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Abstract. In this paper we study the quasilinear problem


−div
(
a (|∇u|p) |∇u|p−2∇u

)
+ [1 + µV (z)]b (|u|p) |u|p−2u = f(u) + ϱ|u|σ−2u,

u ∈ W1,p(RN ) ∩ W1,q(RN ).

The term 1+µV (z) is the steep potential well introduced by Bartsch
and Wang in [11]. With suitable hypotheses on the functions a, b and
f , we show the existence of solutions and concentration behavior
occurred as µ → +∞, considering the subcritical case, the critical
case and the supercritical case.
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1 Introduction

In the last years many researchers have dedicated to study the existence
of solitary waves, namely solutions of the form Ψ(x, t) = exp(−iEh t)u(x),
with E ∈ R, for the nonlinear Schrödinger equation

ih
∂Ψ

∂t
= −h2∆Ψ+ V (x)Ψ− f(Ψ), in Ω, (1.1)

where h > 0 and Ω is a domain in RN . The equation (1.1) is related to
physics problems, as nonlinear optics, plasma physics, condensed matter
physics and quantum mechanics. See for example [3], for more details. A
direct computation shows that Ψ is a solitary wave for (1.1) if, and only
if, u is a solution of the following problem

−h2∆u+ V (x)u = f(u), in Ω. (1.2)

Finding a solution to problem (1.2) when Ω is an unbounded domain
becomes more difficult due to the lack of compact embedding from H1(Ω)

into Lp(Ω). In general, the geometry of the potential V helps to over-
come this difficulty. Interesting conditions on V to overcome the lack of
compactness can be seen in [3], [4], [14], [16], [32], [33],

Bartsch and Wang [11] considered problem (1.2) with h = 1, Ω = RN

and with steep potential well, that is, when V (x) = 1 + µV (x), for all
x ∈ RN , µ > 0 and V satisfying hypotheses (V1), (V2) and (V3) that
we are using in this paper and that we will put in this section. They
proved that (1.2) has a positive ground state solution uµ for µ large, and
as µ→ +∞, uµ converges strongly in H1(RN ) to the ground state solution
of the limiting equation

−h2∆u+ u = f(u), in Ω0,

where Ω0 = V −1(0). In particular, in [2] the authors have studied the case
exponential critical and in [36] the authors have studied the case polinomial
critical of [11]. The existence of sign-changing solutions for (1.2) and with
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steep potential well was studied in [31]. In the literature, we find a lot
of papers where the authors have considered elliptic problems with steep
potential as [6], [7], [8], [24].

In this article, we are interested in a class of problems that includes the
equation (1.2) with steep potential and subcritical, critical or supercritical
growth on the nonlinearity. More precisely, we are going to study the
following class of quasilinear problems (Pµ,ϱ,σ) given by

−div
(
a (|∇u|p) |∇u|p−2∇u

)
+ [1 + µV (z)]b (|u|p) |u|p−2u = f(u) + ϱ|u|σ−2u,

u ∈W 1,p(RN ) ∩W 1,q(RN ),

where 1 < p ≤ q < N , N ≥ 2, µ > 0. We are considering three cases. The
first case is the subcritical growth on the nonlinearity, i.e. when ϱ = 0. In
this case we have

(Pµ,0)


−div

(
a (|∇u|p) |∇u|p−2∇u

)
+ [1 + µV (z)]b (|u|p) |u|p−2u = f(u),

u ∈W 1,p(RN ) ∩W 1,q(RN ).

The second case is the critical growth on the nonlinearity, i.e. when
ϱ = 1 and σ = q∗ := Nq

N−q . In this case we have (Pµ,1,q∗), that is,
−div

(
a (|∇u|p) |∇u|p−2∇u

)
+ [1 + µV (z)]b (|u|p) |u|p−2u = f(u) + |u|q∗−2u,

u ∈W 1,p(RN ) ∩W 1,q(RN ).

The last case is the supercritical growth on the nonlinearity, i.e. when
ϱ = 1 and σ > q∗ := Nq

N−q . In this case we have (Pµ,1,σ), that is,
−div

(
a (|∇u|p) |∇u|p−2∇u

)
+ [1 + µV (z)]b (|u|p) |u|p−2u = f(u) + |u|σ−2u,

u ∈W 1,p(RN ) ∩W 1,q(RN ).

In order to state the main result, we need to introduce the hypotheses
on the functions a and b.
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(a1) the function a is of class C1 and there exist constants, k1, k2 ≥ 0

such that

k1t
p + tq ≤ a(tp)tp ≤ k2t

p + tq, for all t > 0;

(a2) the mapping t 7→ a(tp)

tq−p
is nonincreasing for t > 0.

(a3) if 1 < p ≤ q ≤ 2 ≤ N the mapping t 7→ a(t) is nondecreasing for
t > 0. If 2 ≤ p ≤ q < N the mapping t 7→ a(t)tp−2 is nondecreasing
for t > 0

As a direct consequence of (a3) we obtain that the map a and its derivative
a′ satisfy

a′(t)t ≤ (q − p)

p
a(t) for all t > 0. (1.3)

Now, if we define the function h(t) = a(t)t − q
pA(t), using (1.3) we can

prove that the function h is nonincreasing, where A(t) =
∫ t

0
a(s)ds. Then,

there exists a positive real constant γ ≥ q
p such that

1

γ
a(t)t ≤ A(t), for all t ≥ 0. (1.4)

(b1) The function b is of class C1 and there exist constants k3, k4 ≥ 0

such that

k3t
p + tq ≤ b(tp)tp ≤ k4t

p + tq, for all t > 0;

(b2) the mapping t 7→ b(tp)

tq−p
is nonincreasing for t > 0.

(b3) if 1 < p ≤ q ≤ 2 ≤ N the mapping t 7→ b(t) is nondecreasing for
t > 0. If 2 ≤ p ≤ q < N the mapping t 7→ b(t)tp−2 is nondecreasing
for t > 0
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Using the hypothesis (b3) and arguing as (1.3) and (1.4), we also can
prove that there exists γ ≥ q

p such that

1

γ
b(t)t ≤ B(t) for all t ≥ 0, (1.5)

where B(t) =

∫ t

0
b(s)ds. The condition in V ∈ C(RN ,R) are the following:

(V1) The potential V is nonnegative, that is,

V (x) ≥ 0, for all x ∈ RN .

(V2) The set Ω := int
{
x ∈ RN | V (x) = 0

}
is a non-empty bounded open

set with smooth boundary ∂Ω.

(V3) There exists V ∗ > 0, such that

meas
({
x ∈ RN : V (x) ≤ V ∗}) <∞.

Before we give the main result, we need to put some hypotheses on the
nonlinearity f ∈ C(R).

(f1)

lim
|s|→0

f(s)

|s|q−1
= 0 and f(s) = 0, for all s ≤ 0.

(f2) There exists q < r < q∗ = Nq
N−q such that

lim
|s|→∞

f(s)

|s|r−1
= 0.

(f3) There exists θ ∈ (γp, q∗), such that

0 < θF (s) ≤ f(s)s, for s ̸= 0,

where F (s) =
∫ s

0
f(t)dt and γ > 0 was given in (1.4).
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(f4) s 7→
f(s)

sq−1
is nondecreasing.

(f5) There exist τ ∈ (q, q∗) and λ∗ > 1 such that

f(s) ≥ λ|s|τ−1, ∀ s ∈ R,

for a fixed λ > λ∗ and λ∗ will be fixed latter.

The main result is:

Theorem 1.1. Assume that (a1)− (a3), (b1)− (b3), (f1)− (f4) and (V1)−
(V3) are satisfied. Then,

(i) there exists µ∗ > 0 such that problem (Pµ,0)(subcritical case) has a
ground state solution uµ ∈W 1,p(RN ) ∩W 1,q(RN ) for all µ > µ∗.

(ii) if the function f satisfies (f5) there exist positive numbers λ∗ and
µ∗∗, such that problem (Pµ,1,σ)(critical or supercritical case) has a
ground state solution uµ ∈ W 1,p(RN ) ∩W 1,q(RN ) for all µ > µ∗∗

and for all λ > λ∗.

Moreover, as µ→ +∞, the sequence (uµ) converges in W 1,p(RN )∩W 1,q(RN )

to a ground state solution u∞ ∈W 1,q
0 (Ω) of the problem

−div
(
a (|∇u|p) |∇u|p−2∇u

)
+ b (|u|p) |u|p−2u = f(u) + ϱ|u|σ−2u in Ω,

u = 0 on ∂Ω.

Our arguments were strongly influenced by [2], [9], [10], [11], [17], [18],
[25], [31] and [36]. Below we list what we believe to be the main contribu-
tions of our paper.

(i) In this paper we consider a large class of quasilinear operator which
includes but is not restricted to Laplacian or p-Laplacian operator.
In general, this operator is not linear and nonhomogeneous. See
below for several examples of operators we can consider.
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(ii) Since we work with a general operator, some estimates are more
refined. See for example Lemma 2.2, Lemma 4.1, Proposition 5.1
and Lemma 8.3.

(iii) Unlike the works [2], [11], [27], [31] and [36], we are also considering
the supercritical case.

We are going to present some examples of functions a and b which
are also interesting from the mathematical point of view and have a wide
range of applications in physics and related sciences.

Problem 1: Let a(t) = t
q−p
p and b(t) = t

q−p
p . Then conditions (a1)− (a3)

and (b1)− (b3) are satisfied and problem (Pµ) is

−∆qu+ [1 + µV (x)]|u|q−2u = f(u) + ϱuσ−1 in RN .

Problem 2: Let a(t) = 1 + t
q−p
p and b(t) = 1 + t

q−p
p . Then a satisfies

(a1)− (a3), b satisfies (b1)− (b3) and problem (Pµ) is

−∆pu−∆qu+ [1 + µV (x)][|u|p−2u+ |u|q−2u] = f(u) + ϱuσ−1 in RN .

Problem 3: Let a(t) = 1 + 1

(1+t)
p−2
p

and b(t) = 1. Note that, a satisfies

(a1)− (a3), b satisfies (b1)− (b3) and problem (Pµ) is

− div

[
|∇u|p−2∇u+

|∇u|p−2∇u
(1 + |∇u|p)

p−2
p

]
+[1+µV (x)]|u|p−2u = f(u)+ϱuσ−1 in RN .

Problem 4: Let a(t) = 1 + t
q−p
p + 1

(1+t)
p−2
p

and b(t) = 1 + t
q−p
p . In this

case, a satisfies (a1)− (a3), b satisfies (b1)− (b3) and problem (Pµ) is

−∆pu−∆qu−div

[
|∇u|p−2∇u

(1 + |∇u|p)
p−2
p

]
+[1+µV (x)][|u|p−2u+|u|q−2u] = f(u)+ϱuσ−1,

in RN .
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Clearly, other examples of a and b satisfying (a1) − (a3) and (b1) − (b3)

can be provided thus generating very interesting elliptic problems from
mathematical point of view and in term of applications, such as biophysics,
plasma physics and chemical reaction, as it can be seen for example in [22],
[23] and [35].

The interest in the study of nonlinear partial differential equations with
p&q operator has increased because many applications arising in mathe-
matical physics may be stated with an operator in this form. We cite the
papers [20], [26], [28], [29], [30] and their references. Several techniques
have been developed or applied in their study, such as variational methods,
fixed point theory, lower and upper solutions, global branching, and the
theory of multivalued mappings.

The paper is organized as follows. In section 2 we study the variational
framework considering subcritical and critical problem. In section 3 we
prove the existence of solution of subcritical problem. The existence of
solution of critical problem is showed in section 4. In section 5 we show the
concentration result considering the subcritical, critical and supercritical
cases. The proof of the part of subcritical in Theorem 1.1 is proved in
section 6 and the the part of critical proof of Theorem 1.1 is done is
section 7. In section 8 we study the supercritical problem and define an
auxiliary problem. We prove de existence and concentration of solution of
supercritical problem in section 9.

2 Variational framework and some preliminary re-
sults for the subcritical case (ϱ = 0) and for the
critical case (ϱ = 1 and σ = q∗)

In this chapter we are considering the cases ϱ = 0 or ϱ = 1 with σ = q∗.
More specifically, we have (Pµ,ϱ,q∗) given by

−div
(
a (|∇u|p) |∇u|p−2∇u

)
+ [1 + µV (z)]b (|u|p) |u|p−2u = f(u) + ϱ|u|q∗−2u,

u ∈W 1,p(RN ) ∩W 1,q(RN ).
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Since the approach is variational, let us consider the energy functional
associated Iµ,ϱ :W → R given by

Iµ,ϱ(u) : =
1

p

∫
RN

A (|∇u|p) dx+
1

p

∫
RN

[1 + µV (x)]B (|u|p) dx

−
∫
RN

F (u)dx− ϱ

q∗

∫
RN

|u|q∗dx,

where

W :=

{
u ∈W 1,p(RN ) ∩W 1,q(RN ) :

∫
RN

V (x)b(|u|p)|u|pdx < +∞
}
.

Note that W is a Banach space when endowed with the norm

∥u∥µ = ∥u∥µ,p + ∥u∥µ,q,

where

∥u∥µ,m =

(∫
RN

|∇u|mdx+

∫
RN

[1 + µV (x)]|u|mdx
) 1

m

, for m ≥ 1.

In W 1,p(RN ) ∩W 1,q(RN ) we fix the norm

∥u∥ = ∥u∥p + ∥u∥q,

where

∥u∥m =

(∫
RN

|∇u|mdx+

∫
RN

|u|mdx
) 1

m

, for m ≥ 1.

Note that W is continuous embedded into Lr(RN ), for q < r < q∗.

By standard arguments, it is possible to prove that Iµ,ϱ ∈ C1(W,R).
Note that (f1) and (f2) imply that for any given ξ > 0, there is a constant
Cξ > 0, such that

|f(s)| ≤ ξ|s|q−1 + Cξ|s|r−1, ∀ s ∈ R. (2.1)
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Moreover, by (f3) there exist positive constants D1, D2 such that

F (s) ≥ D1|s|θ −D2, ∀ s ∈ R. (2.2)

To use the Mountain Pass Theorem [5], we define the Palais-Smale com-
pactness condition. We say that a sequence (un) ⊂ W is a Palais-Smale
sequence at level cµ,ϱ for the functional Iµ,ϱ if

Iµ,ϱ(un) → cµ,ϱ

and

∥I ′µ,ϱ(un)∥ → 0 in (W )′,

where

cµ,ϱ = inf
η∈Γ

max
t∈[0,1]

Iµ,ϱ(η(t)) > 0 (2.3)

and

Γ := {η ∈ C([0, 1],W ) : η(0) = 0, Iµ,ϱ(η(1)) < 0}.

If every Palais-Smale sequence of Iµ,ϱ has a strong convergent subse-
quence, then one says that Iµ,ϱ satisfies the Palais-Smale condition ((PS)
for short). Now let us show that the functional Iµ,ϱ has the mountain pass
geometry.

We say that a solution uµ,ϱ ∈W \{0} of (Pµ,ϱ,q∗) is a ground solution if
Iµ,ϱ(uµ,ϱ) = inf

Nµ

Iµ,ϱ(uµ,ϱ), where Nµ,ϱ is the Nehari manifold associated to

Iµ,ϱ given by

Nµ,ϱ := {u ∈W : u ̸= 0 : Iµ,ϱ
′(u)u = 0}.

Lemma 2.1. The functional Iµ,ϱ : W → R and the constant cµ,ϱ satisfy
the following conditions:

(i) There are positive numbers α and ρ, such that

Iµ,ϱ(u) ≥ α if ∥u∥µ = ρ.
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(ii) For any positive function w ∈ C∞
0 (Ω), we have

lim
t→∞

Iµ,ϱ(tw) = −∞.

(iii) There exists a positive constant Υ1 which does not depend of µ, such
that cµ,ϱ ≤ Υ1.

Proof. Using (a1), (b1) and (2.1), we have

Iµ,ϱ(u) ≥ min{k1, k3}
p

∥u∥pµ,p +
1

q
∥u∥qµ,q −

ξ

q

∫
RN

|u|qdx

−
Cξ

r

∫
RN

|u|rdx− ϱ

q∗

∫
RN

|u|q∗dx.

Therefore, using the Sobolev embeddings and taking ξ and ∥u∥µ sufficiently
small, there are constants C1, C2 > 0 such that

Iµ,ϱ(u) ≥ C1∥u∥qµ − C2∥u∥rµ − C3ϱ∥u∥q
∗

µ

and the item (i) is proved.
Now we are going to show that the item (ii) holds. Since for all x ∈ Ω,

we have µV (x) = 0, for a positive function w ∈ C∞
0 (Ω) and t > 0, we can

use (a1), (b1), (2.2) to obtain

Iµ,ϱ(tw) ≤
tp

p
max{k2, k4}∥w∥pp +

tq

q
∥w∥qq −D1t

θ

∫
RN

|w|θdx+D2|Ω|.

Since q < θ, this completes the proof of the item (ii). The proof of the
item (iii) follows by the last inequality and the item (i) because

0 < cµ,ϱ

≤ max
t≥0

 tp
p
max{k2, k4}∥w∥pp +

tq

q
∥w∥qq −D1t

θ

∫
RN

|w|θdx+D2|Ω|


:= Υ1,

where D1, D2 were defined in (2.2).
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From [34, Lemma 1.15], Lemma 2.1 ensures that there exists a sequence
(PS)cµ,ϱ for the functional Iµ,ϱ, where cµ,ϱ is set in (2.3).

Lemma 2.2. Let (un) be a (PS)cµ,ϱ sequence of the functional Iµ,ϱ. Then
the following statements hold.

(i) The sequence (un) is bounded in W .

(ii) There exists a positive constant Υ2, which does not depend on µ,
such that

lim sup
µ→∞

∥un∥µ ≤ Υ2.

Consequently, lim inf
µ→+∞

cµ,ϱ > 0.

Proof. Since (un) is a (PS)cµ,ϱ sequence of the functional Iµ,ϱ, then, by
(1.3) and (1.5),

on(1) + cµ,ϱ + on(1)∥un∥µ = Iµ,ϱ(un)−
1

θ
I ′µ,ϱ(un)un

≥
(

1

pγ
− 1

θ

) ∫
RN

[a(|∇un|p)|∇un|p + [1 + µV (x)] b(|un|p)|un|p] dx

+
1

θ

∫
RN

[f(un)(un)− θF (un)] dx+ ϱ

(
1

θ
− 1

q∗

) ∫
RN

|un|q
∗
dx

≥
(

1

pγ
− 1

θ

)[
min{k1, k3}∥un∥pµ,p + ∥un∥qµ,q

]
. (2.4)

Then, arguing as [1, Lemma 2.3] we can concluded that (un) is bounded
in W .

Let us show that the item (ii) holds. Using the item (i) we can consider
Rµ,ϱ := lim sup

n→∞
∥un∥µ. We suppose, by contradiction, that Rµ,ϱ → +∞

when µ → +∞. Hence for µ large enough we can guarantee that there
exists mµ,ϱ ∈ N such that

∥umµ,ϱ∥µ ≥ Rµ,ϱ

2
→ +∞ when µ→ +∞.
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Therefore, using (2.4) and the item (iii) of Proposition 2.1, we conclude
that

Υ1

∥umµ,ϱ∥µ
+ oµ(1) ≥

(
1

pγ
− 1

θ

)
min{k1, k3, 1}

2p
∥umµ,ϱ∥p−1

µ .

This absurd shows the first part of item (ii). To conclude the item (ii) let
us suppose by contradiction that lim inf

µ→+∞
cµ,ϱ = 0. Then using the inequality

(2.4) and that lim sup
µ→∞

∥un∥µ ≤ Υ2, we can conclude that

∥un∥µ = on(1) + oµ(1). (2.5)

Since I ′µ,ϱ(un)un = on(1), we get∫
RN

a (|∇un|p) |∇un|pdx+

∫
RN

[1 + µV (x)]b (|un|p) |un|pdx

=

∫
RN

f(un)undx+
ϱ

q∗

∫
RN

|u|q∗dx+ on(1).

Using Sobolev embeddings, (a1), (a2) and (2.1) there exists a constant
C > 0 which is independent of µ such that

on(1) + [min{k1, k3, 1} − ξ] ∥un∥q ≤ min{k1, k3, 1} [∥un∥pp + ∥un∥qq]

≤ min{k1, k3, 1} [∥un∥pµ,p + ∥un∥qµ,q]

≤ Cξ

∫
RN

|un|r + ϱ

∫
RN

|un|q
∗
≤ C[∥un∥r + ϱ∥un∥q

∗
].

Hence

on(1) + [min{k1, k3, 1} − ξ] ≤ C
[
∥un∥r−q + ϱ∥un∥q

∗−q
]
,

which is a contradiction with (2.5). Then, we conclude that

lim inf
µ→+∞

cµ,ϱ > 0.
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3 The proof of the item (i) of Theorem 1.1 for the
subcritical case (ϱ = 0)

From Lemma 2.1 and Lemma 2.2 there exists a bounded (PS)cµ,0 se-
quence (un) for Iµ,0. Then, by Sobolev embeddings, there exists uµ ∈ W

such that, up to a subsequence, we have
un ⇀ uµ in W ;

un → uµ in Ls
loc(Ω), 1 ≤ s ≤ q;

un → uµ a.e in RN .

(3.1)

Moreover, using the ideias contained in [1, Lemma 2.3], we can conclude
that uµ is a critical point of Iµ,0.

Now we prove that uµ is a critical point of Iµ,0 at Mountain Pass level
cµ,0, for µ large enough. First of all, some technical lemmas.

Lemma 3.1. Consider (uµ) ⊂W 1,p(RN )∩W 1,q(RN ), then there exists a
positive constant Υ3 which does not depend on µ such that

lim inf
µ→+∞

∫
RN

|uµ|rdx ≥ Υ3.

Proof. Let us suppose, by contradiction, that lim inf
µ→+∞

∫
RN

|uµ|rdx = 0. Using

Sobolev embeddings, (a1), (b1) and (2.1) we obtain

min

{
k1, k2,

1

2

}
[∥uµ∥pµ,p + ∥uµ∥qµ,q] ≤ oµ(1). (3.2)

Hence, lim
µ→∞

cµ,0 = 0 which contradicts the item (ii) of Lemma 2.2.

Proposition 3.2. There exists µ∗ > 0 such that Iµ,0 has a critical point
uµ ∈W at mountain pass level cµ,0, for µ ≥ µ∗.

Proof. By Lemma 3.1 there exists µ∗ > 0 such that Iµ,0 has a nontrivial
critical point, for µ ≥ µ∗. On the other hand, the assumptions (a3), (b3)
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and (f4) imply the following monotonicity conditions:

t 7−→ 1

p
A(t)− 1

q
a(t)t is increasing for t ∈ (0,+∞),

t 7−→ 1

p
B(t)− 1

q
b(t)t is increasing for t ∈ (0,+∞),

t 7−→ 1

q
f(t)t− F (t) is increasing for t ∈ (0,+∞).

Therefore, by (3.1) and Fatou’s Lemma, we obtain

Iµ,0(uµ) = Iµ,0 (uµ)−
1

q
I ′µ,0 (uµ)

≤
∫
RN

(
1

p
A (|∇uµ|p)−

1

q
a (|∇uµ|p) |∇uµ|p

)
dx

+

∫
RN

(1 + µV (x))

(
1

p
B (|uµ|p)−

1

q
b (|uµ|p) |uµ|p

)
dx

+

∫
RN

(
1

q
f (uµ)uµ − F (uµ)

)
dx

≤ lim inf
n→+∞

 ∫
RN

(
1

p
A (|∇un|p)−

1

q
a (|∇un|p) |∇un|p

)
dx

+

∫
RN

(1 + µV (x))

(
1

p
B (|un|p)−

1

q
b (|un|p) |un|p

)
dx

+

∫
RN

(
1

q
f (un)un − F (un)

)
dx


= lim

n→+∞
Iµ,0 (un) = cµ,0.

Hence, using the characterization (2.3) of the mountain pass level cµ,0 and
(f4), we conclude

cµ,0 ⩽ Iµ,0 (uµ) ≤ lim
n→+∞

Iµ,0 (un) = cµ,0, µ ≥ µ∗.
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4 The proof of the item (ii) of Theorem 1.1 for
the critical case (ϱ = 1 and σ = q∗)

To find a nontrivial solution for the case critical of the problem (Pµ,1,q∗)

it is necessary to control the level critical cµ,1. For this, we need to consider
an auxiliary problem given by{

−k2∆pu−∆qu+ k4|u|p−2u+ |u|q−2u = |u|τ in Ω,

u ∈W 1,q
0 (Ω),

(PΩ)

where τ is the constant that appeared in the hypothesis (f5) and Ω is
the bounded domain that appeared in the hypothesis (V2). The Euler-
Lagrange functional associated to (PΩ) is given by

Φ0(u) =
1

p

∫
Ω

[k2|∇u|p + k4|u|p] dx+
1

q

∫
Ω

[|∇u|q + |u|q] dx− 1

τ

∫
Ω

|u|τdx

and the Nehari manifold

NΦ0 = {u ∈W 1,q
0 (Ω) : u ̸= 0 and Φ

′
0(u)u = 0}.

Then, from [15, Apendix] there exists wτ ∈W 1,q
0 (Ω) such that

Φ0(wτ ) = c0, Φ
′
0(wτ ) = 0

and

c0 ≥
(
τ − q

τq

)∫
Ω

|wτ |τdx. (4.1)

Lemma 4.1. There exists a positive number λ∗ such that the level cµ,1
satisfies

cµ,1 <

(
1

pγ
− 1

q∗

)
SN/q, ∀ µ ≥ 0 and ∀ λ > λ∗.

Proof. Since V (x) = 0 for x ∈ Ω, and the hypotheses (a1), (b1) and (f5)
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hold, we deduce that∫
RN

a(|∇wτ |p)|∇wτ |pdx+

∫
RN

(1 + µV (x))b(|wτ |p)|wτ |pdx

=

∫
RN

a(|∇wτ |p)|∇wτ |pdx+

∫
RN

b(|wτ |p)|wτ |pdx

≤
∫
Ω

(k2|∇wτ |p + k4|wτ |p) dx+

∫
Ω

(|∇wτ |q + |wτ |q) dx

=

∫
Ω

|wτ |τdx ≤ 1

λ

∫
Ω

f(wτ )wτdx ≤
∫
RN

f(wτ )wτdx+

∫
RN

|wτ |q
∗
dx.

This inequality implies that I ′µ,1(wτ )wτ ≤ 0. After that, by (a3), (b3) and
(f4) there exists t ∈ (0, 1], such that

Iµ,1(tµwτ ) = sup
t>0

Iµ,1(twτ ).

Therefore, using (a1), (b1), (g3), (f5) and that Φ′
0(wτ )wτ = 0, we obtain

cµ,1 ≤ Iµ,1(tµwτ )

≤ tp

p

∫
Ω

[k2|∇wτ |p + k4|wτ |p] dx+
tq

q

∫
Ω

[|∇wτ |q + |wτ |q] dx

−λ
τ
tτ

∫
Ω

|wτ |τdx

≤ tp

p

∫
Ω

[k2|∇wτ |p + k4|wτ |p] dx+
tp

p

∫
Ω

[|∇wτ |q + |wτ |q] dx

−λ
τ
tτ

∫
Ω

|wτ |τdx

≤
[
tp

p
− λ

tτ

τ

] ∫
Ω

|wτ |τdx ≤ max
s≥0

[
sp

p
− λ

sτ

τ

] ∫
Ω

|wτ |τdx.

Then, using (4.1) and some straight forward algebric manipulations, we
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get

cµ,1 ≤ max
s≥0

[
sp

p
− λ

sτ

τ

]
c0qτ

(τ − q)
=

[
τ − p

pλp/(τ−p)

]
c0q

(τ − q)
.

Hence, choosing λ > λ∗ :=

[
(τ − p)c0qq

∗θ

(τ − q)(q∗ − θ)pS
N
q

] τ−p
p

in (f5), the result

follows.

Let us introduce the notation which we are going to use in the next
results. From Lemma 2.1 and Lemma 2.2 there exists a bounded (PS)cµ,1

sequence (un) for Iµ,1. Then, by Sobolev embeddings, there exists uµ ∈W

such that, up to a subsequence, we have
un ⇀ uµ in W ;

un → uµ in Ls
loc(Ω), 1 ≤ s ≤ q;

un → uµ a.e in RN .

(4.2)

Moreover, using the ideias contained in [1, Lemma 2.3], we can conclude
that uµ is a critical point of Iµ,1.

First of all, using the notation above, we are going to prove some
technical result.

Lemma 4.2. Let uµ ∈ W be the weak limit of the sequence defined in
(4.2). For λ > λ∗, there exists a positive constant Υ4, which does not
depend on µ, such that

lim inf
µ→+∞

∫
RN

|uµ|rdx ≥ Υ4.

Proof. Let us suppose, by contradiction, that lim inf
µ→+∞

∫
RN

|uµ|rdx = 0. By

(f3), we obtain ∫
RN

f (uµ)uµdx = oµ(1). (4.3)
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Since I ′µ,1(uµ)uµ = 0, then∫
RN

[a (|∇uµ|p) |∇uµ|p + (1 + µV (x))b (|uµ|p) |uµ|p] dx =

∫
RN

|uµ|q
∗
dx+ oµ(1).

Setting

l :=

∫
RN

|uµ|q
∗
dx+ oµ(1),

we have that l > 0, from Lemma 2.2 we have cµ,1 > 0, for all µ > 0. By
definition of the best constant S in the embedding from D1,q(RN ) into
Lq(RN ), we get

S ≤

∫
RN

|∇uµ|qdx

 ∫
RN

|uµ|q
∗
dx

q/q∗
≤ lq/N . (4.4)

Using (2.4) and (4.4), we obtain cµ,1 ≥
(

1

pγ
− 1

q∗

)
SN/q, which contra-

dicts the Lemma 4.1.

Proposition 4.3. There exist positive numbers µ∗∗ and λ∗, which are
independent each other, such that Iµ,1 has a nontrivial critical point uµ ∈
W at mountain pass level cµ,1, for µ ≥ µ∗∗ and for λ ≥ λ∗.

Proof. The proof follows using the same reasoning that can be found in
Proposition 3.2.

5 Concentration Results

We are going to investigate the behavior of a sequence of ground so-
lution (uµn) of (Pµ,ϱ,q∗) when µn → ∞. For simplicity of notation such
sequence will be denoted just by (un). For this goal, let us consider the
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problem limit (P0,ϱ,q∗) given by
−div

(
a (|∇u|p) |∇u|p−2∇u

)
+ b (|u|p) |u|p−2u = f(u) + ϱ|u|q∗−2u in Ω,

u = 0 on ∂Ω.

The functional associated to (P0,ϱ,q∗) is

Jϱ(u) =
1

p

∫
Ω

A (|∇v|p) dx+
1

p

∫
Ω

B (|v|p) dx−
∫
Ω

F (v)dx− ϱ

q∗

∫
Ω

|v|q∗dx,

which is differentiable on W 1,q
0 (Ω), and let Nϱ be the Nehari manifold

associated to Jϱ given by

Nϱ =
{
u ∈W 1,q

0 (Ω)/{0} : J ′
ϱ(u)u = 0

}
.

Proposition 5.1. Let (un) ⊂ W \ {0} be a sequence of ground states
solutions for (Pµn,ϱ,q∗)µn≥1. Then, up to a subsequence, there exists u∞ ∈
W 1,p(RN ) ∩ W 1,q(RN ) such that un ⇀ u∞ in W 1,p(RN ) ∩ W 1,q(RN ).
Furthermore,

(i) u∞ = 0 in RN \ Ω, u∞(x) ≥ 0, u∞(x) ̸= 0.

(ii) Setting dµn,ϱ := inf
Nµn

Iµn,ϱ(un), then

lim
n→+∞

dµn,ϱ = lim
n→+∞

Iµn,ϱ(un) = Jϱ(u∞).

Moreover, un → u∞ in W 1,p(RN ) ∩W 1,q(RN ) and

Jϱ(u∞) = dϱ := inf
Nϱ

Jϱ.

Proof. Using Lemma 2.2, (ii), we conclude that (∥un∥µn) is bounded in R
and (un) is bounded in W 1,p(RN ) ∩W 1,q(RN ). So, up to a subsequence,
there exists u∞ ∈W 1,p(RN ) ∩W 1,q(RN ) such that

un ⇀ u∞ in W 1,p(RN ) ∩W 1,q(RN ) and un(x) → u∞(x) for a.e. x ∈ RN .

(5.1)
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Now, for each m ∈ N, we define Cm =

{
x ∈ RN ; V (x) ≥ 1

m

}
. Thus

∫
Cm

b(|un|p)|un|p dx ≤ m

µn

∫
Cm

(
µnV (x) + 1)b(|un|p)|un|p dx ≤ C

µn
. (5.2)

Taking n→ ∞, we have by Fatou’s lemma,∫
Cm

b(|u∞|p)|u∞|p dx = 0,

implying that u∞ = 0 in Cm and consequence, u∞ = 0 in RN \ Ω, which
implies u∞ ∈W 1,p

0 (Ω)∩W 1,q
0 (Ω) =W 1,q

0 (Ω) (see Proposition 9.18 in [12]).

Next we claim that the limit u∞ is a nontrivial solution for (P0,ϱ). To
prove this let us consider the following sets

ÃR = {x ∈ RN\BR(0) : V (x) ≥ V ∗}

and
AR = {x ∈ RN\BR(0) : V (x) < V ∗}.

Using Lemma 2.2 and (V3) we can ensure, by Hölder’s inequality and
Sovolev embeddings, that there exists Υ5 > 0 such that∫

ÃR

|un|q dx ≤ 1

1 + µV ∗

∫
RN

[1 + µV (x)] |un|q dx

≤ 1

1 + µV ∗ ∥un∥
q
µ ≤ Υ5

1 + µnV ∗

and

∫
AR

|un|q dx ≤

 ∫
AR

|un|q∗ dx


q
q∗

meas(AR)
q∗−q

q ≤ Υ5oR(1).

Hence, by the interpolation argument there exists Υ6 > 0 such that

lim sup
n→+∞

∫
ÃR

|un|r dx = 0 and lim sup
n→+∞

∫
AR

|un|r dx ≤ Υ6oR(1). (5.3)
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Observe that, from Lemma 2.2, the constants Υ5 and Υ6 are independent
on the parameter µ. Since, up to a subsequence, un → u∞ in Lr

loc(RN )

and (5.3) holds, we obtain that

lim inf
n→+∞

∫
RN

|un|r dx ≤ lim sup
n→+∞

∫
RN

|un|r dx

≤ lim sup
n→∞

 ∫
BR(0)

|un|r dx+

∫
Λ̃R

|un|r dx+

∫
ΛR

|un|r dx


≤

∫
BR(0)

|u∞|r dx+Υ6oR(1).

(5.4)

Hence, by Lemma 3.1 (for ϱ = 0) or Lemma 4.2 (for ϱ = 1) the claim
follows, for R large enough. Moreover, using (f1) and u−∞ a test function,
we get u∞ ≥ 0 and u∞ ̸= 0.

We now prove the second item (ii). Observe that since V = 0 in Ω, we
obtain, for all u ∈W 1,q

0 (Ω),

∫
RN

V (x)B(|u|p)dx =

∫
RN\Ω

V (x)B(|u|p)dx+

∫
Ω

V (x)B(|u|p)dx = 0,

which implies

Iµn,ϱ(u) = Jϱ(u) and I ′µn,ϱ(u)u = J ′
ϱ(u)u, ∀ u ∈W 1,q

0 (Ω). (5.5)

Then, from (5.5), we have that u ∈ Nµn,ϱ, for all u ∈ Nϱ. Hence,

dµn,ϱ ≤ dϱ. (5.6)

On the other hand, since un ⇀ u∞ in W 1,p(RN ) ∩W 1,q(RN ) we have, by
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(1.4), (1.5) and the Fatou’s Lemma,

0 ≤ 1

p

∫
RN

[A(|∇u|p) +B(|u|p)] dx− 1

θ

∫
RN

[a(|∇u|p)|∇u|p + b(|u|p)|u|p] dx

≤ lim inf
n→+∞

1

p

∫
RN

[A(|∇un|p) +B(|un|p)] dx

− 1

θ

∫
RN

[a(|∇un|p)|∇un|p + b(|un|p)|un|p] dx


(5.7)

Therefore, using the fact that u∞ ∈ Nϱ, we obtain, by (5.5), (5.6) and
(5.7),

dµn,ϱ ≤ dϱ ≤ Jϱ(u∞) = Iµn,ϱ(u∞)− I ′µn,ϱ(u∞)u∞

≤ lim inf
n→∞

[
Iµn,ϱ (un)−

1

θ
I ′µn,ϱ(un)un

]

= Iµn,ϱ(un) + on(1) = dµn,ϱ + on(1),

(5.8)

which implies

lim
n→+∞

dµn,ϱ = lim
n→+∞

Iµn,ϱ(un) = Jϱ(u∞). (5.9)

Assume, by contradiction, that

un → u∞ in W 1,p(RN ) ∩W 1,q(RN ), (5.10)

does not hold. Then, the inequality (5.7) is strict and hence, arguing as
(5.8), there exists n0 ∈ N

dϱ < dµn,ϱ +
dϱ
2
, n ≥ n0.

This contradicts (5.9).
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6 Theorem 1.1 (subcritical case)

Proof of Theorem 1.1(subcritical case). From Proposition 3.2 and (f4) we
can guarantee that there exists µ∗ > 0 such that (Pµ,0) has a positive
ground state solution uµ ∈ W , for µ ≥ µ∗. Then, using Proposition 5.1,
we obtain, up to a subsequence, uµ → u∞ in W 1,p(RN )∩W 1,q(RN ) when
µ→ +∞, where u∞ is a ground state solution to problem

(P0,0)


−div

(
a (|∇u|p) |∇u|p−2∇u

)
+ b (|u|p) |u|p−2u = f(u) in Ω,

u = 0 on ∂Ω.

7 Theorem 1.1 (critical case)

Proof of Theorem 1.1(critical case). From Proposition 4.3 and (f4) we can
guarantee that there exist µ∗∗ > 0 and λ∗ > 0 such that (Pµ,1,q∗) has a
positive ground state solution uµ ∈ W , for all µ ≥ µ∗∗ and λ ≥ λ∗.
Then, using Proposition 5.1, we obtain, up to a subsequence, uµ → u∞ in
W 1,p(RN )∩W 1,q(RN ) when µ→ +∞, where u∞ is a ground state solution
to problem (P0,1,q∗) given by{

−div
(
a (|∇u|p) |∇u|p−2∇u

)
+ b (|u|p) |u|p−2u = f(u) + |u|q∗−2u in Ω,

u = 0 on ∂Ω.

8 Case supercritical

In this section we are going to study the supercritical case of the prob-
lem (Pµ,ϱ,σ), that is, when ϱ = 1 and σ > q∗, observe that in this case∫
RN

|u|σ dx is not well defined in W . Then, inspired by [13] and [19], we
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are going to consider in this section the function ψ : R → R given by

ψ(s) :=


0 if s < 0,

sσ−1 if 0 ≤ s ≤ 1,

sq
∗−1 if s > 1.

It follows immediately that

ψ(s) ≤ |s|q∗−1, ∀ s ∈ R, (8.1)

and

1

θ

∫
RN

[ψ(u)u− θΨ(u)] dx ≥
(
1

θ
− 1

σ

) ∫
{|u|≤1}

|u|σ dx+

∫
{|u|>1}

|u|q∗ dx


> 0,

(8.2)

where Ψ(s) :=

∫ s

0
ψ(t)dt. We also consider the auxiliary problem (Pµ,σ),

in RN , given by
−div

(
a (|∇u|p) |∇u|p−2∇u

)
+ [1 + µV (x)]b (|u|p) |u|p−2u = f(u) + ψ(u),

u ∈W.

Remark 8.1. If uµ is a nonnegative solution of (Pµ,σ) with ∥uµ∥∞ ≤ 1,
then uµ is also a nonnegative solution of (Pµ,1,σ).

8.1 Existence of positive solution for problem (Pµ,σ)

The nonnegative weak solutions for the problem (Pµ,σ) are the critical
points of the functional Iµ,σ :W → R given by

Iµ,σ(v) =
1

p

∫
RN

A (|∇v|p) dx+
1

p

∫
RN

[1 + µV (x)]B (|v|p) dx

−
∫
RN

F (v)dx−
∫
RN

Ψ(v)dx,
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where Ψ(s) :=

∫ s

0
ψ(t)dt. Now we are going to find a nontrivial and

nonnegative solution for (Pµ,σ).

Using the same arguments of Lemma 4.2 and Proposition 4.3 with
short modifications we can prove the following results

Proposition 8.2. There exist µ∗∗ > 0 and λ∗ > 0 such that the functional
Iµ,σ has a nontrivial critical point uµ ∈W at the mountain pass level cµ,σ,
for all µ ≥ µ∗∗ and λ ≥ λ∗.

The next result relates the critical points of the functional Iµ,σ with
solutions to the problem (Pµ,1,σ), the arguments used here are inspired by
[1, Lemma 5.5] and [21, Theorem 3].

Lemma 8.3. Let uµ ∈ W be a nonnegative solution for problem (Pµ,σ).
Then,

∥uµ∥L∞(RN ) ≤ 1, ∀ λ > λ∗.

Moreover, the function uµ is a solution of (Pµ,1,σ).

Proof. For each L > 0, let

uL(x) =


uµ(x), uµ(x) ≤ L,

L, uµ(x) > L.

(8.3)

and

zL := u
q(γ−1)
L uµ

with γ > 1 will be determined later.
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Taking zL as a test function, we obtain that I ′µ,σ(uµ)zL = 0. That is,∫
RN

u
q(γ−1)
L a(|∇uµ|p)|∇uµ|pdx

+q(γ − 1)

∫
RN

u
q(γ−1)−1
L uµa(|∇uµ|p)|∇uµ|p−2∇uµ∇uLdx

+

∫
RN

[1 + µV (x)]b(|uµ|p)|uµ|puq(γ−1)
L dx

=

∫
RN

f(uµ)uµu
q(γ−1)
L dx+

∫
RN

ψ(uµ)uµu
q(γ−1)
L dx.

Using (a1), (b1), (f1), (f2) and (8.1) we obtain that given ξ > 0 there
exists Cξ > 0, such that∫
RN

u
q(γ−1)
L [k1|∇uµ|p + |∇uµ|q]dx+ q(γ − 1)

∫
RN

u
q(γ−1)
L [k1|∇uL|p + |∇uL|q]dx

+

∫
RN

u
q(γ−1)
L [k3|uµ|p + |uµ|q]dx

≤ ξ

∫
RN

u
q(γ−1)
L |uµ|qdx+ (Cξ + 1)

∫
RN

u
q(γ−1)
L |uµ|q

∗
dx.

Let us now consider the function wL := uµu
γ−1
L . Hence, by inequality

above,∫
RN

|∇wL|qdx ≤ 2q
∫
RN

u
q(γ−1)
L |∇uµ|qdx+ 2q(γ − 1)q

∫
RN

u
q(γ−1)
L |∇uL|qdx

≤ 4qγqξ

∫
RN

u
q(γ−1)
L |uµ|qdx (8.4)

+4qγq(Cξ + 1)

∫
RN

u
q(γ−1)
L |uµ|q

∗
dx
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Therefore, since uL ≤ uµ,

∥wL∥qLq∗ (RN )
≤ S

∫
RN

|∇wL|qdx (8.5)

≤ 4qγqSξ

∫
RN

|uµ|qγdx

+4qγqS(Cξ + 1)

∫
RN

|uµ|γq|uµ|q
∗−qdx

where S is the best Sobolev constant of the embedding D1,q(RN ) ↪→
Lq∗(RN ).

The next step is to show that uµ ∈ L
(q∗)2

q (RN ). For this, we choose

γ =
q∗

q
in (8.5) then, by Hölder’s inequality,

∥wL∥qLq∗ (RN )
≤

(
4q∗

q

)q

Sξ∥uµ∥q
∗

Lq∗ (RN )

+

(
4q∗

q

)q

S(Cξ + 1)∥uµ∥q
∗−q

q∗ ∥wL∥qLq∗ (RN )
.

Using (8.2) and Lemma 4.1 and that the function uµ is a critical point of
Iµ,σ, we have that[

τ − p

pλp/(τ−p)

]
cΛq

(τ − q)
≥ cµ = Iµ,σ(uµ)−

1

θ
I ′µ,σ(uµ)uµ

=

(
θ − pγ

pγθ

) ∫
RN

|∇uµ|q dx

≥
(
θ − pγ

pγθS

)
∥uµ∥qLq∗ (RN )

.

(8.6)

Choosing ξ =
1

2
in (8.1) there exists D3 > 0 such that using the inequality
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(8.6) and Fatou’s Lemma in (8.1), we obtain that

1

2

 ∫
RN

|uµ|
(q∗)2

q dx


q
q∗

≤
(
4q∗

q

)q S

2

[
(τ − p)c∞qθpγS

p(τ − q)(θ − pγ)

] q∗
q 1

λ
pq∗

q(τ−p)

< ∞, (8.7)

whenever λ > D3. Note that from (8.4) and previous arguments there
exists a positive constant K, such that

∥wL∥qLq∗ (RN )
≤ 4qγqS(K + 1)

∫
RN

|uµ|γq|uµ|q
∗−qdx. (8.8)

We are now going to consider γ = γ0 :=
q∗

q

(t− 1)

t
in (8.8), where

t :=
(q∗)2

q(q∗ − q)
> 1. Then, by Hölder inequality and Fatou’s Lemma,

∥uµ∥qγ0Lq∗γ0 (RN )
≤ lim inf

L→+∞
∥wL∥qLq∗ (RN )

≤ ∥wL∥qLq∗ (RN )
≤ 4qγq0S(K + 1)∥uµ∥q

∗−q

L
(q∗)2

q (RN )

∥uµ∥γ0qLq∗ (RN )
.

Hence,

∥uµ∥qγ0Lq∗γ0 (RN )
≤

[
4S

1
q (K + 1)

1
q ∥uµ∥

q∗−q
q

L
(q∗)2

q (RN )

] 1
γ0

γ
1
γ0
0 ∥uµ∥Lq∗ (RN ). (8.9)

Already when γ = γ20 in (8.5) we obtain, by (8.9), that

∥uµ∥
Lq∗γ20 (RN )

≤

[
4S

1
q (K + 1)

1
q ∥uµ∥

q∗−q
q

L
(q∗)2

q (RN )

] 2∑
i=1

1

γi0

γ

2∑
i=1

i

γi0

0 ∥uµ∥Lq∗ (RN ).

Repeating the arguments above for γ30 , γ40 , ... we can concluded that

∥uµ∥Lq∗γm0 (RN )
≤

[
4S

1
q (K + 1)

1
q ∥uµ∥

q∗−q
q

L
(q∗)2

q (RN )

] m∑
i=1

1

γi0

γ

m∑
i=1

i

γi0

0 ∥uµ∥Lq∗ (RN ).

(8.10)
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Once that
∞∑
i=1

1

γi0
and

∞∑
i=1

i

γi0
,

are convergent series it follows from (8.10) that

∥uµ∥L∞(RN ) ≤

[
4S

1
q (K + 1)

1
q ∥uµ∥

q∗−q
q

L
(q∗)2

q (RN )

] ∞∑
i=1

1

γi0

γ

∞∑
i=1

i

γi0

0 ∥uµ∥Lq∗ (RN )

= ∥uµ∥
(q∗−q)

q

∞∑
i=1

1

γi0

L
(q∗)2

q (RN )

[
4S

1
q (K + 1)

1
q

] ∞∑
i=1

1

γi0 γ

∞∑
i=1

i

γi0

0 ∥uµ∥Lq∗ (RN ).

Finally there exists λ∗ > 1 such that, by (8.7) and the last inequality, we
have that

∥uµ∥∞ ≤ 1, ∀ λ > λ∗.

Hence, ψ(uµ) = |uµ|σ−2uµ which implies that the function uµ is a solution
of the problem (Pµ,1,σ).

9 Theorem 1.1 (supercritical case)

Proof of Theorem 1.1(supercritical case). From Proposition 8.2 and (f4)

we can guarantee that there exists µ∗∗ > 0 such that (Pµ,1,σ) has a positive
ground state solution uµ ∈ W , for all µ ≥ µ∗∗ and λ ≥ λ∗. Then, using
Proposition 5.1 with short modifications, we obtain, up to a subsequence,
uµ → u∞ in W 1,p(RN )∩W 1,q(RN ) when µ→ +∞, where u∞ is a ground
state solution to problem (P0,1,σ) given by


−div

(
a (|∇u|p) |∇u|p−2∇u

)
+ b (|u|p) |u|p−2u = f(u) + |u|σ−2u in Ω,

u = 0 on ∂Ω.
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