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1 Introduction

We prove the existence of positive solutions for stationary Schrödinger-
type equations of the form{

−∆u+ V (x)u = f(u) in RN ,

u > 0 in RN and u ∈ D1,2(RN ).
(1.1)
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This class of nonlinear elliptic equations in RN has been intensively studied
in recent years, motivated by a wide variety of problems in mathematics
and physics, in particular for the search for standing wave solutions by
considering different approaches (see [1, 3, 4, 5, 7, 8]).

In this paper we report a joint work with J.M. do Ó and P. Ubilla
which can be seen as a natural completion of recent works [1, 3], where the
subcritical case for a certain class of vanishing potentials was studied. We
mention that V. Benci and G. Cerami in [6] studied standing wave solu-
tions of the critical problem −∆u+a(x)u = u(N+2)/(N−2) in RN involving
vanishing potential requiring also that a ∈ LN/2(RN ). They proved this
problem has at least one solution if ∥a∥LN/2 is sufficiently small. We point
out that if a(x) ≈ |x|−θ with 0 < θ < p − 2 is in the class of potentials
satisfying our assumptions, but a ̸∈ LN/2(RN ) if θ ≤ 2, that is, a(x) does
not belongs to Benci-Cerami class (see Example 1.2).

We focus our study on the following model problem involving critical
growth {

−∆u+ Vλ(x)u = |u|2∗−2u+ γ|u|p−2u in RN ,

u > 0 in R3, u ∈ D1,2(RN ),
(Pλ,γ)

depending on p ∈ (2, 2∗), the potential Vλ(x) = Z(x) + λV (x) and the
positive real paramenter λ. Here N ≥ 3 and 2∗ = 2N/(N−2) is the critical
exponent for the classical Sobolev embedding. This potential Vλ = Z+λV

appears in some recent works to study a class of nonlinear Schrödinger
equations. For instance, [2, 4, 5] and references therein, for the case where
the potential is bounded away from zero. In the present paper, the poten-
tial Vλ = Z + λV may decay to zero at infinity in some direction (Z with
compact support, for instance). To state our main results, let us describe
in a more precise way the assumptions on the potential V :

Z(x) and V (x) are continuous and nonnegative functions; (V1)

V (x) ≡ 0 in some ball Br1(x1) ⊂ RN ; (V2)
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lim inf
|x|→∞

|x|p−2V (x) > 0; (V3)

Our first result for equation (Pλ,γ) is the following.

Theorem 1.1. Suppose that (V1)–(V3) are satisfied and 2 < p < 2∗. Then,
there exists γ∗ > 0 such that for any γ ≥ γ∗ there exists λ∗ = λ∗(γ) > 0

such that (Pλ,γ) possesses a positive solution for all λ ≥ λ∗.

Let us give some examples which illustrate the above result.

Example 1.2. Given C > 0, 0 < θ < p − 2 and Ro > 0, we can check
that any continuous and nonnegative function V : R3 → R such that
V (x) = C/|x|θ for all |x| ≥ Ro verifies (V3).

Remark 1.3. One can see that under our assumptions, the natural func-
tional of (Pλ,γ) is not well defined. To face this difficulty, we propose a
suitable modification on the nonlinearity fγ(s) := |u|2∗−2u+γ|u|p−2u such
that the energy functional associated to the modified problem has com-
pactness and allow us to prove the existence of a ground state solution by
using the min-max techniques. Next, by choosing a sufficiently large γ,
we verify that the solution to the auxiliary problem is indeed a solution to
our original problem (Pλ,γ).

Using a similar approach as in Theorem 1.1, with some minor modifi-
cations, a more general result for the following problem can be proved.{

−∆u+ Wλ(x)u = |u|2∗−2u+ γ|u|p−2u in RN ,

u > 0 in R3, u ∈ D1,2(RN ),
(Qλ,γ)

where Wλ verifies the following hypotheses:

inf
z∈RN

∫
B1(z)

Wλ(x) dx < 1. (V4)

There exists Ro > 0 and C > 0 such that inf
|x|≥Ro

Wλ(x)|x|p−2 > Cλ.

(V5)
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Theorem 1.4. Suppose that (V4)–(V5) are satisfied and 2 < p < 2∗. Then,
there exist γ∗ > 0 such that for all γ ≥ γ∗ there is a λ∗ = λ∗(γ) > 0 such
that (Qλ,γ) possesses a positive solution for all λ ≥ λ∗.

Example 1.5. As an example of a class of potentials which satisfies con-
ditions (V4)–(V5) is given by Wλ(x) = λ2/(λ|x|θ + 1) where 0 < θ < p− 2

for |x−z| ≥ r1 and Wλ bounded in |x−z| ≤ ro uniformly in λ > 0. Notice
that Wλ does not verifies (V1)–(V3).

Notation: Let us introduce the following notations:

• C, C̃, C1, C2,... denote positive constants (possibly different).

• BR(x0) denotes the open ball centered at x0 and radius R > 0.

• The norms in Lp(RN ) and L∞(RN ) will be denoted respectively by
∥ · ∥p and ∥ · ∥∞.

Outline: In the Section 2, we consider some auxiliary functionals and we
obtain estimates for their mountain pass levels. Section 3 is devoted to a
study of a L2∗-estimate on the solutions of some auxiliary problem and its
L∞-estimate is done in the Section 4. We conclude the proof of Theorem
1.1 in the Section 5.

2 Preliminaries

We start observing that from (V1), we can introduce the natural Hilbert
space

E =

{
v ∈ D1,2(RN ) :

∫
RN

Vλ(x)v
2 dx < ∞

}
endowed with the scalar product and norm given, respectively, by

⟨u, v⟩λ =

∫
RN

(∇u · ∇v + Vλ(x)uv) dx, ∥u∥2λ =

∫
RN

(
|∇u|2 + Vλ(x)u

2
)
dx.

An initial difficulty that appears to attach variational problems like
(Pλ,γ) in the case that the potential converges to zero at infinity is that,
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in general, we do not have the embedding “E ↪→ Lp(RN )” for 2 ≤ p < 2∗

and the Euler-Lagrange functional associated to (Pλ,γ) is not well defined
in E. For this reason, we will consider an auxiliary problem defined in
bounded domains.

From (V2), without loss of generality, we suppose that V (x) = 0 for all
x ∈ B1(0). Now let us consider the energy functional I0 : H1

o (B1(0)) → R
defined by

I0(u) =
1

2
∥∇u∥2L2(B1(0))

+
1

2

∫
B1(0)

Z(x)u2 dx− γ

p

∫
B1(0)

|u|p dx.

It is clear that I0 is well defined, belongs to class C1 and does not depend
on λ. Moreover, under our assumptions one can verify that I0 has the
mountain pass geometry and thus it is well defined the mountain pass
level,

dγ = inf
v∈H1

o (B1(0))
max
t>0

I0(tv).

Next, we have a crucial upper bound estimate on this min-max level
dγ .

Proposition 2.1. There exist constants Cp > 0 and γo > 0 such that for
all γ ≥ γo it holds

0 < dγ ≤ Cp

γ
2

p−2

.

In particular dγ → 0 as γ → +∞.

Proof. Let vo ∈ C∞
0 (R3) such that 0 ≤ vo ≤ 1 and define

a := ∥∇vo∥2L2(B1(0))
+

∫
B1(0)

Z(x)v2o dx, b := ∥vo∥pLp(B1(0))
.

Let us estimate maxt>0 I0(tvo). It is clear that the function h(t) := I0(tvo)

has a unique critical point which is a global maximum point. Indeed,
h′(t) = 0 is equivalent to a = γbtp−2. Thus, there is a unique t > 0 such
that h′(t) = 0. We also have for γ > 0 sufficiently large,

2h(1) = a− 2γb

p
< 0.
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If to is the critical point of h(t), it is easy to check that h(t) is increasing
in (0, to) and it is decreasing in (to,∞). Then, since h(1) < 0, we must
have to < 1 such that

max
t>0

h(t) = h(to),

which implies

h(to) =
a t2o
2

− γbtpo
p

=

(
1

2
− 1

p

)
γbtpo =

Cp

γ
2

p−2

where,

Cp :=
a

p
p−2

b
2

p−2

(
1

2
− 1

p

)
,

which completes our proof.

From Proposition 2.1, we can choose γ∗ > 0 such that for all γ ≥ γ∗ it
holds

dγ < min

{
1,

p− 2

2p
,
p− 2

2p
S

N
N−1

}
, (2.1)

where S is the best constant for the Sobolev embedding D1,2(RN ) ↪→
L2∗(RN ), that is,

S = inf
{
∥∇v∥22 : v ∈ D1,2(RN ), ∥v∥2∗ = 1

}
.

3 Auxiliary problem

We begin this section by recalling that since we deal with a class of
potentials that may decay to zero at infinity, the variational method can-
not be applied because the natural Euler-Lagrange functional associated
with Problem (Pλ,γ) is not well defined on the space E. To overcome
this difficulty, we are going to modify the critical nonlinearity fγ(s) :=

|u|2∗−2u+ γ|u|p−2u as follows: choose R ≥ 1 and define

g(x, s) =


fγ(s), if x ∈ BR or fγ(s) ≤

Vλ(x)

p
s,

Vλ(x)

p
s, if x /∈ BR and fγ(s) >

Vλ(x)

p
s.
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Let us consider the auxiliar problem

−∆u+ Vλ(x)u = g(x, u), in RN . (AP)

It is easy to check that g(x, s) is a Carathéodory function and its primitive

G(x, s) =

∫ s

0
g(x, τ) dτ

is such that

G(x, s) = Fγ(s) if x ∈ BR or fγ(s) ≤
Vλ(x)

p
s,

where

Fγ(s) =

∫ s

0
fγ(τ) dτ =

|s|2∗

2∗
+

γ|s|p

p
.

Moreover, since f(s)/s is increasing for s > 0 and decreasing if s < 0, one
can see that

sg(x, s) ≤ |s|2∗ + γ|s|p, for all s ∈ R; (g1)

sg(x, s)− pG(x, s) ≥
[
1

p
− 1

2

]
Vλ(x)s

2, for all s ∈ R; (g2)

sg(x, s) ≤ Vλ(x)

p
s2, for all s ∈ R and x ∈ Bc

R; (g3)

Using standard arguments, from condition (g3), the corresponding energy
functional J : E → R is given by

J(u) =
1

2
∥u∥2λ dx−

∫
RN

G(x, u) dx,

is well defined and of class C1 with

J ′(u)v =

∫
RN

(∇u∇v+

∫
RN

Vλ(x)uv) dx−
∫
RN

g(x, u)v dx for all u, v ∈ E.

From our assumptions, one can see that J fulfills the mountain pass ge-
ometry, and then the min-max level

cλ,γ = inf
v∈E

max
t>0

J(tv)
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is well defined, and satisfies 0 < cλ,γ ≤ dγ due to J(v) ≤ I0(v) for all
v ∈ H1

0 (B1(0)). We can use the Ekeland Variational Principle [11] to
produces a Palais-Smale sequence (un) ⊂ E at the ninimax level cλ,γ , that
is,

J(un) → cλ,γ and J ′(un) → 0. (3.1)

Lemma 3.1. The sequence (un) is bounded in E and ∥∇un∥2 ≤ 1 for
large n.

Proof. Indeed, using (3.1) for n big enough, we have

cλ,γ + 1 + ∥un∥λ ≥ J(un)−
1

p
J ′(un)un.

From (g2), it is easy to check that

dγ + 1 + ∥un∥λ ≥
(
1

2
− 1

p

)∫
RN

[|∇un|2 + Vλ(x)u
2
n]dx

+

∫
RN

[
1

p
g(x, un)un −G(x, un)

]
dx

≥
(
1

2
− 1

p

)(
1− 1

p

)∫
RN

Vλ(x)u
2
n dx+

(
1

2
− 1

p

)
∥∇un∥22.

This last inequality show that (un) is bounded in E. Besides, using (2.1),
for all n large enough, we have

∥∇un∥22 ≤ (dγ + on(1))
p− 2

2p
≤ 1, (3.2)

which completes the proof.

Lemma 3.2. Up to a subsequence, we have that (un) converges in L2∗(RN ).

Proof. We may suppose that un ⇀ u weakly in D1,2(RN ), |∇un|2 and
|un|2

∗ converge tightly to µ and ν, where µ and ν are bounded nonnegative
measures on R3. Moreover, un → u in Lr

loc(RN ), for all 2 ≤ r < 2∗. Then,
in view of Lions concentration compactnes principle (see [14, Lemma I.1],
page 158), we have
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1. there exists a sequence (νj)j∈N in R+, (xj)j∈N in RN such that

ν = |u|2∗ +
∞∑
j=1

νjδxj ;

2. besides, we have

µ ≥ |∇u|2 + S
∞∑
j=1

ν
1
N
j δxj .

Let ϕ ∈ C∞
o (RN , [0, 1]) such that ϕ(x) = 1, if |x| ≤ 1/2 and ϕ(x) = 0

if |x| ≥ 1. For each ε ∈ (0, 1) let us consider

ϕε(x) = ϕ

(
x− xj

ε

)
.

Notice that if 2 ≤ r < 2∗,

lim
n

∫
RN

ϕε|un|r dx =

∫
R3

ϕε|u|r dx := Bε,u,r

and for each fixed u ∈ E, we have supp(ϕε) ⊂ B(0, 1) and |ϕε|u|r| ≤ |u|r.
Thus by Lebesgue’s dominated convergence theorem,

lim
ε→0

Bε,u,r = 0.

From (g1), we get∣∣∣∣∫
RN

(unϕε)g(x, un) dx

∣∣∣∣ ≤ γ

∫
RN

ϕε|un|q+1 dx+

∫
RN

ϕεu
2∗
n dx

and consequently

lim sup
n

∣∣∣∣∫
RN

(unϕε)g(x, un) dx

∣∣∣∣ ≤ C

(
Bε,u,q+1 +

∫
RN

φε dν

)
.

By using a Hölder indquality we obtain

∣∣∣∣∫
RN

un∇ϕε∇un dx

∣∣∣∣ ≤ ε−1

(∫
|x−xj |≤2ε

u2n dx

) 1
2
(∫

|x−xj |≤2ε
|∇un|2 dx

) 1
2

.
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As (un) is bounded in E, we have

∣∣∣∣∫
RN

un∇ϕε∇un dx

∣∣∣∣ ≤ C

(∫
|x−xj |≤2ε

u2n dx

) 1
2

, for all n, ε

and

lim sup
n

∣∣∣∣∫
RN

un∇ϕε∇un dx

∣∣∣∣ ≤ C

(∫
|x−xj |≤2ε

u2 dx

) 1
2

, for all ε,

which shows that

lim
ε→0

(
lim sup

n

∣∣∣∣∫
RN

un∇ϕε∇undx

∣∣∣∣) = 0.

Now, we can see that

on(1) = J ′(un)(unϕε) =

∫
RN

∇un∇(unϕε) dx+

∫
RN

V (x)un(unϕε) dx

−
∫
RN

g(x, un)(unϕε) dx

=

∫
RN

|∇un|2ϕε dx+

∫
RN

Vλ(x)u
2
nφε dx+

∫
RN

un∇ϕε∇un dx

−
∫
RN

g(x, un).unϕε dx,

or, ∫
RN

|∇un|2ϕε dx+

∫
R3

Vλ(x)u
2
nϕε dx = −

∫
RN

un∇ϕε∇un dx

+

∫
RN

g(x, un)un.ϕε dx+ on(1).

Passing to the limit as n → ∞, we have∣∣∣∣∫ ϕεdµ+Bε,u,2 −
∫

ϕε dν

∣∣∣∣ ≤ C

Bε,u,q+1 +

(∫
|x−xj |≤ε

u2 dx

)1/2
 ,

for all ε. Passing to the limit as ε → 0

µ({xj}) = ν({xj}) = νj .



Stationary Schrödinger equations 193

Combining with part (2) of Lions Lemma,

µ({xj}) ≥ Sν
1/N
j

we have
νj ≥ Sν

1/N
j

and thus, if νj > 0 we obtain

ν
N−1
N

j ≥ S,

which implies that
µ({xj}) = νj ≥ S

N
N−1 . (3.3)

We know that, cλ,γ + on(1) = J(un)− 1
pJ

′(un)un, and then

cλ,γ =

[
1

2
− 1

p

]
∥∇un∥22 +

[
1

2
− 1

p

] ∫
RN

Vλ(x)u
2
nϕε dx

+

∫
RN

(
1

p
ung(x, un)−G(x, un)

)
dx+ on(1)

≥
[
1

2
− 1

p

] ∫
RN

|∇un|2ϕε dx+ on(1) + oε(1).

Passing to the limit as n → +∞, we obtain

cλ,γ ≥
[
1

2
− 1

p

] ∫
RN

ϕε dµ+ oε(1).

Taking to the limit as ε → 0, we have

cλ,γ ≥
[
1

2
− 1

p

]
µ({xj}).

We also note that assumption (3.3) implies that, if νj > 0 we can deduce

cλ,γ ≥
[
1

2
− 1

p

]
S

N
N−1 ,

which is a contradiction with the inequality cλ,γ ≤ dγ and (2.1). Then
νi = 0 for all i and, un converges to u in L2∗(RN ).
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Lemma 3.3. The following limits hold for the sequence (un):

lim
n

∫
RN

Vλ(x)u
2
n dx =

∫
RN

Vλ(x)u
2 dx, (3.4)

lim
n

∫
RN

g(x, un)un dx =

∫
RN

g(x, u)u dx, (3.5)

lim
n

∫
RN

g(x, un)v dx =

∫
RN

g(x, u)v dx, ∀v ∈ E (3.6)

lim
n

∫
RN

G(x, un) dx =

∫
RN

G(x, u) dx. (3.7)

Proof. We start with the following claim:

lim
r→∞

∫
|x|≥r

[
|∇un|2 + Vλ(x)u

2
n

]
dx = 0, uniformly in n. (3.8)

In fact, let us consider a cut-off function η ∈ C∞
0 (Bc

r, [0, 1]) such that
η(x) = 1 for all |x| ≥ 2r and |∇η(x)| ≤ 2/r for all x ∈ R3. Since
(un) is bounded in E, the sequence (ηun) is also bounded in E, and then
J ′(un)(ηun) = on(1), that is,∫
RN

∇un∇(ηun) dx+

∫
RN

Vλ(x)un(ηun) dx =

∫
RN

g(x, un)(ηun) dx+on(1).

Since η(x) = 0 for all |x| ≤ r, using (g3) we obtain∫
|x|≥r

η
[
|∇un|2 + Vλ(x)u

2
n

]
dx ≤ 1

p

∫
|x|≥r

ηVλ(x)u
2
n dx

−
∫
|x|≥r

un∇un∇η dx+ on(1),

which implies(
1− 1

p

)∫
|x|≥r

η
[
|∇un|2 + Vλ(x)u

2
n

]
dx

≤
∫
r≤|x|≤2r

|un||∇un| dx+ on(1). (3.9)

Using Hölder inequality, we can estimate∫
r≤|x|≤2r

|un||∇un| dx ≤ ∥∇un∥L2(R3)

(∫
r≤|x|≤2r

|un|2 dx

)1/2
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Since un → u strongly in L2(B2r \ Br) and ∥∇un∥L2(R3) ≤ 1 (see Lemma
3.1), it follows that

lim sup
n

∫
r≤|x|≤2r

|un||∇un| dx ≤

(∫
r≤|x|≤2r

|u|2 dx

)1/2

(3.10)

On the other hand, Hölder inequality implies(∫
r≤|x|≤2r

|u|2 dx

)1/2

≤

(∫
r≤|x|≤2r

|u|2∗ dx

)1/2∗

|B2r \Br|1/N

which together with (3.10) yields

lim sup
n

∫
r≤|x|≤2r

|un||∇un| dx ≤ |B2r \Br|1/N
(∫

r≤|x|≤2r
|u|2∗ dx

)1/2∗

(3.11)
(3.9) and (3.11) show the claim.

Since un → u strongly in L2
loc(RN ), (3.4) follows from (3.8). To prove

(3.5)–(3.6), we can use (3.4) together with condition (g3).

Using Lemmas 3.2 and 3.3 we can show that u is a weak solution for
the problem

−∆u+ Vλ(x)u = |u|2∗−2u+ g(x, u),RN

and
∥u∥2λ =

∫
RN

|u|2∗ dx+

∫
RN

g(x, u)u dx.

Now passing to the limit in

∥∇un∥22 +
∫
RN

Vλ(x)u
2
n dx =

∫
RN

|un|2
∗
dx+

∫
RN

g(x, un)un dx+ on(1),

we conclude that
lim
n

∥un∥2λ = ∥u∥2λ.

Then un converges to u in E and J(u) = cλ,γ . Therefore u is a ground
state solution to auxiliary problem (AP) which depends on R and satisfies

∥∇u∥22 ≤ dγ
p− 2

2p
, for all R > 1.
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Furthermore, it follows

∥u∥22∗ ≤ S−1∥∇u∥22 ≤ dγ
p− 2

2pS
(3.12)

independent on the choice of R > 1. Combining Proposition 2.1 and (3.12)
we have that

∥u∥2∗ ≤ Cγ
− 1

p−2 . (3.13)

4 A priori estimates in the L∞(RN) norm

We derive some a priori L∞ − estimates for the solutions of Auxiliary
Problem (AP). For that we follow some extraordinary ideas due to E.
De Giorgi, J. Nash and J. Moser, to obtain regularity results that were
discovered in the mid 1950’s and early 1960’s. For more details see for
example [9, 12, 13].

Theorem 4.1. Let u be a solution to (AP) then

∥u∥∞ ≤ Cγ
2Np−(8+4N)

(2∗−p)(p−2)(N−2) ,

where C is a positive constant.

Before we prove the above estimate we will need to provide some crucial
results. First let us state a version of

Lemma 4.2. Let b : RN 7→ R be a nonnegative measurable function and
let h ∈ Lq

loc(R
N ) such that

[h]q = sup
z∈RN

(∫
B2(z)

|h|q dx

)1/q

< ∞,

where 3 ≤ N < 2q. Suppose that v ∈ E is a weak solution to the problem

−∆v + b(x)v = h(x) in RN . (4.1)

Then we have

sup
x∈B1(z)

|v(x)| ≤ C [h]q

(∫
B2(z)

|v|2∗ dx

)1/2∗

for all z ∈ RN ,

where C depends only on q (it does not depend on b or v).
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Proposition 4.3. Let the potential Vo : RN 7→ R be a nonnegative mea-
surable function and the nonlinear term g(x, s) be a Caratheodory function
such that some αo, βo > 0,

|g(x, s)| ≤ αo|s|2
∗−1 + βo|s| for all (x, s) ∈ RN × R.

Suppose that u ∈ E is a weak solution to the problem

−∆u+ Vo(x)u = g(x, u) in RN (4.2)

satisfying

(C) 2N2

N2 − 4
αo∥u∥2

∗−2
2∗ ≤ S.

Then there is Λ such that

∥u∥∞ ≤ Λ∥u∥22∗ ,

where Λ does not depend on V or u, indeed Λ depends only on βo. In
addition we have Λ = O(βo) as βo → ∞.

(See [10] - Proposition 4.3).

Proof. For each n ∈ N, let us consider the sets

An = {x ∈ RN : |u|2∗−2 ≤ n2} and Bn = RN \An.

and define the function vn ∈ E by

vn = |u|2∗−2u in An and vn = n2u in Bn.

Observe that vn ∈ E, vnu ≤ |u|2∗ in RN ,

∇vn = (2∗ − 1)|u|2∗−2∇u in An and ∇vn = n2∇u in Bn. (4.3)

Then, using vn as a test function in (4.2),∫
RN

[∇u∇vn + Vo(x)uvn] dx =

∫
R3

g(x, u)vn dx.
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From (4.3) we have∫
RN

∇u∇vn dx = (2∗ − 1)

∫
An

|u|2∗−2|∇u|2 dx+ n2

∫
Bn

|∇u|2 dx. (4.4)

Now consider

ωn = |u|
2

N−2u in An and ωn = nu in Bn.

Note that ω2
n = uvn ≤ |u|2∗ , 0 ≤ Vo(x)ω

2
n = Vo(x)uvn in RN . Moreover,

∇ωn =
N

N − 2
|u|

2
N−2∇u in An and ∇ωn = n∇u in Bn.

Thus,∫
RN

|∇ωn|2 dx =
N2

(N − 2)2

∫
An

u2
∗−2|∇u|2 dx+ n2

∫
Bn

|∇u|2 dx. (4.5)

Combining (4.4) and (4.5), we obtain∫
RN

[
(|∇ωn|2 + Vo(x)ω

2
n

]
dx−

∫
RN

[∇u∇vn + Vo(x)uvn] dx

=
4

(N − 2)2

∫
An

u2
∗−2|∇u|2 dx.

From (4.4), we extract the inequality

(2∗ − 1)

∫
An

u2
∗−2|∇u|2 dx ≤

∫
RN

[∇u∇vn + Vo(x)uvn] dx,

and then∫
RN

[
|∇ωn|2 + Vo(x)ω

2
n

]
dx ≤ N2

N2 − 4

∫
RN

[∇u∇vn + Vo(x)uvn] dx.

Since u a weak solution to (4.2), we have∫
RN

[
|∇ωn|2 + Vo(x)ω

2
n

]
dx ≤ N2

N2 − 4

∫
RN

g(x, u)vn dx. (4.6)
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Observe that g(x, u)vn ≤ αo|u|2
∗−1|vn| + βo|u∥vn| = αo|u|2

∗−2w2
n + βow

2
n

in RN . From the Hölder inequality, we get∫
RN

[
|∇ωn|2 + Vo(x)ω

2
n

]
dx ≤ N2

N2 − 4
αo

∫
RN

|u|2∗−2w2
n dx

+
N2

N2 − 4
βo

∫
RN

w2
n dx

≤ N2

N2 − 4
αo∥u∥2

∗−2
2∗ ∥wn∥22∗ +

N2

N2 − 4
βo

∫
RN

ω2
n dx.

Combining this last inequality with the Sobolev inequality bellow

S∥wn∥22∗ ≤
∫
RN

|∇ωn|2 dx ≤
∫
RN

[
|∇ωn|2 + Vo(x)ω

2
n

]
dx,

under hypothesis (C), we have[∫
An

|ωn|2
∗
dx

] 2
2∗

≤
[∫

RN

|ωn|2
∗
dx

] 2
2∗

≤ 2N2

N2 − 4
βoS

−1

∫
RN

ω2
n dx,

which together with the fact that |ωn| ≤ |u|
N

N−2 in RN and |ωn| = |u|
N

N−2

in An implies[∫
An

|u|
2N2

(N−2)2

dx

] 2

2∗2

≤
(

2N2

(N − 2)2
βoS

−1

) 1
2∗
[∫

RN

|u|2∗ dx

] 1
2∗

. (4.7)

Passing to the liminf in (4.7) and using Fatou’s lemma we obtain

∥u∥ 2N2

(N−2)2
≤
(

2N2

(N − 2)2
βoS

−1

) 1
2∗

∥u∥2∗ . (4.8)

Thus u ∈ L
2N2

(N−2)2 (RN ) ∩ L2∗(RN ), which implies that h = αo|u|2
∗−1 +

βo|u| ∈ L
2N2

N2−4

loc (RN ). Moreover, from (4.8) and condition (C), we obtain

[h] 2N2

N2−4

≤ αo∥u∥2
∗−1
2N2

(N−2)2

+ Cβo[u] 2N2

N2−4

.

Since 2N2

N2−4
< 2∗, we have

(∫
B2(z)

|u|
2N2

N2−4 dx

)N2−4

2N2

≤

(∫
B2(z)

|u|2∗ dx

) N
N+2

(∫
B2(z)

dx

) 2
N+2


N2−4

2N2
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and then [u] 2N2

N2−4

≤ |B2(0)|
N−2

N2 ∥u∥2∗ . So, using (C) once more we have

[h] 2N2

N2−4

≤ αo

(
2N2

(N − 2)2
βoS

−1

)N+2
2N

∥u∥2∗−1
2∗ + Cβo|B2(0)|

N−2

N2 ∥u∥2∗

= αo

(
2N2

(N − 2)2
βoS

−1

)N+2
2N

∥u∥2∗−2
2∗ ∥u∥2∗ + Cβo|B2(0)|

N−2

N2 ∥u∥2∗

C

(
β

N+2
2N

o + βo

)
∥u∥2∗ .

From Lemma 4.2 there exists a positive constant Λ which depends only on
αo and βo such that

∥u∥∞ ≤ Λ∥u∥22∗

and the proof is completed.

4.1 Proof of Theorem 4.1 completed

From the Young’s inequality we see that

γ|s|p−2 ≤ (p− 2)

2∗ − 2
|s|2∗−2 +

(2∗ − p)

2∗ − 2
γ

2∗−2
2∗−p ,

for all real s. This implies that

|g(x, s)| ≤ |s|2∗−1 + γ|s|p−1 ≤ (2∗ + p− 4)

2∗ − 2
|s|2∗−1 +

(2∗ − p)

2∗ − 2
γ

2∗−2
2∗−p |s|,

The choice of dγ in (2.1) together (3.12) show that a solution u = uR

above satisfies

−∆u+ Vλ(x)u = |u|2∗−2u+ γ|u|p−2u

and

2N2

N2 − 4
· 2

∗ + p− 4

2∗ − 2
∥u∥2∗−2

2∗ S
−1 ≤ 2N2

N2 − 4
· 2

∗ + p− 4

(2∗ − 2)S
.
(
Cγ

− 1
p−2

) 4
N−2

≤ 1,
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for γ large enough. We will use Proposition 4.3 with αo = 2∗+p−4
2∗−2 . From

Proposition 4.3 with βo =
(2∗−p)
2∗−2 γ

2∗−2
2∗−p we have:

∥u∥∞ ≤ CΛ∥u∥22∗ ≤ Cγ
2∗−2
2∗−pγ

−2
p−2 .

Now we have a family of solutions u = uR of the auxiliary problems (AP)
in L∞ and

∥u∥∞ ≤ Cγ
2Np−(8+4N)

(2∗−p)(p−2)(N−2) . (4.9)

where C is a positive constant.

5 Proof of Theorem 1.1

We need to show that a solution u ∈ E of the auxiliary problem satisfies

f(u) ≤ Vλ(x)

p
u in |x| ≥ R. (5.1)

Lemma 5.1. For any ground state solution to (AP), it holds

u(x) ≤ R∥u∥∞
|x|

, for all |x| ≥ R. (5.2)

Proof. It is an usual approach and you can find in Lemma 5.1 - [10].

Lemma 5.2. There exists Co > 0 such that for any ground state solution
to Problem (AP) it holds

f(u)

u
≤ Co

(
R

|x|

)p−2

γ
(2∗−2)[2Np−(8+4N)]
(2∗−p)(p−2)(N−2) , for all |x| ≥ R. (5.3)

Proof. From Lemma 5.1, we have

f(u)

u
= u2

∗−2 + γ|u|p−2 ≤ R2∗−2∥u∥2∗−2
∞

|x|2∗−2
+ γ

Rp−2∥u∥p−2
∞

|x|p−2
,
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which together with (4.9) gives

f(u)

u
≤ R2∗−2C2∗−2γ

(2∗−2)[2Np−(8+4N)]
(2∗−p)(p−2)(N−2)

|x|2∗−2
+ γ

Rp−2Cp−2γ
(p−2)[2Np−(8+4N)]
(2∗−p)(p−2)(N−2)

|x|p−2

≤
[
R2∗−2C2∗−2

|x|2∗−2
+

Rp−2Cp−2

|x|p−2

]
γ

(2∗−2)[2Np−(8+4N)]
(2∗−p)(p−2)(N−2)

=
Rp−2

|x|p−2

[
Cp−2 + C2∗−2 R2∗−p

|x|2∗−p

]
γ

(2∗−2)[2Np−(8+4N)]
(2∗−p)(p−2)(N−2)

≤ Co

(
R

|x|

)p−2

γ
(2∗−2)[2Np−(8+4N)]
(2∗−p)(p−2)(N−2) ,

where Co = (Cp−2 + C2∗−2) and we have used |x| ≥ R and γ ≥ 1.

5.1 Proof of Theorem 1.1 completed

From condition (V3) there exists R1 > 0 and c1 > 0 such that

|x|p−2V (x) ≥ c1 for all |x| ≥ R1. (5.4)

On the other hand, since Vλ(x) ≥ λV (x), using (5.3) and taking R > R1

we can see that
f(u)

u
≤ Vλ(x)

p
for all |x| ≥ R,

provided that

λ ≥ cop

c1
γ

(2∗−2)[2Np−(8+4N)]
(2∗−p)(p−2)(N−2)

and consequently u solution to auxiliary Problem (AP) is indeed solution
to original Problem (Pλ,γ).
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