of Theorem 4.1 completed

From the Young's inequality we see that

$$
\gamma|s|^{p-2} \leq \frac{(p-2)}{2^{*}-2}|s|^{2^{*}-2}+\frac{\left(2^{*}-p\right)}{2^{*}-2} \gamma^{\frac{2^{*}-2}{2^{*}-p}},
$$

for all real s. This implies that

$$
|g(x, s)| \leq|s|^{2^{*}-1}+\gamma|s|^{p-1} \leq \frac{\left(2^{*}+p-4\right)}{2^{*}-2}|s|^{2^{*}-1}+\frac{\left(2^{*}-p\right)}{2^{*}-2} \gamma^{2^{2^{*}-2}-p}|s|,
$$

The choice of d_{γ} in (2.1) together (3.12) show that a solution $u=u_{R}$ above satisfies

$$
-\Delta u+V_{\lambda}(x) u=|u|^{2^{*}-2} u+\gamma|u|^{p-2} u
$$

and

$$
\begin{array}{r}
\frac{2 N^{2}}{N^{2}-4} \cdot \frac{2^{*}+p-4}{2^{*}-2}\|u\|_{2^{*}}^{2^{*}-2} S^{-1} \leq \frac{2 N^{2}}{N^{2}-4} \cdot \frac{2^{*}+p-4}{\left(2^{*}-2\right) S} \cdot\left(C \gamma^{-\frac{1}{p-2}}\right)^{\frac{4}{N-2}} \\
\leq 1
\end{array}
$$

for γ large enough. We will use Proposition 4.3 with $\alpha_{o}=\frac{2^{*}+p-4}{2^{*}-2}$. From Proposition 4.3 with $\beta_{o}=\frac{\left(2^{*}-p\right)}{2^{*}-2} \gamma^{\frac{2^{*}-2}{2^{*}-p}}$ we have:

$$
\|u\|_{\infty} \leq C \Lambda\|u\|_{2^{*}}^{2} \leq C \gamma^{\frac{2^{*}-2}{2^{*}-p}} \gamma^{\frac{-2}{p-2}} .
$$

Now we have a family of solutions $u=u_{R}$ of the auxiliary problems $(\mathcal{A P})$ in L^{∞} and

$$
\begin{equation*}
\|u\|_{\infty} \leq C \gamma^{\frac{2 N p-(8+4 N)}{\left(2^{*}-p\right)(p-2)(N-2)}} . \tag{4.9}
\end{equation*}
$$

where C is a positive constant.

5 Proof of Theorem 1.1

We need to show that a solution $u \in E$ of the auxiliary problem satisfies

$$
\begin{equation*}
f(u) \leq \frac{V_{\lambda}(x)}{p} u \quad \text { in }|x| \geq R . \tag{5.1}
\end{equation*}
$$

Lemma 5.1. For any ground state solution to ($\mathcal{A P}$), it holds

$$
\begin{equation*}
u(x) \leq \frac{R\|u\|_{\infty}}{|x|}, \quad \text { for all } \quad|x| \geq R \tag{5.2}
\end{equation*}
$$

Proof. It is an usual approach and you can find in Lemma 5.1 - [10].

Lemma 5.2. There exists $C_{o}>0$ such that for any ground state solution to Problem ($\mathcal{A P}$) it holds

$$
\begin{equation*}
\frac{f(u)}{u} \leq C_{o}\left(\frac{R}{|x|}\right)^{p-2} \gamma^{\frac{\left(2^{*}-2\right)[2 N p-(8+4 N)]}{\left(2^{*}-p\right)(p-2)(N-2)}}, \quad \text { for all } \quad|x| \geq R . \tag{5.3}
\end{equation*}
$$

Proof. From Lemma 5.1, we have

$$
\frac{f(u)}{u}=u^{2^{*}-2}+\gamma|u|^{p-2} \leq \frac{R^{2^{*}-2}\|u\|_{\infty}^{2^{*}-2}}{|x|^{2^{*}-2}}+\gamma \frac{R^{p-2}\|u\|_{\infty}^{p-2}}{|x|^{p-2}}
$$

which together with (4.9) gives

$$
\begin{aligned}
\frac{f(u)}{u} & \leq \frac{R^{2^{*}-2} C^{2^{*}-2} \gamma^{\frac{\left(2^{*}-2\right)[2 N p-(8+4 N)]}{\left(2^{*}-p\right)(p-2)(N-2)}}}{|x|^{2^{*}-2}}+\gamma \frac{R^{p-2} C^{p-2} \gamma^{\frac{(p-2)[2 N p-(8+4 N)]}{\left(2^{*}-p\right)(p-2)(N-2)}}}{|x|^{p-2}} \\
& \leq\left[\frac{R^{2^{*}-2} C^{2^{*}-2}}{|x|^{2^{*}-2}}+\frac{R^{p-2} C^{p-2}}{|x|^{p-2}}\right] \gamma^{\frac{\left(2^{*}-2\right)[2 N p-(8+4 N)]}{\left(2^{*}-p\right)(p-2)(N-2)}} \\
& =\frac{R^{p-2}}{|x|^{p-2}}\left[C^{p-2}+C^{2^{*}-2} \frac{R^{2^{*}-p}}{|x|^{2^{*}-p}}\right] \gamma^{\frac{\left(2^{*}-2\right)[2 N p-(8+4 N)]}{\left(2^{*}-p\right)(p-2)(N-2)}} \\
& \leq C_{o}\left(\frac{R}{|x|}\right)^{p-2} \gamma^{\frac{\left(2^{*}-2\right)[2 N p-(8+4 N)]}{\left(2^{*}-p\right)(p-2)(N-2)}},
\end{aligned}
$$

where $C_{o}=\left(C^{p-2}+C^{2^{*}-2}\right)$ and we have used $|x| \geq R$ and $\gamma \geq 1$.

5.1 Proof of Theorem 1.1 completed

From condition $\left(V_{3}\right)$ there exists $R_{1}>0$ and $c_{1}>0$ such that

$$
\begin{equation*}
|x|^{p-2} V(x) \geq c_{1} \quad \text { for all } \quad|x| \geq R_{1} \tag{5.4}
\end{equation*}
$$

On the other hand, since $V_{\lambda}(x) \geq \lambda V(x)$, using (5.3) and taking $R>R_{1}$ we can see that

$$
\frac{f(u)}{u} \leq \frac{V_{\lambda}(x)}{p} \quad \text { for all } \quad|x| \geq R
$$

provided that

$$
\lambda \geq \frac{c_{o} p}{c_{1}} \gamma^{\frac{\left(2^{*}-2\right)[2 N p-(8+4 N)]}{\left(2^{*}-p\right)(p-2)(N-2)}}
$$

and consequently u solution to auxiliary $\operatorname{Problem}(\mathcal{A P})$ is indeed solution to original Problem $\left(\mathcal{P}_{\lambda, \gamma}\right)$.

Acknowledgements

We would like to thank INCTmat/MCT/Brazil, CNPq and CAPES/Brazil. This research is supported in part by CNPq-Proc. 309.692/2020-2/Brazil.

References

[1] C. O. Alves, M. A. S. Souto, Existence of solutions for a class of elliptic equations in \mathbb{R}^{N} with vanishing potentials, J. Differential Equations 252 (2012) 5555-5568.
[2] C. O. Alves, D. C. de Morais Filho , M. A. S. Souto, Multiplicity of positive solutions for a class of problems with critical growth in \mathbb{R}^{N}, Proc. Edinb. Math. Soc. 52 (2009) 1-21.
[3] A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. (JEMS) 7 (2005) 117-144.
[4] T. Bartsch, Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems in \mathbb{R}^{N}, Comm. Partial Differential Equations 20 (1995) 1725-1741.
[5] T. Bartsch, Z.-Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys. 51 (2000) 366-384.
[6] V. Benci, G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x) u=u^{(N+2) /(N-2)}$ in \mathbb{R}^{N}, J. Funct. Anal. 88 (1990), 90117.
[7] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations, I: Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983) 313-346.
[8] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations, II existence of infinitely many solutions, Arch. Rational Mech. Anal. 82 (1983) 347-375.
[9] J. Chabrowski, A. Szulkin, On the Schrödinger equation involving a critical Sobolev exponent and magnetic field, Topol. Methods Nonlinear Anal., 25 2005, 3-21.
[10] J. M. do Ó, M. Souto, P. Ubilla, Stationary Kirchhoff equations involving critical growth and vanishing potential, ESAIM - Control Optimisation and Calculus of Variation 26, 74(2020), 1876-1908.
[11] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, Berlin, 1990.
[12] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften, 224. Springer-Verlag, Berlin and New York, 1983.
[13] J. Jost, Partial Differential Equations, 2nd ed., Springer, New York, 2007.
[14] P.-L. Lions, The concentration-compactness principle in the calculus of variation. The limit case - Part 1 Revista MatemÃ j tica Iberoamericana, 1, (1985) 145-201.

