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1 Introduction

In this manuscript, we discuss the classification and the local behavior
near the origin for nonnegative solutions U = (u1, . . . , up) : B

∗
R → Rp to

vectorial equations, which we describe as follows. Here B∗
R := Bn

R(0) \
{0} ⊂ Rn is the punctured ball if R < ∞ (resp. B∗

∞ := Rn \ {0} is
the punctured space). By solution, we mean a p-map U such that each
component is smooth and solves the equation in the classical sense.

A vectorial solution U is said to be singular, if the origin is a non-
removable singularity for |U|. Otherwise, U is called non-singular. We also
say that a p-map solution U is nonnegative (strongly positive) when ui ⩾ 0

(ui > 0) and U is (strictly) superharmonic in case −∆ui > 0 for all i ∈ I.
First, we have the second order equation

−∆U = c1(n, a)|U|a−1U in B∗
R, (S2

p,a,R)

where n ⩾ 3, ∆ is the Laplacian acting on p-maps, and |U|2 =
∑p

i=1 u
2
i

is the Euclidean norm. This is strongly coupled by the Gross–Pitaevskii
nonlinearity F a(U) = c1(n, s)|U|a−1U , where a ∈ (1, 2∗ − 1] with 2∗ =

2n/(n− 2) the (upper) critical Sobolev exponent of H1(Rn). The constant
on the right-hand side of (S2

p,a,R) is such that c1(n, a) = 1, if a ∈ (1, 2∗ −
1) is subcritical, and c1(n, a) = c1(n), where c1(n) = n(n − 2)/4 is a
normalizing constant, if a = 2∗ − 1 is critical.

Second, we consider the fourth order equation,

∆2U = c2(n, b)|U|b−1U in B∗
R, (S4

p,b,R)

where n ⩾ 5, ∆2 is the bi-Laplacian acting on p-maps, and the nonlinearity
is given by F b(U) = c2(n, b)|U|b−1U , where b ∈ (1, 2∗∗ − 1] with 2∗∗ =

2n/(n−4) the (upper) critical Sobolev exponent of of H2(Rn). The constant
on the right-hand side of (S4

p,b,R) is such that c2(n, b) = 1, when b ∈
(1, 2∗∗ − 1) is subcritical, and c2(n, b) = c2(n), where c2(n) = [n(n −
4)(n2 − 4)]/16 is a geometric normalizing constant, when b = 2∗∗ − 1 is
critical.
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2 Second order case

To make the exposition more comprehensible, we split our approach
into two cases: blow-up limit (R = ∞) and local (R < ∞). Also, with
respect to the growth, we consider four cases: subcriticals a ∈ (1, 2∗),
a = 2∗, a ∈ (2∗, 2

∗ − 1), and critical a = 2∗ − 1, where 2∗ = n/(n− 2) is
the lower Sobolev exponent (or Serrin exponent). More precisely, the lower
critical exponent is the greatest one for which all nonnegative singular
solutions to the blow-up limit problem are trivial.

2.1 Scalar case

When p = 1, (S2
p,a,R) becomes the following second order elliptic equa-

tion

−∆u = c1(n, a)u
a in B∗

R, (S2
1,a,R)

On this subject, let us mention some pioneering classification and asymp-
totics results due to J. Serrin [42, Theorem 11], P.-L. Lions [34, Theorem 2],
P. Aviles [5, Theorem A], B. Gidas and J. Spruck [24, Theorems 1.1 and
1.2], and L. A. Caffarelli et al. [6, Theorems 1.1–1.3] with an improve-
ment given by N. Korevaar, R. Mazzeo, F. Pacard, and R. Schoen [29,
Theorem 1], which can be compiled in the statement below

Theorem 2.1. Let u be a nonnegative solution to (S2
1,a,R). Assume that

Case (I): (punctured space) R = ∞, and

(i) the origin is a removable singularity.

(a) If a ∈ (1, 2∗ − 1), then u ≡ 0;

(b) If a = 2∗− 1, then there exist x0 ∈ Rn and µ > 0 such that u is
radially symmetric about x0 and, up to a constant, is given by

ux0,µ(x) =

(
2µ

1 + µ2|x− x0|2

)n−2
2

; (2.1)

these solutions are called the (second order) spherical solutions.
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(ii) the origin is a non-removable singularity.

(a) If a ∈ (1, 2∗], then u ≡ 0;

(b) If a ∈ (2∗, 2
∗ − 1) and u is homogeneous of degree − 2

a−1 , then

ua(x) =

[
2(n− 2)(a− 2∗)

(a− 1)2

] 1
a−1

|x|−
2

a−1 ; (2.2)

(c) If a = 2∗ − 1 and u is radially symmetric about the origin.
Moreover, there exist λ ∈ (0, [(n− 2)/n](n−2)/4] and T ∈ (0, Tλ]

such that
uλ,T (x) = |x|

2−n
2 vλ(− ln |x|+ T ), (2.3)

Here vλ,T is the unique T -periodic bounded solution to the fol-
lowing second order problemv(2) − (n−2)2

4 v + n(n−2)
4 v2

∗−1 = 0

v(0) = λ, v(1)(0) = 0,

where Tλ ∈ R is the fundamental period of vλ. We call both
uλ,T and vλ,T (second order) Emden–Fowler (or Delaunay-type)
solutions

Case (II): (punctured ball) R < ∞, and the origin is a non-removable
singularity, it follows that u(x) = (1 +O(|x|))u(|x|) as x → 0, where u is
the spherical average of u. Moreover,

(a) (Serrin–Lions case) if a ∈ (1, 2∗ − 1], then u(x) ≃ |x|2−n as x → 0;

(b) (Aviles case) if a = 2∗ − 1, then

u(x) = (1 + o(1))

(
n− 2√

2

)n−2

|x|2−n(− ln |x|)
2−n
2 as x → 0;

(c) (Gidas–Spruck case) if s ∈ (2∗, 2
∗ − 1), then

u(x) = (1 + o(1))

[
2(n− 2)(a− 2∗)

(a− 1)2

] 1
a−1

|x|−
2

a−1 as x → 0;
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(d) (Caffarelli–Gidas–Spruck case) if a = 2∗ − 1, then there exists a
second order Emden–Fowler solution uλ,T as in (2.3) such that

u(x) = (1 + o(1))uλ,T (|x|) as x → 0;

(e) (Korevaar–Mazzeo–Pacard–Schoen case) Furthermore, one can find
and β0 > 0 such that

u(x) = (1 +O(|x|β0))uλ,T (|x|) as x → 0. (2.4)

2.2 Vectorial case

Now we will be based on the information obtained previously to dis-
cuss the case of systems, that is, p > 1. Here it is convenient to define
Sp−1
+ = {x ∈ Sp−1 : xi ⩾ 0}. In this case, O. Druet, E. Hebey, and J.

Vétois [16, Proposition 1.1], M. Ghergu, S. Kim and H. Shahgholian [23,
Theorems 1.1–1.5] and R. Caju, J. M. do Ó and A. Santos [7, Theorem 1.2]
provided the following results

Theorem 2.2. Let U be a nonnegative solution to (S2
p,a,R). Assume that

Case (I): (punctured space) R = ∞, and

(i) the origin is a removable singularity.

(a) If a ∈ (1, 2∗ − 1), then U ≡ 0;

(b) If a = 2∗ − 1, then there exist Λ ∈ Sp−1
+ , x0 ∈ Rn and uµ,x0

given by (2.1) such that U = Λuµ,x0.

(ii) the origin is a non-removable singularity.

(a) If a ∈ (1, 2∗], then U ≡ 0;

(b) If a ∈ (2∗, 2
∗ − 1) and U is homogeneous of degree − 2

a−1 , then
there exists Λ ∈ Sp−1

+ and ua given by (2.2) such that U = Λua;

(c) If a = 2∗ − 1, then there exists uλ,T given by (2.3) such that
U = Λuλ,T .
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Case (II): (punctured ball) R < ∞, and the origin is a non-removable
singularity, then |U(x)| = (1 + O(|x|))|U(x)| as x → 0, where |U| is the
spherical average of |U|. Moreover,

(a) if a ∈ (1, 2∗], then |U(x)| ≃ |x|2−n as x → 0;

(b) if a = 2∗, then

|U(x)| = (1 + o(1))

(
n− 2√

2

)n−2

|x|2−n(− ln |x|)
2−n
2 as x → 0;

(c) if a ∈ (2∗, 2
∗ − 1), then

|U(x)| = (1 + o(1))

[
2(n− 2)(a− 2∗)

(a− 1)2

] 1
a−1

|x|−
2

a−1 as x → 0;

(d) if a = 2∗ − 1, then there exists a second order Emden–Fowler uλ,T

as in (2.3) such that

|U(x)| = (1 + o(1))uλ,T (|x|) as x → 0.

Furthermore, one can find β0 > 0 such that

|U(x)| = (1 +O(|x|β0))uλ,T (|x|) as x → 0.

3 Fourth order case

As before, we split our approach into four cases: subcriticals b ∈
(1, 2∗∗), b = 2∗∗, b ∈ (2∗∗, 2

∗∗ − 1), and critical b = 2∗∗ − 1, where
2∗∗ = n/(n− 4) is the lower Sobolev exponent (or Serrin exponent). This
is a fourth order analog of the one found by J. Serrin [42] in the context
of second order problems.

3.1 Scalar case

Let us start our analysis with p = 1. In this situation, we have the
following fourth order equation

∆2u = c2(n, b)u
b in B∗

R. (S4
1,b,R)
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The next result presents a holistic picture of the classification and local
behavior for solutions to this equation. Namely, we summarize some recent
contributions due to C. S. Lin [33, Theorem 1.3], Z. Guo, J. Wei and
F. Zhou [26, Theorem 1.2], R. Frank and T. König [22, Theorem 2], R.
Soranzo [43, Theorems 3 and 5], H. Yang [45, Theorem 1.1], T. Jin and
J. Xiong [28, Theorem 1.1], J. Ratzkin [38, Theorem 1] and the present
authors in [2, Theorem 1] and [4, Theorem 2].

Theorem 3.1. Let u be a nonnegative solution to (S4
1,b,R). Assume that

Case (I): (punctured space) R = ∞, and

(i) the origin is a removable singularity.

(a) If b ∈ (1, 2∗∗ − 1), then u ≡ 0;

(b) If b = 2∗∗ − 1, then there exist x0 ∈ Rn and µ > 0 such that u
is radially symmetric about x0 and, up to a constant, is given
by

ux0,µ(x) =

(
2µ

1 + µ2|x− x0|2

)n−4
2

. (3.1)

These are called the (fourth order) spherical solutions (or bubbles).

(ii) the origin is a non-removable singularity.

(a) If b ∈ (1, 2∗∗], then u ≡ 0;

(b) If b ∈ (2∗∗, 2
∗∗ − 1) and u is homogeneous of degree − 4

b−1 , then

ub(x) = K0(n, b)
1

b−1 |x|−
4

b−1 , (3.2)

where

K0(n, b) = 8(b− 1)−4
[
(n− 2)(n− 4)(b− 1)3+

2
(
n2 − 10n+ 20

)
(b− 1)2 − 16(n− 4)(b− 1) + 32

]
,

(c) If b = 2∗∗ − 1, then u is radially symmetric about the origin.
Moreover, there exist λ ∈ (0, [n(n− 4)/(n2 − 4)]n−4/8] and T ∈
(0, Tλ] such that

uλ,T (x) = |x|
4−n
2 vλ(ln |x|+ T ). (3.3)
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Here Tλ ∈ R is the fundamental period of the unique T -periodic
bounded solution vλ to the following fourth order Cauchy prob-
lem, v(4) +K∗

2 (n)v
(2) +K∗

0 (n)v = c4(n)v
2∗∗−1

v(0) = λ, v(1)(0) = 0, v(2)(0) = γ, v(3)(0) = 0,

where

K∗
0 (n) =

n2(n− 4)2

16
and K∗

2 (n) = −n2 − 4n+ 8

2
.

We call both uλ,T and vλ,T (fourth order) Emden–Fowler (or
Delaunay-type) solutions.

Case (II): (punctured ball) R < ∞, and the origin is a non-removable sin-
gularity. Suppose that u is superharmonic. Then, u(x) = (1+O(|x|))u(|x|)
as x → 0. Moreover,

(a) if b ∈ (1, 2∗∗), then u(x) ≃ |x|4−n as x → 0;

(b) if b = 2∗∗, then

|U(x)| = (1 + o(1))K̂0(n)
n−4
4 |x|4−n(ln |x|)

4−n
4 as x → 0,

where K̂0(n) =
(n−2)(n−4)2

2 ;

(c) if b ∈ (2∗∗, 2
∗∗ − 1), then

u(x) = (1 + o(1))K0(n, b)
1

b−1 |x|−
4

b−1 as x → 0;

(d) if b = 2∗∗ − 1, then there exists uλ,T as in (3.3) such that

u(x) = (1 + o(1))uλ,T (|x|) as x → 0.

Furthermore, one can find β0 > 0 such that

u(x) = (1 +O(|x|β0))uλ,T (|x|) as x → 0.
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3.2 Vectorial case

Finally, let us study the vectorial equation (S4
p,b,R). In this fashion,

the theorem below is the compilation of the results of the present authors,
which can be found in [3, Theorems 1 and 2], [2, Theorem 1] and [4,
Thereoms 1 and 2].

Theorem 3.2. Let U be a nonnegative solution to (S4
p,b,R). Assume that

Case (I): (punctured space) R = ∞, and

(i) the origin is a removable singularity.

(a) If b ∈ (1, 2∗∗ − 1), then U ≡ 0;

(b) If b = 2∗∗ − 1, then there exist Λ ∈ Sp−1
+ and ux0,µ given by

(3.1) such that U = Λux0,µ.

(ii) the origin is a non-removable singularity.

(a) If b ∈ (1, 2∗∗], then U ≡ 0;

(b) If b ∈ (2∗∗, 2
∗∗− 1) and U is homogeneous of degree − 4

b−1 , then
there exists Λ ∈ Sp−1

+ and ub given by (3.2) such that U = Λub;

(c) If b = 2∗∗−1, then there exist Λ ∈ Sp−1
+ and uλ,T given by (3.3)

such that U = Λuλ,T .

Case (II): (punctured ball) R < ∞, and the origin is a non-removable sin-
gularity. Suppose that U is superharmonic. Then, it follows that |U(x)| =
(1 +O(|x|))|U(x)| as x → 0. Moreover,

(a) if b ∈ (1, 2∗∗), then

|U(x)| ≃ |x|4−n as x → 0;

(b) if b = 2∗∗, then

|U(x)| = (1 + o(1))K̂0(n)
n−4
4 |x|4−n(ln |x|)

4−n
4 as x → 0;
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(c) if b ∈ (2∗∗, 2
∗∗ − 1), then

|U(x)| = (1 + o(1))K0(n, b)
1

b−1 |x|−
4

b−1 as x → 0;

(d) if b = 2∗∗ − 1, then there exists uλ,T as in (3.3) such that

|U(x)| = (1 + o(1))uλ,T (|x|) as x → 0.

Furthermore, one can find β0 > 0 such that

|U(x)| = (1 +O(|x|β0))uλ,T (|x|) as x → 0.

4 Some applications

Applications for higher order strongly coupled elliptic systems are ubiq-
uitous in several mathematical physics branches. For instance, the Gross–
Pitaevskii coupling is one of the first approximations to consider in the
Hartree–Fock theory to model Bose–Einstein double condensates, where
the component solutions represent the state (or wave) functions of a many-
body quantum-mechanical system [1, 25, 19]. They can also describe the
behavior of deep-water and Rogue waves in the ocean [17, 35].

For the scalar case p = 1, the study of equations like (S2
1,a,R) dates

back to the classical papers [18, 21, 31] regarding the Lane–Emden–Fowler
equation, which models the distribution of mass density for spherical poly-
tropic stars in hydrostatic equilibrium (see [8] for more details). In addi-
tion, fourth order equations like (S4

1,b,R), the Swift–Hohenberg equation,
and the Extended–Fisher–Kolmogorov equation are frequently used on the
theory of pattern formation [12, 36, 37]. Surprisingly, these models were
recently applied to construct the new counterexamples for Kelvin’s three-
dimensional honeycomb conjecture [27, 39, 44].

Apart from the aforementioned applications, in the critical growth
cases a = 2∗ − 1 and b = 2∗∗ − 1, Systems (S2

p,a,R) and (S4
p,b,R) are the

most natural generalization of the singular Yamabe and Q-curvature equa-
tions on its conformally flat case; these are famous problems in conformal
geometry [40, 41, 30].
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5 Further problems

In this section, we discuss some still undeveloped extensions for the
results presented in this paper. Here we focus on changing the order of the
equation and the nonlinear coupling term. In this context, most results
are not proved on their full generality even in the second order case.

It would be reasonable to extend the classification and asymptotics
results to the study of nonnegative p-map solutions U : B∗

R → Rp to the
following class of higher order p-systems,

(−∆)kU = ck(q, n)|U|q−1U in B∗
R, (Sk

p,q,R)

Here q ∈ (1, 2∗k−1], where 2∗k := 2n/(n−2k) is the (upper critical Sobolev
exponent) of Hk(Rn) with n > 2k and k ⩾ 1, (−∆)k is the poly-Laplacian,
and ck(n, q) is a normalizing constant. Notice that, by using the Green
representation theorem for the poly-Laplacian, it follows that (Sk

p,q,R) can
also be realized as an integral system. For some references on this, see
[9, 10, 14, 15, 20, 28] and the references therein.

It also be interesting to consider other type of couplings. Namely, to
understand nonnegative solutions U to the strongly coupled higher order
2-system,

{
(−∆)ku1 = µ1u

q−1
1 + βu

q/2−1
1 u

q/2
2

(−∆)ku2 = µ2u
q−1
2 + βu

q/2−1
2 u

q/2
1

in B∗
R,

where k ⩾ 1, n > 2k, µ1, µ2, β > 0, and q ∈ (1, 2∗k − 1]. This type of
coupling system on the right-hand side of this system seems to be harder
to tackle than the one in (S2

p,a,R) and (S4
p,b,R) since the behavior of the

coupling term depends strongly on the dimension. In fact, even for the
second order case not much is known on the asymptotic behavior near the
isolated singularity. For more details, see [11, 13, 32, 46] and the references
therein.
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