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1 Introduction

The main purpose of this article is to show that, using variational
methods based on Orlicz spaces, we are able to obtain sufficient conditions
for the existence of least energy solution for quasilinear Schröndiger
systems of the form{

−∆u+ V1(x)u−∆(u2)u =h(x, u, v), in R2

−∆v + V2(x)v −∆(v2)v =g(x, u, v), in R2.
(1.1)

The study of the system (1.1) was in part motivated by the nonlinear
Schrödinger equation

i
∂ψ

∂t
= −∆ψ +W (x)ψ − η(|ψ|2)ψ −

[
∆ρ(|ψ|2)

]
ρ′(|ψ|2)ψ, (1.2)

where ψ : R × RN → C, W : RN → R is a given potential and
ρ, η : R+ → R are suitable functions. Quasilinear equations of the form
(1.2) have received much attention in recent years and appear naturally
in mathematical physics. They have been derived as models of several
physical phenomena corresponding to various types of nonlinear term ρ.
For instance, when ρ(s) = s, equation (1.2) can be used to model a
superfluid film equation in plasma physics (see Kurihara [12] and [13]).
For more mathematical models in physics described by (1.2), see [15] and
references therein. In the case ρ(s) = s, the interest is to research by
standing wave solutions of (1.2), that is, solutions of the type

ψ(t, x) = exp(−iEt)u(x),

where E ∈ R and u is a real function. It is well known that ψ satisfies
(1.2), with ρ(s) = s, if and only if the function u(x) solves the following
equation of elliptic type which possesses a formal variational structure:

−∆u+ V (x)u−∆(u2)u = p(u), x ∈ RN , (1.3)

where V (x) = W (x) − E and p(u) = η(u2)u, which has been intensively
studied in the last years.
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In the literature, there are recent mathematical studies on the existence
of solutions for systems of the form (1.1) when the dimension N ≥ 3, we
can cite for instance [4, 5, 6, 7, 16]. However, as far as we know, our work
is the first that leads with quasilinear systems involving critical growth
exponential in the sense of Trudinger-Moser inequality. Therefore, we
complement the results contained in the papers previously cited.

Here, the functions h, g : R2 × R × R → R are continuous and satisfy
the following conditions:

(H1) there exists α0 > 0 such that

lim
|(u,v)|→∞

|h(x, u, v)|
eα(u2+v2)2

= lim
|(u,v)|→∞

|g(x, u, v)|
eα(u2+v2)2

=

{
0, ∀ α > α0

+∞, ∀ α < α0,

uniformly in x ∈ R2;

(H2) there exists θ > 4 such that

θF (x, u, v) ⩽ U.∇F (x, u, v) ∀ U = (u, v) ∈ R2,

where F : R2 × R× R → R is of class C1 and ∇F = (h, g);

(H3) lim
(u,v)→(0,0)

h(x, u, v)

|(u, v)|
= lim

(u,v)→(0,0)

g(x, u, v)

|(u, v)|
= 0, uniformly in x ∈ R2;

(H4) there exist ξ > 0 e q > 2 such that

F (x, t, t) ⩾ ξtq for all t ⩾ 0 and x ∈ R2,

with

ξ ⩾ max

ξ1, 2ξ1q
(
4ξ1(q − 2)α0θ

2
q
2 (θ − 4)q

) q−2
2

 ,

where ξ1 := 2
q+2
2 (2 +M1 +M2), M1 = max

x∈B2

V1(x), M2 = max
x∈B2

V2(x)

and B2 = B2(0).

With respect to the potentials V1, V2 : R2 → R, we require that they
are continuous and fulfill the conditions
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(ν1) 0 < V0 := min

{
inf
R2
V1, inf

R2
V2

}
;

(ν2) there exists M0 > 0 such that for all M ⩾M0,

µ({x ∈ R2;Vi(x) ⩽M}) <∞, i = 1, 2,

where µ(A) denotes the Lebesgue measure of a measurable subset
A ⊂ R2.

Hereafter, H1(R2) denotes the usual Sobolev space and we consider
the space E := H1(R2)×H1(R2) endowed with the norm

∥(u, v)∥E = (∥u∥21,2 + ∥v∥21,2)
1
2 ,

where ∥u∥1,2 := (∥∇u∥22 + ∥u∥22)1/2 is the usual norm of H1(R2). We
say that a pair (u, v) is a weak solution for the System (1.1) if (u, v) ∈
E ∩ [L∞

loc(R2)]2 and for all φ,ψ ∈ C∞
0 (R2) it holds∫

R2

[(1 + 2u2)∇u∇φ+ (1 + 2v2)∇v∇ψ + 2u|∇u|2φ+ 2v|∇v|2ψ

+ V1(x)uφ+ V2(x)vψ] =

∫
R2

[h(x, u, v)φ+ g(x, u, v)ψ].

By condition (H3), we can see that h(x, 0, 0) = g(x, 0, 0) = 0 and hence
(0, 0) is the trivial solution of (1.1). Thus, we look for by nontrivial
solutions for (1.1). Our first main result has the following statement:

Theorem 1.1. Suppose that (H1) − (H4) and (ν1) − (ν2) are satisfied.
Then, System (1.1) has a weak nontrivial solution.

We are also interested in the existence of least energy solution for (1.1),
that is, a solution whose energy is minimal among all others nontrivial
solutions. For that, we need to consider another hypothesis on h and g,
namely,

(H5) For each x ∈ R2 and t > 0, h(x,s,t)
s3

is nondecreasing in s > 0 and, for
each x ∈ R2 and s > 0, g(x,s,t)

t3
is nondecreasing in t > 0.
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Now, our second result can be stated as follows:

Theorem 1.2. Under the same hypotheses of Theorem 1.1 and supposing
condition (H5), the solution obtained in Theorem 1.1 is a least energy
solution.

A main difficulty in treating this class of quasilinear Schrödinger
systems in R2 is the lack of compactness, typical for elliptic systems in
unbounded domains, the critical exponential growth of the nonlinearities
g, h and the appearance of the terms ∆(u2)u and ∆(v2)v, which cause
problems in using the minimax techniques. To overcome these difficulties
that have arisen from these features, we present an approach based on a
convenient Orlicz space and Trudinger-Moser inequality in the whole R2.

The underling idea for proving Theorem 1.1: motivated by arguments
used in [8, 10, 14], we use a change of variables to reformulate the problem,
obtaining a semilinear one which has an associated functional well defined
and Gateaux differentiable in a suitable Orlicz space. This functional
satisfies the geometric hypotheses of the Mountain-Pass Theorem and by
using the Trudinger-Moser inequality we are able to show a compactness
condition on an interval. We achieve the existence results by using a
version of the Mountain-Pass Theorem, which is a consequence of the
Ekeland Variational Principle.

The outline of this paper is as follows: in the forthcoming section is
the reformulation of the problem and some preliminary results, including
the appropriate variational setting to study the quasilinear system, the
regularity of the dual energy functional and properties of its critical points.
In Section 3, we obtain the main properties of the Orlicz space that we
consider in our approach. Section 4 is dedicated to the proof of some
technical results involving the geometric conditions of a version of the
Mountain-Pass Theorem, as well as the campactness condition of the dual
functional. In Section 5, we derive an important estimate for the minimax
level of the functional. Finally, the last two sections are dedicated to the
proof of the main results of this work.
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In this work, C, C0, C1, C2, ... denote positive (possibly different)
constants and, for 1 ≤ p < ∞, Lp(RN ) is the usual Lebesgue space with
norm ∥u∥p :=

(∫
RN |u|p dx

)1/p. We denote Lp(RN )×Lp(RN ) by [Lp(RN )]2

and for (u, v) ∈ [Lp(RN )]2 we consider the norm

∥(u, v)∥p = (∥u∥2p + ∥v∥2p)1/2.

We also write
∫
RN u instead of

∫
RN u(x)dx and |U | will denote the Euclidian

norm of U ∈ R2.

2 Preliminary Results

In this section, we introduce some facts that will be useful in the sequel.
By the conditions (H1) and (H3), for each ε > 0, q > 2 and α > α0, there
exists C = C(ε, q, α) > 0 such that

|h(x, u, v)|+ |g(x, u, v)| ⩽ ε|(u, v)|2 + C|(u, v)|q−1(eα(u
2+v2)2 − 1) (2.1)

and, consequently, for all (x, u, v) ∈ R2 × R2

|F (x, u, v)| ⩽ ε

2
|(u, v)|2 + C1|(u, v)|q(eα(u

2+v2)2 − 1). (2.2)

Associated to the System (1.1), we have the formal functional I given
by

I(u, v) =
1

2

∫
R2

[(1 + 2u2)|∇u|2 + (1 + 2v2)|∇v|2 + V1(x)u
2 + V2(x)v

2]

−
∫
R2

F (x, u, v),

where ∇F (x, u, v) = (h(x, u, v), g(x, u, v)). Observe that this functional is
not well defined in E, because the integral

∫
R2(|u|2|∇u|2) may not be finite

if u ∈ H1(R2). To overcome this difficulty, as in [8, 16], we use the change
of variable z = f−1(u) and w = f−1(v), where f is defined by

f ′(t) =
1

[1 + 2f2(t)]
1
2

, t ∈ [0,+∞)

f(t) = −f(−t), t ∈ (−∞, 0].
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For an easy reference, next we collect some properties of the function
f (see proofs for example in [8, 11]).

Lemma 2.1. The function f(t) and its derivative enjoy the following
properties:

(1) f is uniquely defined C∞ function and invertible;

(2) |f ′(t)| ⩽ 1 for all t ∈ R;

(3) |f(t)| ⩽ t for all t ∈ R;

(4) f(t)
t → 1 as t→ 0;

(5) f(t)√
t
→ 21/4 as t→ +∞;

(6) f(t)
2 ⩽ tf ′(t) ⩽ f(t) for all t ⩾ 0 and f2(t)

2 ⩽ tf(t)f
′
(t) ⩽ f2(t) for

all t ∈ R;

(7) |f(t)| ⩽ 21/4|t|1/2 for all t ∈ R;

(8) The function f2(t) is strictly convex;

(9) There is a positive constant C such that

|f(t)| ⩾

{
C|t|, |t| ⩽ 1;

C|t|1/2, |t| ⩾ 1;
(2.3)

(10) There are positive constants C1 and C2 such that

|t| ⩽ C1|f(t)|+ C2|f(t)|2 for all t ∈ R;

(11) |f(t)f ′(t)| ⩽ 1√
2

for all t ∈ R;

(12) f2(ρt) ⩽ ρ2f2(t) for all 0 ⩽ ρ ⩽ 1 and t ∈ R;

(13) f2(ρt) ⩽ ρf2(t) for all ρ ⩾ 1 and t ∈ R.
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Through the change of variable z = f−1(u) and w = f−1(v), we get a
new functional, namely,

J(z, w) := I(f(z), f(w))

=
1

2

∫
R2

(|∇z|2 + |∇w|2) + 1

2

∫
R2

[V1(x)f
2(z) + V2(x)f

2(w)]

−
∫
R2

F (x, f(z), f(w)),

In view of the inequality

ab− 1 ⩽
1

2
(a2 − 1) +

1

2
(b2 − 1), ∀ a, b ≥ 0, (2.4)

property (7) of Lemma 2.7 and Trudinger-Moser Inequality in all R2 (see
[3, 9]), for each α > 0 and z, w ∈ H1(R2), we have∫

R2

(eα(f
2(z)+f2(w))2−1) ⩽

1

2

∫
R2

(e8αz
2−1)+

1

2

∫
R2

(e8αw
2−1) <∞. (2.5)

Next, we consider the Orlicz space

W =

{
(z, w) ∈ E;

∫
R2

[V1(x)f
2(z) + V2(x)f

2(w)] <∞
}
,

endowed with the norm

∥(z, w)∥W = ∥z∥V1 + ∥w∥V2 , (z, w) ∈W,

where
∥z∥V1 := ∥∇z∥2 + inf

ξ>0

1

ξ

[
1 +

∫
R2

V1(x)f
2(ξz)

]
(2.6)

and
∥w∥V2 := ∥∇w∥2 + inf

ξ>0

1

ξ

[
1 +

∫
R2

V2(x)f
2(ξw)

]
. (2.7)

According to Proposition 3.1 (see Section 3), (W, ∥(·, ·)∥W ) is a Banach
space. Moreover, under the assumptions (H1) and (H3), as in [16] we can
see that the J functional possesses the following properties:

(1) J is well defined in W ;
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(2) J is continuous in W ;

(3) J is Gateaux-differentiable in W and for (z, w), (φ,ψ) ∈ W its
derivative is given by

⟨J ′(z, w), (ϕ, ψ)⟩

=

∫
R2

[∇z∇ϕ+∇w∇ψ] +
∫
R2

[
V1(x)f(z)f

′
(z)ϕ+ V2(x)f(w)f

′
(w)ψ

]
−
∫
R2

[(h(x, f(z), f(w))ϕ+ g(x, f(z), f(w))ψ)] ;

(4) For (z, w) ∈ W , J ′(z, w) ∈ W ′ (dual space of W ) and if (zn, wn) →
(z, w) in W then J ′(zn, wn) ⇀ J ′(z, w) in the weak topology-∗ of
W ′, that is, for each (φ,ψ) ∈W we have

⟨J ′(zn, wn), (ϕ, ψ)⟩ → ⟨J ′(z, w), (ϕ, ψ)⟩.

Notice that J(z, w) is the Euler-Lagrange functional associated with the
following elliptical system:{

−∆z + V1(x)f(z)f
′(z) = h(x, f(z), f(w))f ′(z), in R2

−∆w + V2(x)f(w)f
′(w) = g(x, f(z), f(w))f ′(w), in R2.

(2.8)

Furthermore, it can be shown that if (z, w) ∈ W is a critical point
of J , then (u, v), where u = f(z) and v = f(w), is a weak solution of
System (1.1) (see Proposition 2.5 in [16]). Therefore, in order to obtain
our existence result, it is sufficient to show that J has a nontrivial critical
point.

Before we finish this section, note that as an immediate consequence
of items (12) and (13) of Lemma 2.7, we have

min{ρ, ρ2}f2(t) ⩽ f2(ρt) ⩽ max{ρ, ρ2}f2(t), ∀ t ⩾ 0. (2.9)

Also, taking t = 1 in item (6) of Lemma 2.7, we get f2(1) ⩾ [f ′(1)]2 =

1/(1 + 2f2(1)), that is, 2f4(1) + f2(1) ⩾ 1. Since f(1) > 0, a simple
calculation shows that f(1) ⩾ 1/

√
2 and it is immediate to check again by

(6) of Lemma 2.7 that f(t)/t is decreasing. Therefore,

f(t) ⩾
1√
2
t, ∀ t ∈ [0, 1]. (2.10)
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3 Some properties of the space W

In this section, concisely we present some important properties of the
space W that are relevant in our arguments for proving the existence of
nontrivial weak solutions for (1.1). First, we consider

X :=

{
(u, v) ∈ E;

∫
R2

[V1(x)u
2 + V2(x)v

2] <∞
}
,

which is a Hilbert space endowed with the inner product given by

⟨(u1, v1), (u2, v2)⟩ =
∫
R2

(∇u1∇u2 +∇v1∇v2 + V1(x)u1u2 + V2(x)v1v2),

whose corresponding norm is

∥(u, v)∥2X =

∫
R2

[|∇u|2 + |∇v|2 + V1(x)u
2 + V2(x)v

2], (u, v) ∈ X.

As in [2], we can see that the embedding

X ↪→ Lq(R2)× Lq(R2) is compact for all q ∈ [2,∞). (3.1)

The main properties of W are presented below.

Proposition 3.1. (i) W is a normed space with respect to the norm
given in (2.6);

(ii) There exists a positive constant C such that, for all (u, v) ∈W,∫
R2(V1(x)f

2(u) + V2(x)f
2(v))

1 + [
∫
R2(V1(x)f2(u) + V2(x)f2(v))]

1
2

⩽ C∥(u, v)∥; (3.2)

(iii) If (un, vv) → (u, v) in W, then∫
R2

V1(x)|f2(un)− f2(u)|+
∫
R2

V2(x)|f2(vn)− f2(v)| → 0

and ∫
R2

V1(x)|f(un)− f(u)|2 +
∫
R2

V2(x)|f(vn)− f(v)|2 → 0;
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(iv) If un → u and vn → v almost everywhere in R2 and∫
R2

(V1(x)f
2(un) + V2(x)f

2(vn)) →
∫
R2

(V1(x)f
2(u) + V2(x)f

2(v)),

then

inf
ξ>0

1

ξ

[
1 +

∫
R2

V1(x)f
2(ξ(un − u)) + V2(x)f

2(ξ(vn − v))

]
→ 0.

Proof. It is just an adaptation of the proof of Proposition 2.4 in [10] and
we omit.

Proposition 3.2. The application (u, v) → (f(u), f(v)) from W into
Lq(R2)× Lq(R2) is continuous for each 2 ⩽ q <∞.

Proof. It is similar to the proof of Proposition 2.2 in [11].

Proposition 3.3. If (ν1) and (ν2) are satisfied, then the map (u, v) →
(f(u), f(v)) from W into Lq(R2)× Lq(R2) is compact for all 2 ⩽ q <∞.

Proof. Let (un, vn) ⊂ W be a bounded sequence in W. Thus, (∥∇un∥2 +
∥∇vn∥2) is bounded and by (3.2) it follows that

∫
R2(V1(x)f

2(un) +

V2(x)f
2(vn)) is also bounded. Thus, (f(un), f(vn)) is bounded in X

and by using the compact embedding (3.1), there exists (w1, w2) ∈
Lq(R2)× Lq(R2) such that (f(un), f(vn)) → (w1, w2) in Lq(R2)× Lq(R2)

and the proof is done.

Proposition 3.4. W is a Banach space with respect to the norm

∥(u, v)∥W = ∥u∥V1 + ∥v∥V2 .

Proof. It is similar to the proof of Proposition 2.7 in [9].

4 Palais-Smale Condition

In this section, our main goal is to show that the functional J satisfies
the Palais-Smale condition in a convenient interval. For this, we need some
lemmas.
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Lemma 4.1. Suppose that (H1) and (H3) are satisfied. Given α > α0,
q ⩾ 2 and 0 < ρ <

√
π/(2α), if ∥(u, v)∥W ⩽ ρ then∫

R2

(eα(|f(u)|
2+|f(v)|2)2 − 1)|(f(u), f(v))|q ⩽ C∥(f(u), f(v))∥qX . (4.1)

Proof. By using (7) of Lemma 2.7, (2.5), Hölder’s Inequality and (3.1), we
obtain∫
R2

(eα(|f(u)|
2+|f(v)|2)2 − 1)|(f(u), f(v))|q

⩽
∫
R2

(e2α(2|u|
2+2|v|2) − 1)|(f(u), f(v))|q

⩽

[∫
R2

(e4α(u
2+v2) − 1)

]1/2 [∫
R2

|(f(u), f(v))|2q
]1/2

=

[∫
R2

1

2
(e8αu

2 − 1) +

∫
R2

1

2
(e8αv

2 − 1)

]1/2
∥(f(u), f(v))∥q2q

⩽ C1

[∫
R2

1

2
(e

8α∥u∥2
(

u
∥u∥

)2

− 1) +

∫
R2

1

2
(e

8α∥v∥2
(

v
∥v∥

)2

− 1)

]
∥(f(u), f(v))∥qX .

Since 8α∥u∥2 ⩽ 8α∥(u, v)∥2 ⩽ 8αρ2 < 4π and similarly 8α∥v∥2 < 4π, by
invoking the Trundinger-Moser inequality, the proof is done.

Now, for ρ > 0 consider the set

Sρ := {(u, v) ∈W ; Q(u, v) = ρ2},

where Q :W → R is given by Q(u, v) := Q1(u) +Q2(v),

Q1(u) =

∫
R2

(|∇u|2+V1(x)f2(u)) and Q2(v) =

∫
R2

(|∇v|2+V2(x)f2(v)).

Since Q(u, v) is continuous, then Sρ is a closed subset that disconnects the
space W .

Lemma 4.2. The functional J satisfies the following geometric conditions:

i) there exist ρ, σ0 > 0 such that J(u, v) ≥ σ0 for all (u, v) ∈ Sρ;

ii) there exists (u0, v0) ∈W satisfying Q(u0, v0) > ρ2 and J(u0, v0) < 0.
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Proof. The proof is standard (see [16]).

Next, we will obtain some properties of the sequence (PS)c associated
with the functional energy J.

Proposition 4.3. If (un, vn) ⊂ W is a Palais-Smale sequence for the
functional J at level c ∈ R, then (un, vn) is bounded in W .

Proof. Let (un, vn) ⊂ W be a Palais-Smale sequence for J at the level c,
that is,

J(un, vn) → c and J ′(un, vn) → 0. (4.2)

Thus,
|J ′(un, vn)(un, vn)| ⩽ on(1)∥(un, vn)∥W . (4.3)

By (6) of Lemma 2.7, (H2) and (4.3), we obtain

c+ on(1) + on(1)∥(un, vn)∥W

⩾ J(un, vn)−
2

θ
J ′(un, vn)(un, vn)

⩾

(
1

2
− 2

θ

)[∫
R2

(|∇un|2 + |∇vn|2) +
∫
R2

(V1(x)f
2(un) + V2(x)f

2(vn))

]
and therefore(

1

2
− 2

θ

)[∫
R2

(|∇un|2 + |∇vn|2) +
∫
R2

(V1(x)f
2(un) + V2(x)f

2(vn))

]
⩽ c+ on(1) + on(1)

(∫
R2

(|∇un|2 + |∇vn|2)
)1/2

+ on(1)

∫
R2

V1(x)f
2(un)

+ on(1)

∫
R2

V2(x)f
2(vn).

Consequently,(
1

2
− 2

θ

)∫
R2

(|∇un|2 + |∇vn|2)

+

(
1

2
− 2

θ
− on(1)

)∫
R2

(V1(x)f
2(un) + V2(x)f

2(vn))

⩽ c+ on(1) + on(1)

(∫
R2

(|∇un|2 + |∇vn|2)
)1/2

(4.4)
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which shows that
∫
R2(|∇un|2 + |∇vn|2) is bounded. In view of (4.4) we

have
(∫

R2

[
V1(x)f

2(un) + V2(x)f
2(vn)

])
is also bounded. Now, since

∥(un, vn)∥W ⩽

(∫
R2

(|∇un|2 + |∇vn|2)
)1/2

+ 1

+

∫
R2

(V1(x)f
2(un) + V2(x)f

2(vn))

we conclude that (un, vn) is bounded in W .

Before proving the Palais-Smale condition, let us show the following
corollary:

Corollary 4.4. If (un, vn) ⊂W is a Palais-Smale sequence for J at level
c, then

Q(un, vn) ⩽
4θ

θ − 4
c+ on(1). (4.5)

Proof. Since (un, vn) is bounded in W , the conclusion follows directly from
(4.4).

Lemma 4.5. Let (un, vn) be a Palais-Smale sequence for J at level c ∈ R
with

c <
(θ − 4)π

2α0θ
.

If (un, vn)⇀ (u, v) in W, then∫
R2

h(x, f(un), f(vn))f
′(un)(un − u) → 0 and∫

R2

g(x, f(un), f(vn))f
′(vn)(vn − v) → 0.

Proof. We will prove the first convergence, the proof the second one is
analogous. Using (H1), (H3) and (2), (7), (11) of Lemma 2.7, given ε > 0
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and α > α0, we get∣∣∣∣∫
R2

h(x, f(un), f(vn))f
′(un)(un − u)

∣∣∣∣ ⩽ ∫
R2

|h(x, un, vn)||f ′(un)||un − u|

⩽ ε

∫
R2

|(f(un), f(vn)||un − u|+ C

∫
R2

(e2α(f(un)4+f(vn)4) − 1)|un − u|

⩽ ε

(∫
R2

|f(un), f(vn)|2
) 1

2
(∫

R2

|un − u|2
) 1

2

(4.6)

+ C

(∫
R2

(e4αr1(u
2
n+v2n) − 1)

) 1
r1

(∫
R2

|un − u|r2
) 1

r2

⩽ C∥un − u∥2 + C

(∫
R2

(e8αr1u
2
n − 1) +

∫
R2

(e8αr1v
2
n − 1)

) 1
r1

∥un − u∥r2 ,

where r1, r2 > 1 and 1
r1

+ 1
r2

= 1. If the sequences(∫
R2

(e8r1αu
2
n − 1)

)
and

(∫
R2

(e8r1αv
2
n − 1)

)
(4.7)

are bounded, then by (4.6) it follows that∣∣∣∣∫
R2

h(x, f(un), f(vn))f
′(un)(un − u)

∣∣∣∣→ 0, (4.8)

since un → u in Lq(R2) for all q ⩾ 2. Similarly,∣∣∣∣∫
R2

g(x, f(un), f(vn))f
′(vn)(vn − v)

∣∣∣∣→ 0.

We will prove the boundedness of the first integral in (4.7), the other is
analogous. We can write∫

R2

(e8αr1u
2
n − 1) =

∫
R2

(e8αr1Q1(un)ũ2
n − 1),

with ũn = un/
√
Q1(un). Note that

∥∇ũn∥22 =
∫
R2

|∇ũn|2 =
1∫

R2 |∇un|2 +
∫
R2 V1(x)f2(un)

∫
R2

|∇un|2 ⩽ 1.

Moreover, we claim ∥ũn∥2 ≤M <∞. Indeed,

Q1(ũn) =
1

Q1(un)

∫
R2

|∇un|2 +
∫
R2

V1(x)f
2

(
1√

Q1(un)
un

)
.
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By using (2.9), we get

Q1(ũn) ⩽

(
1

Q1(un)
+

1√
Q1(un)

)∫
R2

|∇un|2

+

(
1

Q1(un)
+

1√
Q1(un)

)∫
R2

V1(x)f
2(un)

=

(
1

Q1(un)
+

1√
Q1(un)

)
Q1(un) = 1 +

√
Q1(un) ⩽ 1 + C.

Once ∥f(u)∥q ⩽ C
√
Q1(u) for q ⩾ 2 and for all u ∈ H1(R2) with∫

R2 V1(x)f
2(u) <∞, we conclude that ∥f(ũn)∥q ⩽ C for all n ∈ N. Using

item (10) of Lemma 2.7, it follows that ∥ũn∥2 ⩽ C. Now, in view of
Corollary 4.4

Q1(un) ⩽ Q(un, vn) ⩽
2θ

θ − 4
c+ on(1).

Since c < (θ−4)π
4α0θ

, we can choose α > α0 close to α0 and r1 > 1 close to 1
so that cαr1 <

(θ−4)π
4θα0

. Thus, for n sufficiently large

8αr1Q1(un) ⩽ 16α
θ

θ − 4
r1c+ on(1) < 4π.

By invoking the Trudinger-Moser inequality, the boundedness of the first
integral in (4.7) is done and the proof is complete.

Proposition 4.6. The functional J satisfies the Palais-Smale condition
at level c ∈ R for all c < (θ−4)π

2α0θ
.

Proof. Let (un, vn) be a Palais-Smale sequence for J at the level c, with
c < (θ−4)π

2α0θ
. By Lemma 4.3, (un, vn) is bounded in W . So, up to a

subsequence, (un, vn)⇀ (u, v) ∈W . Now, by applying Lemma 4.5, we get∫
R2

h(x, f(un), f(vn))f
′(un)(un − u) → 0 and∫

R2

g(x, f(un), f(vn))f
′(vn)(vn − v) → 0.

(4.9)
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Since f2 is convex, Q(u, v) is also convex and therefore

1

2
Q(u, v)− 1

2
Q(un, vn) ⩾

1

2
Q′(un, vn).(u− un, v − vn)

= J ′(un, vn).(u− un, v − vn) +

∫
R2

h(x, f(un), f(vn))f
′(un)(un − u)

+

∫
R2

g(x, f(un), f(vn))f
′(vn)(vn − v).

Thus, from the convergences (4.9) and ∥J ′(un, vn)∥ → 0 we deduce that∫
R2

[
|∇u|2 + |∇v|2

]
+

∫
R2

[
V1(x)f

2(u) + V2(x)f
2(v)

]
⩾ lim inf

n→∞

∫
R2

[|∇un|2 + |∇vn|2]

+ lim inf
n→∞

∫
R2

[
V1(x)f

2(un) + V2(x)f
2(vn)

]
.

(4.10)

On the other hand, Fatou’s Lemma implies that∫
R2

(V1(x)f
2(u) + V2(x)f

2(v))

⩽ lim inf
n→∞

∫
R2

(V1(x)f
2(un) + V2(x)f

2(vn)),

(4.11)

and since the functional Φ(u) :=
∫
R2 |∇u|2 is weakly lower semicontinuous,

we obtain∫
R2

(|∇u|2 + |∇v|2) ⩽ lim inf
n→∞

∫
R2

(|∇un|2 + |∇vn|2). (4.12)

By (4.10), (4.11) and (4.12), up to subsequences, we can deduce that

lim
n→∞

∫
R2

(|∇un|2 + |∇vn|2) =
∫
R2

(|∇u|2 + |∇v|2)

and

lim
n→∞

∫
R2

(V1(x)f
2(un) + V2(x)f

2(vn)) =

∫
R2

(V1(x)f
2(u) + V2(x)f

2(v)).

Thus, (iv) of Lemma 3.1 implies that

inf
ξ>0

1

ξ

[
1 +

∫
R2

V1(x)f
2(ξ(un − u)) + V2(x)f

2(ξ(vn − v))

]
→ 0,

which shows that (un, vn) → (u, v) in W and the proof is finished.
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5 Minimax estimate

In this section, by exploiting condition (H4), we are going to estimate
the minimax level

c∗ := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

where

Γ = {γ ∈ C([0, 1], E))× C([0, 1], E); γ(0) = (0, 0) and J(γ(1)) < 0}.

More precisely, we have the following lemma:

Lemma 5.1. Suppose that (H4) is satisfied. Then,

c∗ <
(θ − 2)π

4α0θ
.

Proof. First, let φ0 ∈ C∞
0,rad(R2)\{0} be such that 0 ⩽ φ0 ⩽ 1, supp(φ0) ⊂

B2, φ0 ≡ 1 in B1 and |∇φ0| ⩽ 1. If ξ ⩾ ξ1 then by (H4) and (2.10) we
have

J(φ0, φ0) <
1

2

∫
B2

(2|∇φ0|2 + V1(x)φ
2
0 + V2(x)φ

2
0)− ξ1

∫
B2

f q(φ0)

⩽ 4π + (M1 +M2)2π − ξ1π

2
q
2

= 0.

In particular,

1

2

(∫
B2

(2|∇φ0|2 + V1(x)φ
2
0 + V2(x)φ

2
0)

)
⩽

ξπ

2q/2
.

From this inequality and by the definition of φ0, a simple computation
shows that

c∗ ⩽ max
t∈[0,1]

J(tφ0, tφ0)

⩽ max
t∈[0,1]

{[
t2

2

(∫
B2

[2|∇φ0|2 + V1(x)φ
2
0 + V2(x)φ

2
0]

)]
− ξ

∫
B2

f q(tφ0)

}
< max

t∈[0,1]

[
ξ1πt

2

2q/2
− ξπtq

2q/2

]
⩽

π

2q/2
max
t∈[0,1]

[ξ1t
2 − ξtq].
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Calculating this maximum, we obtain

π

2q/2
max
t⩾0

[ξ1t
2 − ξtq] =

π

2q/2
ξ1(q − 2)

q

(
2ξ1
ξq

) 2
q−2

.

Hence, if

ξ ⩾
2ξ1
q

[
ξ1(q − 2)4α0θ

2q/2q(θ − 4)

] q−2
2

then we conclude that

c∗ <
(θ − 4)π

4α0θ
.

6 Proof of Theorem 1.1

In this section, we prove our first main result. By Lemma 4.2 and
Proposition 4.6, we show that J(u, v) has the mountain-pass geometry and
satisfies the condition Palais-Smale at level c, for each c < (θ−2)π/(4α0θ).
Once the mountain-pass level c∗ ∈ (0, (θ − 2)π/4α0θ), then by invoking
a version of the Mountain-Pass Theorem (see [1]) it follows that J has a
critical point (z0, w0) in W such that J(z0, w0) = c∗. Therefore, (u0, v0),
with u0 = f(z0) and v0 = f(w0), is a nontrivial solution of System (1.1).

7 Proof of Theorem 1.2

In order to prove Theorem 1.2, we suppose that condition (H5) is
satisfied. Moreover, let

b = inf
(u,v)∈S

J(u, v) and S = {(u, v) ∈W ; (u, v) ̸= (0, 0) and J ′(u, v) = 0}.

Let us show that the minimax level c∗ of J satisfies c∗ ≤ b. Let (u, v) be
in S and define ξ : (0,∞) → R by ξ(t) = J(tu, tv). We have that ξ is
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differentiable and

ξ′(t) = J ′(tu, tv).(u, v)

= t

∫
R2

(|∇u|2 + |∇v|2) +
∫
R2

(V1(x)f(tu)f
′
(tu)u+ V2(x)f(tv)f

′
(tv)v)

−
∫
R2

[
h(x, f(tu), f(tv))f

′
(tu)u+ g(x, f(tu), f(tv))f

′
(tv)v

]
.

Since J ′(u, v).(u, v) = 0, we have∫
R2

|∇u|2 + |∇v|2) = −
∫
R2

(V1(x)f(u)f
′(u)u+ V2(x)f(v)f

′(v)v)

+

∫
R2

[h(x, f(u), f(v))f ′(u)u+ g(x, f(u), f(v))f ′(v)v]

and therefore we can write

ξ′(t) = t

∫
R2

V1(x)

[
f(tu)f ′(tu)

tu
− f(u)f ′(u)

u

]
u2

+

∫
R2

V2(x)

[
f(tv)f ′(tv)

tv
− f(v)f ′(v)

v

]
v2

+ t

[∫
R2

h(x, f(u), f(v))

f3(u)

f3(u)f
′
(u)

u
− h(x, f(tu), f(tv))

f3(tu)

f3(tu)f
′
(tu)

tu

]
u2

+ t

[∫
R2

g(x, f(u), f(v))

f3(v)

f3(v)f
′
(v)

v
− g(x, f(tu), f(tv))

f3(tv)

f3(tv)f
′
(tv)

tv

]
v2.

Using the properties of f , we can show that f(s)f ′
(s)s−1 is decreasing for

s > 0 (see Corollary 2.3 in [10]). Hence, by hypothesis (H5), ξ
′
(t) > 0 for

0 < t < 1, ξ
′
(t) < 0 for t > 1 and ξ′(1) = 0. This guarantees that

J(u, v) = max
t⩾0

J(tu, tv).

Now, set γ0 : [0, 1] → W, γ0(t) = (γ1, γ2) with γ1(t) = tt0u and
γ2(t) = tt0v, where t0 is such that J(t0u, t0v) < 0. We have γ0 ∈ Γ

and therefore

c∗ ⩽ max
t⩾0

J(γ0(t)) ⩽ max
t⩾0

J(tu, tv) = J(u, v).
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Since (u, v) ∈ S is arbitrary, we have c∗ ⩽ b and the proof is complete.
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