

Vol. 54, 173–182 http://doi.org/10.21711/231766362023/rmc548

Self-similar solutions of k-Hessian evolution equations

Justino Sánchez

Universidad de La Serena, Departamento de Matemáticas Avda. Cisternas 1200, La Serena, Chile

To Pedro Ubilla, for his 60th birthday anniversary, with appreciation and gratitude

Abstract

In this note we construct self-similar solutions of the $k\mbox{-Hessian}$ evolution equation

 $u_t = (-1)^{k-1} S_k(D^2 u)$

in $(0, \infty) \times \mathbb{R}^n$, providing a new class of explicit and radially symmetric self-similar solutions that we call *k*-*Barenblatt solutions*. These solutions present some common properties as those of well-known Barenblatt solutions for the porous media equation and the *p*-Laplacian evolution equation as well.

Keywords: k-Hessian operator, Self-similar solutions.2020 Mathematics Subject Classification: 34A34, 35B07.

Email: jsanchez@userena.cl

1 The *k*-Hessian operator

We briefly introduce the class of operators under study. For a twicedifferentiable function u defined on a domain $\Omega \subset \mathbb{R}^n$, the *k*-Hessian operator (k = 1, ..., n) is defined by the formula

$$S_k(D^2 u) = \sigma_k(\Lambda) = \sum_{1 \le i_1 < \dots < i_k \le n} \lambda_{i_1} \dots \lambda_{i_k},$$

where $\Lambda = \Lambda(D^2 u) := (\lambda_1, ..., \lambda_n)$, the λ 's are the eigenvalues of $D^2 u$ and σ_k is the k-th elementary symmetric function. Equivalently, $S_k(D^2 u)$ is the sum of the k-th principal minors of the Hessian matrix. See, e.g., X.-J. Wang [20, 21]. These operators form an important class of second order operators that contains, as the most relevant examples, the Laplace operator $S_1(D^2 u) = \Delta u$ and the Monge-Ampère operator $S_n(D^2 u) = \det D^2 u$. They are fully nonlinear when k > 1. In particular, $S_2(D^2 u) = \frac{1}{2} \left((\Delta u)^2 - |D^2 u|^2 \right)$. The study of k-Hessian equations has many applications in geometry, optimization theory and in other related fields. See [21]. There exists a large literature about existence, regularity and qualitative properties of solutions for the k-Hessian equations, starting with the seminal work of L. Caffarelli, L. Nirenberg and J. Spruck [3].

We point out that the k-Hessian operators are k-homogeneous and also invariant under rotations of coordinates. For more details about these operators we refer to X.-J. Wang [21].

We construct self-similar solutions of a k-Hessian evolution equation posed on the whole Euclidean space. This study is a first step towards understanding important properties of the underlying equations which can be captured by these special solutions. We point out that there is a vast literature concerning evolution equations that generalize the standard heat equation. This literature addresses among others, the p-Laplacian equation, the porous medium equation and the space-fractional porous medium equation. See e.g. [2, 4, 5, 6, 8, 9, 10, 12, 13, 19].

Concerning exact solutions of some nonlinear diffusion equations, in [11] new closed-form similarity solutions of N-dimensional radially sym-

metric equations were given, which are generalizations of the classical Barenblatt solutions. In [9], the authors study an explicit equivalence between radially symmetric solutions for two basic nonlinear degenerate diffusion equations, namely, the porous medium equation and the p-Laplacian equation. In particular, they derive the existence of new self-similar solutions for the evolution p-Laplacian equation. In [8] several one-parameter families of explicit self-similar solutions were constructed for the porous medium equations with fractional operators.

2 The family of self-similar solutions

We construct special positive solutions u = u(t, x), called self-similar solutions, of equation

$$u_t = (-1)^{k-1} S_k(D^2 u) \tag{2.1}$$

As we can see, when k = 1 equation (2.1) is reduced to the classical heat equation. When k > 1 in (2.1), we have found an explicit one-parameter family of positive self-similar solutions on \mathbb{R}^n with compact support in space for every fixed time. We describe them now:

$$U_C(t,x) = t^{-\alpha} \left(C - \gamma \left(\frac{|x|}{t^{\beta}} \right)^2 \right)_+^{\frac{k}{k-1}}, \qquad (2.2)$$

where $(\cdot)_+$ denotes the positive part, C > 0 is an arbitrary constant (the parameter), and α, β and γ have precise values, namely

$$\alpha = \frac{n}{n(k-1)+2k}, \ \beta = \frac{1}{n(k-1)+2k}, \ \gamma = \frac{k-1}{2k} \left(\frac{\beta}{c_{n,k}}\right)^{\frac{1}{k}}, \ c_{n,k} = \frac{\binom{n}{k}}{n}.$$

Note that this family, whose elements we call k-Barenblatt solutions, is well defined for the full range of k-Hessian operators with k > 1. See [14]. Moreover, these solutions are similar to those known for the porous medium equation and the p-Laplacian equation as well. See, e.g., [9] and the references therein. We also note that the relation between the similarity exponents α and β , $\alpha = n\beta$, is an *a priori* condition that reflects the mass conservation of these special solutions.

3 The scaling group and self-similarity for the k-Hessian equation

Before we start the construction of the Barenblatt solutions we review some basic facts following some arguments given in [18]. Let first observe that for every solution u(t, x) and positive constants a, b, c the function

$$\tilde{u}(t,x) = cu(at,bx)$$

is again a solution of (2.1) if

$$ac^{1-k} = b^{2k}.$$

So we obtain a two-parametric transformation group T = T(a, b) (scaling group) acting on the set of solutions of the k-Hessian equation (2.1):

$$(Tu)(t,x) = \left(\frac{b^{2k}}{a}\right)^{\frac{1}{k-1}} u(at,bx).$$

Those special solutions that are themselves invariant under the scaling group are called *self-similar solutions*: this means that (Tu)(t, x) = u(t, x)for all (t, x) in the domain of definition. If moreover, we impose the condition that the solutions have constant finite mass (i.e., integral in space), then $c = b^n$, which implies that the group is reduced to the one-parameter family $(T_{\lambda}u)(t, x) = b^n u(b^{n(k-1)+2k}t, bx)$, which may be written in terms of $\lambda = b^{n(k-1)+2k}$ as

$$(T_{\lambda}u)(t,x) = \lambda^{\alpha}u(\lambda t, \lambda^{\beta}x),$$

with scaling exponents given by

$$\alpha = \frac{n}{n(k-1)+2k}, \ \beta = \frac{1}{n(k-1)+2k}.$$

Thus, if u(t, x) is a self-similar solution, then for all $x \in \mathbb{R}^n$ and t > 0 we have

$$u(t,x) = \lambda^{\alpha} u(\lambda t, \lambda^{\beta} x).$$

Fix now $t_1 > 0$ and let $\lambda = \frac{1}{t_1}$. We get

$$u(t,x) = t_1^{-\alpha} u\left(\frac{t}{t_1}, t_1^{-\beta}x\right).$$

Since t_1 is arbitrary we can replace it with t. Calling now $u(1, x) \equiv \theta(x)$ we get

$$u(t,x) = t^{-\alpha}\theta(t^{-\beta}x),$$

where θ is called the *profile* of the solution.

4 The construction of the k-Barenblatt solutions

In this section we will derive the compactly supported family of mass conserving k-Barenblatt solutions given in (2.2) for the equation

$$u_t = (-1)^{k-1} S_k(D^2 u). (4.1)$$

Thus, we are looking for a positive solution of the above evolution equation with constant mass in \mathbb{R}^n , that is

$$\int_{\mathbb{R}^n} u(t,x)dx = M > 0, \text{ for all } t > 0.$$
(4.2)

According to the previous section, we will actually look for a self-similar solution u to (4.1) of the form:

$$u(t,x) = t^{-\alpha}\theta(\xi), \ \xi = \frac{x}{t^{\beta}}, \ t > 0, \ x \in \mathbb{R}^n,$$
 (4.3)

for some profile θ and the exponents α and β to be determined. Inserting (4.3) into the left-hand side of (4.1), we have

$$u_t = -\alpha t^{-\alpha - 1} \theta(\xi) + t^{-\alpha} \frac{d\theta}{d\xi} \cdot \frac{d\xi}{dt}$$

= $-\alpha t^{-\alpha - 1} \theta(\xi) + t^{-\alpha} \nabla_{\xi} \theta(\xi) \cdot (-\beta) t^{-\beta - 1} x$
= $t^{-\alpha - 1} (-\alpha \theta(\xi) - \beta \nabla_{\xi} \theta(\xi) \cdot \xi).$

J. Sánchez

Inserting (4.3) into the right-hand side of (4.1) (omitting the scalar factor) we have

$$S_k(D^2u) = t^{-k\alpha - 2k\beta} S_k(D^2\theta(\xi))$$
$$= t^{-k(\alpha + 2\beta)} S_k(D^2\theta(\xi)).$$

Then, from the condition $\alpha(k-1) + 2k\beta = 1$ (self-similarity condition), we get the following profile equation

$$\alpha\theta(\xi) + \beta\nabla_{\xi}\theta(\xi) \cdot \xi = (-1)^k S_k(D^2\theta(\xi)).$$
(4.4)

We also have from (4.2)

$$M = \int_{\mathbb{R}^n} u(t, x) \, dx = \int_{\mathbb{R}^n} t^{-\alpha} \theta\left(\frac{x}{t^{\beta}}\right) dx = t^{n\beta-\alpha} \int_{\mathbb{R}^n} \theta(\xi) \, d\xi$$

(it is assumed that $\theta \in L^1(\mathbb{R}^n)$), which yields $n\beta - \alpha = 0$ (mass-preserving condition). Solving the relations between the similarity exponents α and β we obtain $\alpha = \frac{n}{n(k-1)+2k}$ and $\beta = \frac{1}{n(k-1)+2k}$, the same values found through scaling arguments.

Now let θ be a radially symmetric function, say $\theta = \theta(r)$, $r = |\xi| \ge 0$ (abuse of notation). We point out that for a radially symmetric C^2 -function θ the k-Hessian operator take the one-dimensional form

$$S_k(D^2\theta) = c_{n,k} r^{1-n} (r^{n-k} (\theta'(r))^k)', \ r > 0$$

where $c_{n,k} = \frac{1}{n} {n \choose k}$. Then the governing equation (4.4) takes the form

$$\alpha\theta(r) + \beta r\theta'(r) = (-1)^k c_{n,k} r^{1-n} (r^{n-k} (\theta'(r))^k)', \ r > 0, \tag{4.5}$$

with the symmetry condition $\theta'(0) = 0$. From this and the equality $\alpha = n\beta$, the equation (4.5) can be integrated once (fortunately) and then simplified as

$$\beta\theta(r) = (-1)^k c_{n,k} r^{-k} (\theta'(r))^k, \ r > 0; \ \theta'(0) = 0.$$
(4.6)

We observe that, when k = 1 in (4.6), an explicit integration shows that $\theta(r) = Ce^{-\frac{r^2}{4}}$, where C is a positive constant. Thus from (4.3) we recover

the Gaussian function of the classical heat equation. Now let k > 1. A necessary condition for the existence of a solution with the required properties is that the profile θ be decreasing with limit zero at infinity. Thus integrating (4.6) we have

$$\theta(r) = \left(C - \frac{k-1}{k} \left(\frac{\beta}{c_{n,k}}\right)^{\frac{1}{k}} \frac{r^2}{2}\right)_{+}^{\frac{k}{k-1}}, \ r \ge 0.$$
(4.7)

Finally, putting $\gamma = \frac{k-1}{2k} \left(\frac{\beta}{c_{n,k}}\right)^{\frac{1}{k}}$ and inserting $\theta(r)$ in (4.3), we obtain (2.2).

Note that the positive constant C in (4.7) may easily be put in correspondence with the mass of the solution, C = C(M), by (4.2). In fact, introducing the constant $r_0 = \sqrt{\frac{2C}{\gamma}}$, the self-similar solution with constant mass has the explicit form

$$u(t,x) = t^{-\frac{n}{n(k-1)+2k}} \left[\frac{k-1}{4k[c_{n,k}(n(k-1)+2k)]^{\frac{1}{k}}} \left(r_0^2 - \frac{|x|^2}{t^{\frac{2}{n(k-1)+2k}}} \right)_+ \right]_{+}^{\frac{k}{k-1}},$$
(4.8)

where

$$r_{0} = r_{0}(M)$$

$$= \left\{ \pi^{-\frac{n}{2}} D(n,k) \left(\frac{4k}{k-1}\right)^{\frac{k}{k-1}} \frac{\Gamma\left(\frac{n}{2} + \frac{2k-1}{k-1}\right)}{\Gamma\left(\frac{2k-1}{k-1}\right)} M \right\}^{\frac{k-1}{n(k-1)+2k}},$$

 $D(n,k) = [c_{n,k}(n(k-1)+2k)]^{\frac{1}{k-1}} \text{ and where } \Gamma(\cdot) \text{ is the Gamma-function.}$

We have the following properties of the self-similar solutions given in (2.2):

• supp
$$U_C(t, \cdot) \subseteq B\left(0, t^{\beta} \left[\frac{2k}{k-1} \left(\frac{c_{n,k}}{\beta}\right)^{\frac{1}{k}} C\right]^{\frac{1}{2}}\right).$$

- Finite propagation speed.
- Mass conservation.

J. Sánchez

• $U_C(t,x) \to M\delta_0(x)$ as $t \to 0^+$, where $\delta_0(x)$ is the Dirac delta function concentrated at 0. In other words,

$$\lim_{t \to 0^+} \int_{\mathbb{R}^n} U_C(t, x) f(x) dx = M f(0)$$

for all test functions $f \in C_c^{\infty}(\mathbb{R}^n)$.

• Everywhere, except on the degeneracy surface

$$[0,\infty) \times \left\{ |x| = t^{\beta} \left[\frac{2k}{k-1} \left(\frac{c_{n,k}}{\beta} \right)^{\frac{1}{k}} C \right]^{\frac{1}{2}} \right\},\$$

it is classical (and infinitely differentiable).

References

- G.I. Barenblatt. Similarity, self-similarity, and intermediate asymptotics. Consultants Bureau [Plenum], New York-London, 1979.
- [2] M.F. Bidaut-Véron. Self-similar solutions of the *p*-Laplace heat equation: the case when *p* > 2. *Proc. Roy. Soc. Edinburgh Sect. A*, 139(1):1–43, 2009.
- [3] L. Caffarelli, L. Nirenberg, and J. Spruck. The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian. Acta Math., 155(3-4):261–301, 1985.
- [4] M. Fila and M. Winkler. Rate of convergence to a singular steady state of a supercritical parabolic equation. J. Evol. Equ., 8(4):673– 692, 2008.
- [5] M. Fila and M. Winkler. Rate of convergence to separable solutions of the fast diffusion equation. *Israel J. Math.*, 213(1):1–32, 2016.
- [6] V.A. Galaktionov and J.L. Vázquez. A stability technique for evolution partial differential equations, volume 56 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 2004. A dynamical systems approach.

- [7] S.Y. Hsu. Singular limit and exact decay rate of a nonlinear elliptic equation. Nonlinear Anal., 75(7):3443–3455, 2012.
- [8] Y. Huang. Explicit Barenblatt profiles for fractional porous medium equations. Bull. Lond. Math. Soc., 46(4):857–869, 2014.
- [9] R. Iagar, A. Sánchez, and J.L. Vázquez. Radial equivalence for the two basic nonlinear degenerate diffusion equations. J. Math. Pures Appl. (9), 89(1):1–24, 2008.
- [10] S. Kamin and J.L. Vázquez. Fundamental solutions and asymptotic behaviour for the *p*-Laplacian equation. *Rev. Mat. Iberoamericana*, 4(2):339–354, 1988.
- [11] J.R. King. Exact similarity solutions to some nonlinear diffusion equations. J. Phys. A, 23(16):3681–3697, 1990.
- [12] H. Matano and F. Merle. Classification of type I and type II behaviors for a supercritical nonlinear heat equation. J. Funct. Anal., 256(4):992–1064, 2009.
- [13] P. Quittner and Ph. Souplet. Superlinear parabolic problems. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2007. Blow-up, global existence and steady states.
- [14] J. Sánchez. Asymptotic behavior of solutions of a k-Hessian evolution equation. J. Differential Equations, 268(4):1840–1853, 2020.
- [15] L.J. Slater. Confluent hypergeometric functions. Cambridge University Press, New York, 1960.
- [16] J.L. Vázquez. Asymptotic behaviour for the porous medium equation posed in the whole space. volume 3, pages 67–118. 2003. Dedicated to Philippe Bénilan.

- [17] J.L. Vázquez. The porous medium equation. Mathematical theory. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.
- [18] J.L. Vázquez. Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. (JEMS), 16(4):769–803, 2014.
- [19] X. Wang. On the Cauchy problem for reaction-diffusion equations. Trans. Amer. Math. Soc., 337(2):549–590, 1993.
- [20] X.-J. Wang. A class of fully nonlinear elliptic equations and related functionals. *Indiana Univ. Math. J.*, 43(1):25–54, 1994.
- [21] X.-J. Wang. The k-Hessian equation. In Geometric analysis and PDEs, volume 1977 of Lecture Notes in Math., pages 177–252. Springer, Dordrecht, 2009.