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Abstract

In this note we construct self-similar solutions of the
k-Hessian evolution equation

ut = (−1)k−1Sk(D
2u)

in (0,∞) × Rn, providing a new class of explicit and
radially symmetric self-similar solutions that we call k-
Barenblatt solutions. These solutions present some com-
mon properties as those of well-known Barenblatt solu-
tions for the porous media equation and the p-Laplacian
evolution equation as well.
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1 The k-Hessian operator

We briefly introduce the class of operators under study. For a twice-
differentiable function u defined on a domain Ω ⊂ Rn, the k-Hessian op-
erator (k = 1, ..., n) is defined by the formula

Sk(D
2u) = σk(Λ) =

∑
1≤i1<...<ik≤n

λi1 ...λik ,

where Λ = Λ(D2u) := (λ1, ..., λn), the λ’s are the eigenvalues of D2u and
σk is the k-th elementary symmetric function. Equivalently, Sk(D

2u) is
the sum of the k-th principal minors of the Hessian matrix. See, e.g.,
X.-J. Wang [20, 21]. These operators form an important class of second
order operators that contains, as the most relevant examples, the Laplace
operator S1(D

2u) = ∆u and the Monge-Ampère operator Sn(D
2u) = det

D2u. They are fully nonlinear when k > 1. In particular, S2

(
D2u

)
=

1
2

(
(∆u)2 −

∣∣D2u
∣∣2). The study of k-Hessian equations has many appli-

cations in geometry, optimization theory and in other related fields. See
[21]. There exists a large literature about existence, regularity and qual-
itative properties of solutions for the k-Hessian equations, starting with
the seminal work of L. Caffarelli, L. Nirenberg and J. Spruck [3].

We point out that the k-Hessian operators are k-homogeneous and
also invariant under rotations of coordinates. For more details about these
operators we refer to X.-J. Wang [21].

We construct self-similar solutions of a k-Hessian evolution equation
posed on the whole Euclidean space. This study is a first step towards un-
derstanding important properties of the underlying equations which can
be captured by these special solutions. We point out that there is a vast
literature concerning evolution equations that generalize the standard heat
equation. This literature addresses among others, the p-Laplacian equa-
tion, the porous medium equation and the space-fractional porous medium
equation. See e.g. [2, 4, 5, 6, 8, 9, 10, 12, 13, 19].

Concerning exact solutions of some nonlinear diffusion equations, in
[11] new closed-form similarity solutions of N -dimensional radially sym-
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metric equations were given, which are generalizations of the classical
Barenblatt solutions. In [9], the authors study an explicit equivalence be-
tween radially symmetric solutions for two basic nonlinear degenerate dif-
fusion equations, namely, the porous medium equation and the p-Laplacian
equation. In particular, they derive the existence of new self-similar solu-
tions for the evolution p-Laplacian equation. In [8] several one-parameter
families of explicit self-similar solutions were constructed for the porous
medium equations with fractional operators.

2 The family of self-similar solutions

We construct special positive solutions u = u(t, x), called self-similar so-
lutions, of equation

ut = (−1)k−1Sk(D
2u) (2.1)

As we can see, when k = 1 equation (2.1) is reduced to the classical heat
equation. When k > 1 in (2.1), we have found an explicit one-parameter
family of positive self-similar solutions on Rn with compact support in
space for every fixed time. We describe them now:

UC(t, x) = t−α

(
C − γ

(
|x|
tβ

)2
) k

k−1

+

, (2.2)

where (·)+ denotes the positive part, C > 0 is an arbitrary constant (the
parameter), and α, β and γ have precise values, namely

α =
n

n(k − 1) + 2k
, β =

1

n(k − 1) + 2k
, γ =

k − 1

2k

(
β

cn,k

) 1
k

, cn,k =

(
n
k

)
n

.

Note that this family, whose elements we call k-Barenblatt solutions, is
well defined for the full range of k-Hessian operators with k > 1. See
[14]. Moreover, these solutions are similar to those known for the porous
medium equation and the p-Laplacian equation as well. See, e.g., [9] and
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the references therein. We also note that the relation between the similar-
ity exponents α and β, α = nβ, is an a priori condition that reflects the
mass conservation of these special solutions.

3 The scaling group and self-similarity for the k-
Hessian equation

Before we start the construction of the Barenblatt solutions we review
some basic facts following some arguments given in [18]. Let first observe
that for every solution u(t, x) and positive constants a, b, c the function

ũ(t, x) = cu(at, bx)

is again a solution of (2.1) if

ac1−k = b2k.

So we obtain a two-parametric transformation group T = T (a, b) (scaling
group) acting on the set of solutions of the k-Hessian equation (2.1):

(Tu)(t, x) =

(
b2k

a

) 1
k−1

u(at, bx).

Those special solutions that are themselves invariant under the scaling
group are called self-similar solutions: this means that (Tu)(t, x) = u(t, x)

for all (t, x) in the domain of definition. If moreover, we impose the con-
dition that the solutions have constant finite mass (i.e., integral in space),
then c = bn, which implies that the group is reduced to the one-parameter
family (Tλu)(t, x) = bnu(bn(k−1)+2kt, bx), which may be written in terms
of λ = bn(k−1)+2k as

(Tλu)(t, x) = λαu(λt, λβx),

with scaling exponents given by

α =
n

n(k − 1) + 2k
, β =

1

n(k − 1) + 2k
.
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Thus, if u(t, x) is a self-similar solution, then for all x ∈ Rn and t > 0 we
have

u(t, x) = λαu(λt, λβx).

Fix now t1 > 0 and let λ = 1
t1

. We get

u(t, x) = t−α
1 u

(
t

t1
, t−β

1 x

)
.

Since t1 is arbitrary we can replace it with t. Calling now u(1, x) ≡ θ(x)

we get
u(t, x) = t−αθ(t−βx),

where θ is called the profile of the solution.

4 The construction of the k-Barenblatt solutions

In this section we will derive the compactly supported family of mass
conserving k-Barenblatt solutions given in (2.2) for the equation

ut = (−1)k−1Sk(D
2u). (4.1)

Thus, we are looking for a positive solution of the above evolution equation
with constant mass in Rn, that is∫

Rn

u(t, x)dx = M > 0, for all t > 0. (4.2)

According to the previous section, we will actually look for a self-similar
solution u to (4.1) of the form:

u(t, x) = t−αθ(ξ), ξ =
x

tβ
, t > 0, x ∈ Rn, (4.3)

for some profile θ and the exponents α and β to be determined. Inserting
(4.3) into the left-hand side of (4.1), we have

ut = −αt−α−1θ(ξ) + t−αdθ

dξ
· dξ
dt

= −αt−α−1θ(ξ) + t−α∇ξθ(ξ) · (−β)t−β−1x

= t−α−1(−αθ(ξ)− β∇ξθ(ξ) · ξ).
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Inserting (4.3) into the right-hand side of (4.1) (omitting the scalar
factor) we have

Sk(D
2u) = t−kα−2kβSk(D

2θ(ξ))

= t−k(α+2β)Sk(D
2θ(ξ)).

Then, from the condition α(k − 1) + 2kβ = 1 (self-similarity condition),
we get the following profile equation

αθ(ξ) + β∇ξθ(ξ) · ξ = (−1)kSk(D
2θ(ξ)). (4.4)

We also have from (4.2)

M =

∫
Rn

u(t, x) dx =

∫
Rn

t−αθ
( x

tβ

)
dx = tnβ−α

∫
Rn

θ(ξ) dξ

(it is assumed that θ ∈ L1(Rn)), which yields nβ−α = 0 (mass-preserving
condition). Solving the relations between the similarity exponents α and
β we obtain α = n

n(k−1)+2k and β = 1
n(k−1)+2k , the same values found

through scaling arguments.
Now let θ be a radially symmetric function, say θ = θ(r), r = |ξ| ≥

0 (abuse of notation). We point out that for a radially symmetric C2-
function θ the k-Hessian operator take the one-dimensional form

Sk(D
2θ) = cn,k r

1−n(rn−k(θ′(r))k)′, r > 0

where cn,k = 1
n

(
n
k

)
. Then the governing equation (4.4) takes the form

αθ(r) + βrθ′(r) = (−1)kcn,k r
1−n(rn−k(θ′(r))k)′, r > 0, (4.5)

with the symmetry condition θ′(0) = 0. From this and the equality
α = nβ, the equation (4.5) can be integrated once (fortunately) and then
simplified as

βθ(r) = (−1)kcn,k r
−k(θ′(r))k, r > 0; θ′(0) = 0. (4.6)

We observe that, when k = 1 in (4.6), an explicit integration shows that

θ(r) = Ce−
r2

4 , where C is a positive constant. Thus from (4.3) we recover
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the Gaussian function of the classical heat equation. Now let k > 1.
A necessary condition for the existence of a solution with the required
properties is that the profile θ be decreasing with limit zero at infinity.
Thus integrating (4.6) we have

θ(r) =

(
C − k − 1

k

(
β

cn,k

) 1
k r2

2

) k
k−1

+

, r ≥ 0. (4.7)

Finally, putting γ = k−1
2k

(
β

cn,k

) 1
k and inserting θ(r) in (4.3), we obtain

(2.2).
Note that the positive constant C in (4.7) may easily be put in cor-

respondence with the mass of the solution, C = C(M), by (4.2). In fact,
introducing the constant r0 =

√
2C
γ , the self-similar solution with constant

mass has the explicit form

u(t, x) = t
− n

n(k−1)+2k

[
k − 1

4k[cn,k(n(k − 1) + 2k)]
1
k

(
r20 −

|x|2

t
2

n(k−1)+2k

)
+

] k
k−1

,

(4.8)
where

r0 = r0(M)

=

π−n
2 D(n, k)

(
4k

k − 1

) k
k−1 Γ

(
n
2 + 2k−1

k−1

)
Γ
(
2k−1
k−1

) M


k−1

n(k−1)+2k

,

D(n, k) = [cn,k(n(k− 1)+2k)]
1

k−1 and where Γ(·) is the Gamma-function.
We have the following properties of the self-similar solutions given in

(2.2):

• suppUC(t, ·) ⊆ B

(
0, tβ

[
2k
k−1

(
cn,k

β

) 1
k
C

] 1
2

)
.

• Finite propagation speed.

• Mass conservation.
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• UC(t, x) → Mδ0(x) as t → 0+, where δ0(x) is the Dirac delta func-
tion concentrated at 0. In other words,

lim
t→0+

∫
Rn

UC(t, x)f(x)dx = Mf(0)

for all test functions f ∈ C∞
c (Rn).

• Everywhere, except on the degeneracy surface

[0,∞)×

|x| = tβ

[
2k

k − 1

(
cn,k
β

) 1
k

C

] 1
2

 ,

it is classical (and infinitely differentiable).
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