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1 Introduction

In this work we consider the following fractional Schrödinger equation:

(−∆)
1
2u+ V (x)u = K(x)f(u) in R, (1.1)

where (−∆)
1
2 is the 1/2-Laplacian operator, V,K : R → R are func-

tions satisfying appropriate conditions which will be introduced later and
f : R → R has exponential growth in the sense of the Trudinger-Moser
embedding due to Ozawa [34]. Our goal in this work is to show that under
appropriate conditions problem (1.1) has a ground state and a nodal solu-
tion, which are distinct. Throughout this paper, the fractional Laplacian
(−∆)

1
2 of a function u ∈ S is defined by

(−∆)
1
2u(x) = − 1

2π

∫
R

u(x+ y) + u(x− y)− 2u(x)

|y|2
dy,

where S denotes the Schwartz space of the rapidly decreasing C∞ functions
in R.

A physical motivation for studying this kind of problem is that Eq.
(1.1) describes the behavior of the so-called standing wave solutions φ(x, t) =
e−

iE
ℏ tu(x) of the following time-dependent fractional Schrödinger equation:

iℏ
∂φ

∂t
= − ℏ2

2m
(−∆)

1
2φ+W (x)φ− g(x, |φ|)φ, (t, x) ∈ R× R,

where V (x) = 2m
ℏ (W (x) − E), K(x)f(u) = g(x, |u|)u and u is a solution

of (1.1). This equation was introduced by Laskin [29, 30]. We would
also like to quote to the reader the paper [19] and some of its references
for other applications, and to underline the role played by the potential
V (x), we suggest to the reader the papers [13, 22]. In the specific case of
applications involving the fractional Laplacian on the real line we would
like to highlight applications in dynamical systems and crystal dislocation
theory (cf. [14, 17, 18]). As a consequence, the study of nonlinear fractional
equations has attracted the attention of many researchers and topics like
existence, regularity, symmetry, uniqueness and stability were studied, see
for instance, [10, 20, 27] and references contained therein.
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We are interested in looking for solutions when the nonlinearity f(t)

has the maximal growth which allows to treat problem (1.1) variationally
in the Sobolev space H1/2(R). In order to better understanding the critical
growth on f(t), let us to recall some well-known facts involving the limiting
Sobolev embedding theorem in one-dimension. Let Hs(R) be the Sobolev
space with s ∈ (0, 1/2). The Sobolev embedding states that Hs(R) ↪→
L2∗s (R), where 2∗s := 2/(1− 2s) (the critical Sobolev exponent), and when
s = 1/2 we have H1/2(R) ↪→ Lq(R) for any q ∈ [2,+∞), but H1/2(R) is
not continuously embedded in L∞(R) (see [19, 34]). Thus, if s ∈ (0, 1/2)

then the maximal growth on the nonlinearity f(t), which lets us to work
with (1.1) by considering a variational approach in Hs(R), it is given by
|u|2∗s−1 as |u| → +∞. On the other hand, in the limiting case s = 1/2,
motivated by Ozawa [34], the maximal growth on f(t), which allows us
to study (1.1) by applying a variational framework involving the space
H1/2(R), is given by eαu

2 as |u| → +∞, for some α > 0. Precisely, we say
that f(t) has exponential critical growth if there exists α0 > 0 such that

lim
|t|→+∞

f(t)e−α|t|2 =

0, for all α > α0,

+∞, for all α < α0,
(1.2)

and we say that f(t) has exponential subcritical growth if

lim
|t|→+∞

f(t)e−α|t|2 = 0, for all α > 0. (1.3)

Based on this notion of criticality, many papers have been developed
in order to study issues related to the existence of solutions for prob-
lems involving the fractional Laplacian operator and nonlinearities with
exponential growth. For example, by exploiting the Trudinger-Moser em-
bedding due to Ozawa [34] and the Mountain Pass Theorem, J. M. do Ó,
Miyagaki and Squassina [21] proved the existence of ground state solutions
for the following class of nonlinear scalar field equations:{

(−∆)
1
2u+ u = f(u) in R,

u(x) → 0, as |x| → ∞,
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when f(t) is o(|t|) at the origin and behaves like eαt
2 as |t| → +∞, for

some α > 0. In [15], Souza and Araújo considered a perturbation of this
problem by a general potential V (x), namely,{

(−∆)
1
2u+ V (x)u = f(u) in R,

u(x) → 0, as |x| → ∞,

where V (x) is a nonnegative function which is asymptotically periodic at
infinity. See also [2, 12, 16, 20, 25] for others investigations.

We would like to point out the recent work due to Miyagaki and Pucci
[31], who considered a nonlocal Kirchhoff problem of the form

−M(∥u∥)((−∆)
1
2u+ V (x)u) = K(x)f(u) in R, (1.4)

where M : R+ → R+ is a continuous Kirchhoff function and ∥u∥ is defined
as in (1.7), V and K are continuous positive potentials satisfying the con-
ditions introduced in [20] and f is a nonlinearity with exponential growth
and is allowed to be critical or subcritical with respect to the Trudinger-
Moser inequality established by Ozawa [34]. In this work the authors
obtain the existence of nontrivial solutions to (1.4) by applying suitable
variational methods needed to overcome the lack of compactness due to
the unboundedness of the domain and to the Trudinger-Moser embedding.

For problems considering a bounded interval of the real line, we would
like to mention Iannizzotto and Squassina [27], who proved the existence
and multiplicity of solutions for the class of one-dimensional nonlocal equa-
tions {

(−∆)
1
2u = f(u) in (a, b),

u = 0 in R \ (a, b),

when f has exponential subcritcal growth or critical growth. In [26], Gia-
comoni, Mishra and Sreenadh considered the problem{

(−∆)
1
2u = λg(x)|u|q−2u+ upeu

β in (a, b),

u > 0 in (a, b) and u = 0 in R \ (a, b),

where 1 < q < 2, p > 1, 0 ≤ β ≤ 2, λ > 0 and the function g ∈
L

p+q+β
p+q+β−1 (a, b). They showed the existence of mountain-pass solution when



18 M. de Souza, U. B. Severo and T. L. O. do Rêgo

the nonlinearity is concave near to the origin and has exponential growth at
infinity. Furthermore, they showed the existence of multiple solutions for
a suitable range of λ by analysing the fibering maps and the corresponding
Nehari manifold.

In [32], Perera and Squassina, by using a suitable topological argument
based on cohomological linking and by exploiting the Trudinger-Moser
inequality, the existence of multiple solutions was extended for a problem
involving the nonlinear N/s−fractional Laplacian operator and the critical
exponential growth.

We point out that none of the previous works treated the existence of
a sign-changing solution (nodal solution). Motivated by these facts, one of
our goals in the present paper is proving the existence of the least energy
nodal solutions for problem (1.1) when the nonlinearity has exponential
growth. We ended this subsection by mentioning that for problems involv-
ing fractional equations, critical nonlinearities and domains Ω of RN , with
N > 2s, there is a large literature and we refer to [23, 33, 35, 36, 37], and
to the references therein. For the existence of sign-changing solutions we
quote [1, 11], which served as inspiration for the development of this work.

1.1 Assumptions

In order to reach our goals, we assume the following assumptions on
the functions V and K:

(V1) V : R → [0,+∞), K : R→ (0,+∞) are continuous and K ∈ L∞(R);

(V2) there exist b0, R0 > 0 such that

V (x) ≥ b0, for |x| ≥ R0;

Since problem (1.1) is set on the whole real line, we face a loss of
compactness. Here, motivated by Miyagaki and Pucci [31], in order to
overcome this difficulty, we assume the following assumption on K:
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(K1) if {An} is a sequence of Borel sets of R with sup
n∈N

|An| ≤ R, for some

R > 0, then

lim
r→∞

∫
An∩Bc

r(0)
K(x) dx = 0,

uniformly with respect to n ∈ N.

On the nonlinearity f , we assume the following assumptions:

(f1) f ∈ C1(R) and there exist C0, t0 > 0 such that

|f(t)| ≤ C0

(
eπt

2 − 1
)
, for all |t| ≥ t0;

(f2) lim
t→0

f(t)

t
= 0;

(f3) there exists θ > 2 such that

0 < θF (t) := θ

∫ t

0
f(s)ds ≤ tf(t), for all t ∈ R \ {0};

(f4) the function
f(t)

|t|
is strictly increasing for t ̸= 0;

(f5) there exist constants p > 2 and Cp > 0 such that

sgn(t)f(t) ≥ Cp|t|p−1, for all t ∈ R.

We point out that from (f1) we can consider nonlinearities with expo-
nential critical growth in the sense of (1.2) and with exponential subcritical
growth in the sense of (1.3).

1.2 The main results

For a better understanding of the main results of this work, we will
introduce some notations and definitions. First, we denote by H1/2(R)

the fractional Sobolev space defined by

H1/2(R) =

{
u ∈ L2(R) :

∫
R2

(u(x)− u(y))2

|x− y|2
dxdy < ∞

}



20 M. de Souza, U. B. Severo and T. L. O. do Rêgo

endowed with the norm

∥u∥1/2,2 :=
(

1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy + ∥u∥22

)1/2

.

In order to apply variational methods to study (1.1) in H1/2(R), it is
natural to work in the subspace of H1/2(R) defined as

X :=

{
u ∈ H1/2(R) :

∫
R

V (x)u2dx < ∞
}
. (1.5)

From (V1) − (V2) (see Lemma 2.1 and Proposition 2.2), we show that
X is a Hilbert space when endowed with the inner product

⟨u, v⟩ := 1

2π

∫
R2

(u(x)− u(y))(v(x)− v(y))

|x− y|2
dxdy +

∫
R

V (x)uvdx (1.6)

and the corresponding norm

∥u∥ :=

(
1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy +

∫
R

V (x)|u|2dx
)1/2

. (1.7)

In this context, we say u ∈ X is a weak solution of (1.1) if

⟨u, v⟩ −
∫
R

K(x)f(u)vdx = 0, for all v ∈ X,

and if u is a weak solution of (1.1) such that u+ ̸≡ 0 and u− ̸≡ 0, we
say that u is a sign-changing solution (nodal solution), where u+(x) =

max{u(x), 0} and u−(x) = min{u(x), 0}.
In Section 2, we will show that the energy functional

I(u) =
1

2
∥u∥2 −

∫
R

K(x)F (u)dx (1.8)

is well defined and belongs to C1(X,R) with

I ′(u)v = ⟨u, v⟩ −
∫
R

K(x)f(u)vdx, for u, v ∈ X,

and consequently its critical points are weak solutions of (1.1).
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In order to find nodal solutions for problem (1.1) by applying an appro-
priate minimization argument, first we will introduce the Nehari manifold

N = {u ∈ X \ {0} : I ′(u)u = 0}. (1.9)

Now, we define the nodal set as

Nnod = {u ∈ X : u+ ̸≡ 0, u− ̸≡ 0 and I ′(u)u+ = I ′(u)u− = 0}; (1.10)

the ground state level
c := inf

u∈N
I(u); (1.11)

and the nodal level
c∗ := inf

u∈Nnod

I(u). (1.12)

We recall that a necessary condition for u ∈ X to be a critical point
of I is that I ′(u)u = 0. Thus, the Nehari manifold is a natural constraint
for the set of nontrivial solutions.

Note that since Nnod ⊂ N we have c ≤ c∗. We say that a nonzero
critical point w ∈ X of I is the least energy solution if w achieves the
infimum c. Since we are looking for nodal solutions, one of our goals
will be to show that the minimum c∗ is reached by a critical point of I.
Notice that the set Nnod contains all sign-changing solutions of (1.1). The
function that achieves c∗ is called the least energy nodal solution.

We point out that in order to find a critical point on Nnod our approach
is a little different from the usual and is taken from [3, 4, 7, 11]. In
particular, we do not need to make customary assumptions which imply
that I ∈ C2 and I ′′(u)(u, u) < 0 on Nnod.

Now we can state our main results.

Theorem 1.1. Suppose that (V1)−(V2), (K1) and (f1)−(f5) are satisfied.
Then problem (1.1) possesses a least energy nodal solution, provided that

Cp >

[
2θκc∗p
θ − 2

](p−2)/2

, (1.13)
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where
c∗p := inf

u∈Mnod

Ip(u),

Mnod := {u ∈ X : u+ ̸≡ 0, u− ̸≡ 0 and I ′p(u)u
+ = I ′p(u)u

− = 0}

and
Ip(u) :=

1

2
∥u∥2 − 1

p

∫
R

K(x)|u|pdx,

and κ > 0 is the constant given in (2.6).

Another goal of this paper is to prove that the energy of any sign-
changing solution of (1.1) is strictly larger than twice the ground state
energy. This property is so-called energy doubling by Weth [40].

Theorem 1.2. Suppose that (V1)− (V2), (K1), (f1)− (f5) and (1.13) are
satisfied. Then problem (1.1) has a least energy solution and

I(w) > 2c, (1.14)

where w is the least energy sign-changing solution obtained in Theorem
1.1. In particular, c is achieved either by a positive or a negative function.

Remark 1.3. Note that if we assume that the function f is odd, then,
using Theorem 1.2, it follows that problem (1.1) has at least one negative
solution, one positive solution, and one nodal solution.

Remark 1.4. Using the regularity results due to Servadei and Valdinoci
[37], we have that weak solutions of problem (1.1) belong to C(R).

Remark 1.5. In this paper, we deal with nonlinearities that have expo-
nential growth in the sense of the Trudinger-Moser inequality proved by
Ozawa [31]. This inequality is valid in general for functions in the Sobolev
space W s,p(RN ) whenever p > 1, N ≥ 1 and s = p/N . However, in our ar-
guments it is fundamental the Hilbert structure of the space X, see Lemma
2.6. Thus, we are restricted to the case p = 2. Besides that, since we are
interested in the fractional case 0 < s < 1 our approach is also restricted
to the one-dimensional case N = 1. We have that these restrictions imply
s = 1/2.
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It is interesting to note that in the last decades the existence and
multiplicity of positive and nodal solutions of elliptic problems have been
widely investigated, see for example, [3, 4, 5, 6, 7, 8, 24, 41] and references
therein. Specially, some results on nodal solutions of nonlinear elliptic
equations involving different operators have been obtained by combining
minimax method with invariant sets of descending flow, such as Laplacian
operator [5, 7, 8], p−Laplacian operator [6] and Schrödinger operator [3,
4, 24]. In the special case of the stationary equation of Schrödinger

−∆u+ V (x)u = f(u) in RN , (1.15)

there are several ways in the literature to obtain a sign-changing solution
(see [3, 4, 5, 8, 24, 41]). However, the methods used in these works heavily
rely on the following two decompositions:

J(u) = J(u+) + J(u−), (1.16)

J ′(u)u+ = J ′(u+)u+ and J ′(u)u− = J ′(u−)u−, (1.17)

where J is the energy functional associated to (1.15) given by

J(u) =
1

2

∫
RN

(|∇u|2 + V (x)u2)dx−
∫
RN

F (u)dx.

In the case of problem (1.1), the energy functional associated does not have
the same decompositions as (1.16) and (1.17). Indeed, since ⟨u+, u−⟩ > 0

when u+ ̸≡ 0 and u− ̸≡ 0, a straightforward computation shows that (see
Lemma 2.6)

I(u) > I(u+) + I(u−),

I ′(u)u+ > I ′(u+)u+ and I ′(u)u− > I ′(u−)u−.

Therefore, the methods used to obtain sign-changing solutions for the local
problem (1.15) seem not to be applicable to problem (1.1). Furthermore,
a second well-known difficulty for the class of problems (1.1) is the loss of
compactness due to the critical growth on the nonlinearity f .
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In order to overcome these difficulties, we define the constrained set
Nnod (see (1.10)) and consider a minimization problem of I on Nnod. Bor-
rowing ideas from [11], we prove Nnod ̸= ∅ via modified Miranda’s The-
orem (see Lemma 3.5 and Lemma 3.6). Combining the ideas developed
in [3, 4, 7, 11], we prove that the minimizer of the constrained problem
is also a sign-changing solution via the Quantitative Deformation Lemma
and Degree Theory (see Section 3).

In this paper, the symbols C, Ci, i = 1, 2, . . . , will be used to denote
various positive constants and BR denotes the open ball centered at the
origin with radius R.

2 Preliminaries

We begin this section by presenting an equality that will be widely
used throughout this work. From [19, Proposition 3.6], it is well-known
that for all u ∈ H1/2(R), it holds

∥(−∆)
1
4u∥22 =

1

2π
[u]21/2,2 =

1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy. (2.1)

With this in mind, we prove the following result:

Lemma 2.1. Assume that (V1)− (V2) are satisfied. Then,

λ1 := inf
u∈X

∥u∥2=1

(
1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy +

∫
R

V (x)u2dx

)
> 0.

Proof. Suppose, by contradiction, that λ1 = 0. Hence, there exists (un) ⊂
X such that, as n → ∞, we have

∥un∥22 = 1 and
1

2π

∫
R2

|un(x)− un(y)|2

|x− y|2
dxdy +

∫
R

V (x)u2ndx → 0.

(2.2)
From [34], for any 2 ≤ q < +∞ and v ∈ H1/2(R), there exists M > 0 such
that

∥v∥q ≤ Mq1/2∥(−∆)1/4v∥1−2/q
2 ∥v∥2/q2 . (2.3)
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Combining (2.1), (2.2) and (2.3), for each q > 2, we obtain

∥un∥q ≤ Mq1/2∥(−∆)1/4un∥1−2/q
2 → 0, as n → ∞.

Now, note that choosing t > 1 such that 2t = q and by using the Hölder
inequality, we get

∥un∥2L2(BR0
) ≤ |BR0 |

1
t′ ∥un∥2Lq(BR0

) → 0, as n → ∞. (2.4)

On the other hand, by (V2) and (2.2), we have∫
Bc

R0

u2ndx ≤ 1

b0

∫
Bc

R0

V (x)u2ndx → 0, as n → ∞. (2.5)

But, (2.4) and (2.5) imply that

1 = ∥un∥2L2(BR0
) + ∥un∥2L2(Bc

R0
) → 0,

as n → ∞, which is a contradiction. Thus, we have completed the proof
of the lemma.

From Lemma 2.1, we reach the following result:

Corollary 2.2. Assume that (V1)−(V2) are satisfied. Then the embedding
X ↪→ H1/2(R) is continuous and there exists κ > 0 such that

1

κ
:= inf

u∈X
u̸=0

∥u∥2

∥u∥21/2,2
. (2.6)

In particular, X is a Hilbert space with the inner product (1.6) and the em-
bedding X ↪→ Lq(R) is continuous and locally compact for all q ∈ [2,+∞).

Now, given r ≥ 1, we define weighted Banach space

Lr
K :=

{
u : R→ R : u is measurable and

∫
R

K(x)|u|rdx < ∞
}

endowed with the norm

∥u∥Lr
K
:=

(∫
R

K(x)|u|rdx
) 1

r

.
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Note that, since K ∈ L∞(R), the embedding H1/2(R) ↪→ Lq
K is con-

tinuous for all q ≥ 2. In [20, Proposition 2.2], the authors show that this
injection is compact for all q > 2. As a consequence, we have:

Corollary 2.3. X is continuously embedded in L2
K and compactly embed-

ded into Lq
K for all q ∈ (2,+∞).

One of the main tools to study problems involving exponential growth
in the fractional Sobolev spaces is the so-called fractional Trudinger-Moser
inequality due to Ozawa [34]. Combining the results in [15, 28, 34, 38],
the Trudinger-Moser inequality due to Ozawa has been refined and can be
stated as follows.

Lemma 2.4. For any u ∈ H1/2(R) and α ≥ 0, the integral∫
R

(
eαu

2 − 1
)
dx < ∞. (2.7)

Furthermore, if 0 ≤ α ≤ π, it holds

sup
{u∈H1/2(R) : ∥u∥1/2,2≤1}

∫
R

(
eαu

2 − 1
)
dx < ∞ (2.8)

and if 0 ≤ α < π, there exists Cα > 0 such that∫
R

(
eαu

2 − 1
)
dx ≤ Cα∥u∥22, (2.9)

whenever u ∈ H1/2(R) and ∥(−∆)
1
4u∥2 ≤ 1.

As an application of this inequality, we get the following convergence
result:

Lemma 2.5. Let α > 0 and (un) ⊂ H1/2(R) be such that un → u strongly
in H1/2(R). Then

lim
n→+∞

∫
R

(
eαu

2
n − 1

)
dx =

∫
R

(
eαu

2 − 1
)
dx.

Proof. The proof of this lemma follows directly from the Mean Value The-
orem, the Hölder inequality and Lemma 2.4, and we will omit it.
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Now, note that by Lemma 2.4, Lemma 2.5 and the hypotheses on f

and V , we obtain that the energy functional I : X → R associated to
problem (1.1) given by

I(u) =
1

2
∥u∥2 −

∫
R

K(x)F (u)dx

is well defined and belongs to C1(X,R) with

I ′(u)v = ⟨u, v⟩ −
∫
R

K(x)f(u)vdx, for u, v ∈ X

and consequently critical points of I are precisely the weak solutions of
(1.1).

Before presenting our next result we would like to mention that due
to the characteristics of the Gagliardo semi-norm [u]21/2,2, the energy func-
tional I does not possess certain properties that are typically satisfied for
the energy functional of equations of type

−∆u+ V (x)u = f(u) in RN . (2.10)

In theses cases, the following equalities are satisfied

J(u) = J(u+) + J(u−), (2.11)

and
J ′(u)u+ = J ′(u+)u+ and J ′(u)u− = J ′(u−)u−, (2.12)

where J is the energy functional of (2.10), which is given by

J(u) =
1

2

∫
RN

(|∇u|2 + V (x)u2)dx−
∫
RN

F (u)dx.

The above decompositions are applied in several ways in the literature to
obtain sign-changing solutions for problem (2.10) (see [3, 4, 5, 8, 24, 41]).
However, these methods can not be directly apply to problem (1.1). Here,
inspired by [11], we have the following result:

Lemma 2.6. Let u ∈ X be such that u+ ̸≡ 0 and u− ̸≡ 0. Then,
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(i) ⟨u+, u−⟩ > 0;

(ii) I(u) > I(u+) + I(u−);

(iii) I ′(u)u+ > I ′(u+)u+ and I ′(u)u− > I ′(u−)u−.

Proof. By density (see [19, Theorem 2.4]), we can assume that u is con-
tinuous. Defining

Ω+ = {x ∈ R : u(x) ≥ 0} and Ω− = {x ∈ R : u(x) ≤ 0},

we get

2π⟨u+, u−⟩ =
∫
Ω+×Ω+

(u+(x)− u+(y))(u−(x)− u−(y))

|x− y|2
dxdy

+

∫
Ω+×Ω−

(u+(x)− u+(y))(u−(x)− u−(y))

|x− y|2
dxdy

+

∫
Ω−×Ω+

(u+(x)− u+(y))(u−(x)− u−(y))

|x− y|2
dxdy

+

∫
Ω−×Ω−

(u+(x)− u+(y))(u−(x)− u−(y))

|x− y|2
dxdy.

Hence, since u+ = 0 in Ω− and u− = 0 in Ω+, we reach

2π⟨u+, u−⟩ =
∫
Ω+×Ω−

u+(y)(−u−(x))

|x− y|2
dxdy

+

∫
Ω−×Ω+

u+(x)(−u−(y))

|x− y|2
dxdy > 0,

which implies the item (i). Now, since I(u) = ⟨u+, u−⟩ + I(u+) + I(u−),
I ′(u)u+ = ⟨u+, u−⟩ + I ′(u+)u+ and I ′(u)u− = ⟨u+, u−⟩ + I ′(u−)u− , the
proof of (ii) and (iii) follows from item (i).

Corollary 2.7. If u ∈ X then

∥u∥2 ≥ ∥u+∥2 + ∥u−∥2.

Proof. By Lemma 2.6, we have

∥u∥2 = ∥u+∥2 + 2⟨u+, u−⟩+ ∥u−∥2 ≥ ∥u+∥2 + ∥u−∥2

which implies the desired inequality.
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3 Constrained minimization problem

In order to prove some properties of Nnod and N , we observe that by
(f1) − (f2), given ε > 0 and q ≥ 1, there is a positive constant Cε such
that

|f(t)| ≤ ε|t|+ Cε|t|q−1(eπt
2 − 1), for all t ∈ R (3.1)

and, by virtue of (f3),

|F (t)| ≤ ε|t|2 + Cε|t|q(eπt
2 − 1), for all t ∈ R. (3.2)

Moreover, by (f5), we have

|f(t)| ≥ Cp|t|p−1, for all t ∈ R (3.3)

and
F (t) ≥ Cp

p
|t|p, for all t ∈ R. (3.4)

Lemma 3.1. Assume that (V1)− (V2) and (f1)− (f5) are satisfied. Then,
given u ∈ X \ {0}, there is an unique t = t(u) > 0 such that tu ∈ N . In
addition, the number t satisfies

I(tu) = max
s≥0

I(su). (3.5)

Proof. Given u ∈ X \ {0}, we define h(s) := I(su) for s ≥ 0. By (3.4) and
since p > 2, we obtain

h(s) ≤ s2

2
∥u∥2 − Cps

p

p

∫
R

K(x)|u|pdx → −∞, as s → ∞. (3.6)

On the other hand, choosing q > 2, by using (3.2) and that K(x) ≤ C, we
get

h(s) ≥ s2

2
∥u∥2 − C

∫
R

(εs2|u|2 + Cεs
q|u|q(eπs2u2 − 1))dx. (3.7)

If s ∈ [0, 1], we have (eπs
2u2 − 1) ≤ (eπu

2 − 1). Hence, by Proposition 2.2,
we get

h(s) ≥ s2
(
1

2
− C1ε

)
∥u∥2 − C2,εs

q

∫
R

|u|q(eπu2 − 1)dx > 0 (3.8)
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for s > 0 small enough. Thus, from (3.6) and (3.8), there exists t = t(u) >

0 such that I(tu) = max
s≥0

I(su) and, consequently, tu ∈ N . Now, if s > 0

is such that su ∈ N , we have

s2∥u∥2 =
∫
R

f(su)su dx

and since
t2∥u∥2 =

∫
R

f(tu)tudx,

it follows that ∫
R

(
f(tu)

tu
− f(su)

su

)
u2dx = 0. (3.9)

By (f4) and since u ̸= 0, we get from (3.9) that t = s. Thus, we have
completed the proof.

Lemma 3.2. Assume that (V1)− (V2) and (f1)− (f5) are satisfied. Then,
there exists m0 > 0 such that ∥u∥2 ≥ m0 for all u ∈ N .

Proof. In order to obtain a contradiction, suppose that there exists (un) ⊂
N such that ∥un∥ → 0 as n → ∞. By definition, we know that

∥un∥2 =
∫
R

K(x)f(un)undx. (3.10)

Since K(x) ≤ C, utilizing (3.1) with q > 2, we get

∥un∥2 ≤
∫
R

K(x)|f(un)un|dx

≤ εC

∫
R

|un|2dx+ Cε

∫
R

|un|q(eπu
2
n − 1)dx. (3.11)

Now, from Lemma 2.4, by using the Hölder inequality and the assumptions
∥un∥ → 0, we obtain

∫
R

|un|q(eπu
2
n − 1)dx ≤ C∥un∥q2q

(∫
R

(e
2π∥un∥2

(
un

∥un∥

)2

− 1)dx

) 1
2

≤ Cπ∥un∥q2q (3.12)
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for n ∈ N sufficiently large. From Proposition 2.2, there exist C1, C2 > 0

such that ∥un∥q2q ≤ C1∥un∥q and ∥un∥22 ≤ C2∥un∥2. Hence, choosing
ε > 0 and utilizing (3.10), (3.11) and (3.12), we have 0 < C0 ≤ ∥un∥q−2,
for n ∈ N sufficiently large. But, as q > 2, this contradicts the assumption
∥un∥ → 0 and the proof of the lemma is complete.

Corollary 3.3. Assume that (V1) − (V2) and (f1) − (f5) are satisfied.
Then, there exists δ0 > 0 such that I(u) ≥ δ0 for all u ∈ N . In particular,

0 < δ0 ≤ c ≤ c∗.

Proof. Since I ′(u)u = 0, by Lemma 3.2 and (f3), we have

I(u) = I(u)− 1

θ
I ′(u)u =

(
1

2
− 1

θ

)
∥u∥2 + 1

θ

∫
R

[f(u)u− θF (u)] dx

≥
(
1

2
− 1

θ

)
∥u∥2 ≥

(
1

2
− 1

θ

)
m0 := δ0,

which is the desired inequality.

Lemma 3.4. Assume that (V1)− (V2) and (f1)− (f5) are satisfied. Then,
there exists m′

0 > 0 such that ∥u+∥2 ≥ m′
0 and ∥u−∥2 ≥ m′

0 for all u ∈
Nnod.

Proof. The proof is similar to Lemma 3.2. Hence, it is sufficient to prove
a similar estimate to (3.11) for u+ and u−. Since u ∈ Nnod we have
u+ ̸= 0 and ⟨u, u+⟩ =

∫
R
K(x)f(u+)u+dx. Now, by Lemma 2.6, we have

⟨u+, u+⟩ < ⟨u, u+⟩. Thus, by using (3.1) we obtain

∥u+∥2 ≤
∫
R

K(x)f(u+)u+dx ≤ εC

∫
R

|u+|2dx+Cε

∫
R

|u+|q(eπ|u+|2−1)dx.

Similarly,

∥u−∥2 ≤
∫
R

K(x)f(u−)u−dx ≤ εC

∫
R

|u−|2dx+Cε

∫
R

|u−|q(eπ|u−|2−1)dx.

This completes the proof.
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Now, we recall the so-called Poincaré-Miranda Theorem (see [39]).

Lemma 3.5. Let h : P ⊂ RN −→ RN be a continuous function, where
P =

∏N
i=1[ai, bi] is a N -dimensional block in RN , with ai ̸= bi, for i =

1, . . . , N . Let P−
i = {x ∈ P : xi = ai} and P+

i = {x ∈ P : xi = bi}.
Assume that the coordinates functions of h satisfy:

(i) hi(x) ≥ 0, for all x ∈ P−
i ,

(ii) hi(x) ≤ 0, for all x ∈ P+
i .

Then there exists x0 ∈ P such that h(x0) = 0.

As an application of Lemma 3.5, we shall show that Nnod ̸= ∅.

Lemma 3.6. Assume that (V1)− (V2) and (f1)− (f5) are satisfied. Then,
given u ∈ X with u+ ̸≡ 0 and u− ̸≡ 0, there exists an unique pair (t, s) of
positive numbers such that tu+ + su− ∈ Nnod.

Proof. Let u ∈ X such that u+ ̸≡ 0 and u− ̸≡ 0. We define the continuous
vector field g : (0,∞)× (0,∞) → R2 by

g(t, s) =
(
I ′(tu+ + su−)tu+, I ′(tu+ + su−)su−

)
.

Firstly, we want to find (t, s) ∈ (0,∞) × (0,∞) such that g(t, s) = (0, 0).
The first step is to show that for t and s sufficiently small the coordinates
functions are positive. Given ε > 0 and q > 2, by (3.1) and K(x) ≤ C, we
get

I ′(tu+ + su−)tu+ = t2∥u+∥2 + ts⟨u+, u−⟩ −
∫
R

K(x)f(tu+)tu+dx

≥ t2∥u+∥2 + ts⟨u+, u−⟩

− εCt2
∫
R

|u+|2dx− CεCtq
∫
R

|u+|q(eπt2|u+|2 − 1)dx.

Hence, if t ∈ [0, 1], by using Proposition 2.2, there exists C1 > 0 such that

I ′(tu+ + su−)tu+ ≥ t2∥u+∥2 + ts⟨u+, u−⟩ − εC1Ct2∥u+∥2

− CεCtq
∫
R

|u+|q(eπ|u+|2 − 1)dx.
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By Lemma 2.6 we have ⟨u+, u−⟩ > 0. Then there exists r > 0 small
enough such that

I ′(ru+ + su−)ru+ > 0, for all s > 0.

Analogously, there exists r > 0 large enough such that

I ′(tu+ + ru−)ru− > 0, for all t > 0.

Now, we shall show that, for t and s large enough, the coordinates functions
are negative. Indeed, by (f3) and (3.4), we have∫
R

K(x)f(tu+)tu+dx ≥ θ

∫
R

K(x)F (tu+)dx ≥ θCpt
p

p

∫
R

K(x)|u+|pdx.

Thus,

I ′(tu+ + su−)tu+ = t2∥u+∥2 + ts⟨u+, u−⟩ −
∫
R

K(x)f(tu+)tu+dx

≤ t2∥u+∥2 + ts⟨u+, u−⟩ − θCpt
p

p
∥u+∥p

Lp
K
.

Since p > 2, there exists R > r large enough such that

I ′(Ru+ + su−)Ru+ < 0, for all 0 ≤ s ≤ R.

Analogously, there exists R > r small enough such that

I ′(tu+ +Ru−)Ru− < 0, for all 0 ≤ t ≤ R.

Hence, considering the block P = [r,R]× [r,R] and applying Lemma 3.5,
there exists (t, s) ∈ [r,R]×[r,R] such that g(t, s) = (0, 0) and consequently,
we have tu+ + su− ∈ Nnod.

Finally, we shall prove the uniqueness of the pair (t, s). First, we
assume that u = u+ + u− ∈ Nnod and (t, s) ∈ (0,∞)× (0,∞) is such that
tu+ + su− ∈ Nnod. In this case, we need to show that (t, s) = (1, 1). Note
that

∥u+∥2 + ⟨u+, u−⟩ =
∫
R

K(x)f(u+)u+dx (3.13)
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∥u−∥2 + ⟨u+, u−⟩ =
∫
R

K(x)f(u−)u−dx (3.14)

t2∥u+∥2 + ts⟨u+, u−⟩ =
∫
R

K(x)f(tu+)tu+dx (3.15)

s2∥u−∥2 + ts⟨u+, u−⟩ =
∫
R

K(x)f(su−)su−dx. (3.16)

We can assume, without loss of generality, that t ≤ s. Then, by using
⟨u+, u−⟩ > 0 and (3.15), we have

∥u+∥2 + ⟨u+, u−⟩ ≤
∫
R

K(x)
f(tu+)

t
u+dx.

It follows from (3.13) that∫
R

K(x)

(
f(tu+)

tu+
− f(u+)

u+

)
(u+)2dx ≥ 0.

Hence, by (f4) and since u+ ̸= 0 we obtain t ≥ 1. On the other hand, since
t/s ≤ 1 and ⟨u+, u−⟩ > 0, we get

∥u−∥2 + ⟨u+, u−⟩ ≥
∫
R

K(x)
f(su+)

s
u−dx.

This together with (3.14) implies∫
R

K(x)

(
f(su−)

su−
− f(u−)

u−

)
(u−)2dx ≤ 0

and consequently s ≤ 1. Thus, we conclude that t = s = 1.
For the general case, we suppose that u does not necessarily belong to

Nnod. Let (t, s), (t′, s′) ∈ (0,∞)×(0,∞) such that tu++su− and t′u++s′u−

belongs to Nnod. We define v = v+ + v−, where v+ = tu+ and v− = su−.

Then, we have that v ∈ Nnod and

t′

t
v+ +

s′

s
v− = t′u+ + s′u− ∈ Nnod.

Hence, by the first case, we reach t′/t = 1 and s′/s = 1, which completes
the proof.
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Now, we shall present two technical lemmas that will be used in the
next section.

Lemma 3.7. Assume that (V1)−(V2) and (f1)−(f5) are satisfied. Let u ∈
X be a function such that u+ ̸≡ 0, u− ̸≡ 0, I ′(u)u+ ≤ 0 and I ′(u)u− ≤ 0.
Then the unique pair (t, s) given in Lemma 3.6 satisfies 0 < t, s ≤ 1.

Proof. We can assume, without loss of generality, that s ≥ t > 0 and
tu+ + su− ∈ Nnod. Now, since I ′(u)u− ≤ 0 and I ′(tu+ + su−)su− = 0, we
have

∥u−∥2 + ⟨u+, u−⟩ ≤
∫
R

K(x)f(u−)u−dx

and

∥u−∥2 + t

s
⟨u+, u−⟩ =

∫
R

K(x)
f(su−)

s
u−dx.

By Lemma 2.6 we get∫
R

K(x)

(
f(u−)

u−
− f(su−)

su−

)
(u−)2dx

=

∫
R

K(x)f(u−)u−dx− ∥u−∥2 − t

s
⟨u+, u−⟩

≥ ∥u−∥2 + ⟨u+, u−⟩ − ∥u−∥2 − t

s
⟨u+, u−⟩

≥
(
1− t

s

)
⟨u+, u−⟩ ≥ 0.

From this estimate, (f4) and u− ̸≡ 0, we obtain that s ≤ 1. Thus, we
finish the proof.

Lemma 3.8. Assume that (V1) − (V2) and (f1) − (f5) are satisfied. Let
u ∈ X be a function such that u+ ̸≡ 0, u− ̸≡ 0 and (t, s) be the unique
pair of positive numbers given in Lemma 3.6. Then (t, s) is the unique
maximum point of the function ϕ : R+ × R+ → R defined by ϕ(α, β) =

I(αu+ + βu−).
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Proof. In the demonstration of Lemma 3.6, we saw that (t, s) is the unique
critical point of ϕ in (0,∞)× (0,∞). Note that, by using (3.4), we get

ϕ(α, β) ≤ 1

2

∥∥αu+ + βu−
∥∥2 − Cp

p

∫
R

K(x)|αu+ + βu−|pdx

=
(α+ β)2

2

∥∥∥∥( α

α+ β
)u+ + (

β

α+ β
)u−

∥∥∥∥2
− Cp

p
(α+ β)p

∥∥∥∥( α

α+ β
)u+ + (

β

α+ β
)u−

∥∥∥∥p
Lp
K

.

Hence, since p > 2, ϕ(α, β) → −∞ as |(α, β)| → ∞. In particular, there
exists R > 0 such that ϕ(α, β) < ϕ(t, s) for all (α, β) ∈ (0,∞)×(0,∞)\BR,
where BR is the closure of the ball of radius R inR2. In order to finalize the
proof, we shall show that the maximum of ϕ does not occur in the boundary
of R+ × R+. Suppose, by contradiction, that (0, β) is a maximum point
of ϕ, given α ≥ 0, we have that

ϕ(α, β) =
α2

2
∥u+∥2 + αβ⟨u+, u−⟩ −

∫
R

K(x)F (αu+)dx+ ϕ(0, β).

Arguing similarly to Lemma 3.1, we get

α2

2
∥u+∥2 + αβ⟨u+, u−⟩ −

∫
R

K(x)F (αu+)dx > 0

for α > 0 small enough. But this contradicts the assumption that (0, β) is
a maximum point of ϕ. The case (α, 0) is similar to the first one and we
omit it.

Now, we shall prove an upper bound for the nodal level c∗ defined in
(1.12).

Lemma 3.9. Assume that (V1)−(V2) and (f1)−(f5) hold and Cp satisfies
(1.13). If θ is the constant given by (f3) and κ is given in (2.6), then

c∗ <
θ − 2

2θκ
. (3.17)
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Proof. From Theorem 6.8 (see Appendix), there exists w ∈ Mnod such
that Ip(w) = c∗p, I ′p(w)w+ = 0 and I ′p(w)w

− = 0. Consequently,

1

2
∥w∥2 − 1

p
∥w∥p

Lp
K
= c∗p, (3.18)

∥w±∥2 = ∥w±∥p
Lp
K
− ⟨w+, w−⟩ (3.19)

∥w∥2 = ∥w∥p
Lp
K
. (3.20)

Hence, by (3.18) and (3.20), we get(
1

2
− 1

p

)
∥w∥p

Lp
K
= c∗p. (3.21)

Since w+ ̸≡ 0 and w− ̸≡ 0, by Lemma 3.6, there exist t, s > 0 such that
tw+ + sw− ∈ Nnod. Consequently, we obtain

c∗ ≤ I(tw+ + sw−) =
t2

2
∥w+∥2 + ts⟨w+, w−⟩+ s2

2
∥w−∥2

−
∫
R

K(x)F (tw+)dx−
∫
R

K(x)F (sw−)dx.

This together with (3.4) implies

c∗ ≤ t2

2
∥w+∥2 + ts⟨w+, w−⟩+ s2

2
∥w−∥2 − Cpt

p

p
∥w+∥p

Lp
K
− Cps

p

p
∥w−∥p

Lp
K
.

By (3.19) and Lemma 2.6, we have

c∗ ≤ t2

2
(∥w+∥p

Lp
K
− ⟨w+, w−⟩) + ts⟨w+, w−⟩+ s2

2
(∥w−∥p

Lp
K
− ⟨w+, w−⟩)

− Cpt
p

p
∥w+∥p

Lp
K
− Cps

p

p
∥w−∥p

Lp
K

=

(
t2

2
− Cpt

p

p

)
∥w+∥p

Lp
K
+

(
s2

2
− Cps

p

p

)
∥w−∥p

Lp
K

− 1

2
(t− s)2 ⟨w+, w−⟩

≤ max
ξ≥0

(
ξ2

2
− Cpξ

p

p

)
∥w∥p

Lp
K
.
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On the other hand, it is easy to see that

max
ξ≥0

(
ξ2

2
− Cpξ

p

p

)
= C

2
2−p
p

(
1

2
− 1

p

)
.

Hence, by (3.21) it follows that

c∗ ≤ C
2

2−p
p

(
1

2
− 1

p

)
∥w∥p

Lp
K
= C

2
2−p
p c∗p.

Therefore, by the definition of Cp given in (1.13), we obtain (3.17).

The next step will be to obtain a minimizing sequence for the nodal
level c∗ with a special behavior. For this, for λ > 0, we begin by defining
the set

S̃λ = {u ∈ Nnod : I(u) < c∗ + λ}.

Lemma 3.10. Assume that (V1)−(V2) and (f1)−(f5) hold and Cp satisfies
(1.13). For λ > 0 small enough, there exists mλ ∈ (0, 1

κ) such that

0 < m′
0 ≤ ∥u+∥2, ∥u−∥2 < ∥u∥2 ≤ mλ,

for any u ∈ S̃λ.

Proof. Let u ∈ S̃λ. By Lemma 3.4 and by using ⟨u+, u−⟩ > 0, we have
m′

0 ≤ ∥u+∥2, ∥u−∥2 < ∥u∥2. On the other hand, by (f3) and since I ′(u)u =

0, we obtain

c∗ + λ > I(u) = I(u)− 1

θ
I ′(u)u

=

(
1

2
− 1

θ

)
∥u∥2 + 1

θ

∫
R

K(x) [f(u)u− θF (u)] dx ≥
(
1

2
− 1

θ

)
∥u∥2.

By Lemma 3.9, we can take λ > 0 such that c∗ + λ <

(
θ − 2

2θκ

)
. Conse-

quently, it follows that

∥u∥2 ≤ 2θ

θ − 2
(c∗ + λ) =: mλ <

1

κ
,

for all u ∈ S̃λ. This concludes the proof of the lemma.
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Lemma 3.11. Assume that (V1)− (V2), (K1) and (f1)− (f5) are satisfied.
Let (un) ⊂ H1/2(R) be a sequence such that un ⇀ u weakly in H1/2(R)

and b := supn∈N ∥un∥21/2,2 < 1. Then, up to a subsequence, one has

lim
n→+∞

∫
R

K(x)f(un)undx =

∫
R

K(x)f(u)udx; (3.22)

lim
n→+∞

∫
R

K(x)f(u+n )u
+
n dx =

∫
R

K(x)f(u+)u+dx; (3.23)

lim
n→+∞

∫
R

K(x)f(u−n )u
−
n dx =

∫
R

K(x)f(u−)u−dx; (3.24)

lim
n→+∞

∫
R

K(x)F (un)dx =

∫
R

K(x)F (u)dx; (3.25)

lim
n→+∞

∫
R

K(x)f(un)vdx =

∫
R

K(x)f(u)vdx,∀v ∈ H1/2(R). (3.26)

Proof. We will prove only (3.22), since the proofs of (3.24)-(3.26) are sim-
ilar and we will omit them. Let π < α < π/b2. Then, by using (f1) and
(f2), we have

lim
|t|→∞

f(t)t

eαt2 − 1
= 0 and lim

|t|→0

f(t)t

t2
= 0. (3.27)

Hence, given q > 2 and ε > 0, there exists 0 < t0(ε) < t1(ε) and Cε > 0

such that, for all t, x ∈ R,

K(x)|f(t)t| ≤ εC(|t|2 + eαt
2 − 1) + CεK(x)χ[t0(ε),t1(ε)](|t|)|t|

q, (3.28)

Now, from the continuous embedding H1/2(R) ↪→ Ls(R) for s ≥ 2, and
Lemma 2.4, we can find M > 0 such that, for all n ∈ N,∫

R

|un|2dx ≤ M,

∫
R

|un|qdx ≤ M and
∫
R

(eαu
2
n − 1)dx ≤ M. (3.29)

Denoting Aε
n = {x ∈ R : t0(ε) ≤ |un(x)| ≤ t1(ε)}, we get

t0(ε)
2|Aε

n| =
∫
Aε

n

t0(ε)
2dx ≤

∫
R

|un|2dx ≤ M, for all n ∈ N.
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Thus, utilizing (K1), there exists r(ε) > 0 such that∫
Aε

n∩Bc
r(ε)

(0)
K(x)dx <

ε

Cεt1(ε)q
, for all n ∈ N (3.30)

and by using (3.29) and (3.30) in (3.28), we reach∫
Bc

r(ε)
(0)

K(x)|f(un)un|dx ≤ (2CM + 1)ε, for all n ∈ N. (3.31)

On the other hand, using that un ⇀ u weakly in H1/2(R) and the locally
compact embedding H1/2(R) ↪→ L2(R), up to a subsequence, we have
un(x) → u(x) a.e. in R. Thus, K(x)f(un(x))un(x) → K(x)f(u(x))u(x)

a.e. in R and according to (3.27), (3.29) and Strauss Lemma [9, Theorem
A.I], one has

lim
n→+∞

∫
Br(ε)

K(x)f(un)undx =

∫
Br(ε)

K(x)f(u)udx. (3.32)

Combining (3.31) and (3.32), the proof of (3.22) follows.

From now on, we will write S̃λ with λ > 0 given in Lemma 3.10.

Lemma 3.12. Assume that (V1)− (V2), (K1) and (f1)− (f5) hold and Cp

satisfies (1.13). Then for any q > 2, there exists δq > 0 such that

0 < δq ≤
∫
R

K(x)|u+|qdx,
∫
R

K(x)|u−|qdx <

∫
R

K(x)|u|qdx,

for each u ∈ S̃λ.

Proof. Let u ∈ S̃λ and q > 2. We know that

∥u±∥2 + ⟨u+, u−⟩ =
∫
R

K(x)f(u±)u±dx.

By using Lemma 2.6 and Lemma 3.4, it follows that

0 < m′
0 ≤ ∥u±∥2 <

∫
R

K(x)f(u±)u±dx
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and from (3.1), we have

m′
0 ≤ ε

∫
R

K(x)|u±|2dx+ Cε

∫
R

K(x)|u±|(eπ|u±|2 − 1)dx.

Now, Corollary 2.3 and the fact that u ∈ S̃λ imply that there exists C1 > 0,
independent of u, such that∫

R

K(x)|u|2dx ≤ C1.

Choosing ε > 0 such that m′
0 − εC1 > 0, we obtain

0 <
m′

0 − εC1

Cε
≤

∫
R

K(x)|u±|(eπ|u±|2 − 1)dx. (3.33)

Let t′ > 0 sufficiently close to 1 such that πt′mλκ ≤ π, with 1/t+1/t′ = 1

and t > q. Utilizing the Hölder inequality, Lemma 3.10, K(x) ≤ C and
Lemma 2.4, we reach∫
R

K(x)|u±|(eπ|u±|2 − 1)dx =

∫
R

K(x)
1
t |u±|K(x)

1
t′ (eπ|u

±|2 − 1)dx

≤
(∫

R

K(x)|u±|tdx
) 1

t

∫
R

K(x)(e
πt′∥u±∥2

1/2,2

(
|u±|

∥u∥1/2,2

)2

− 1)dx

 1
t′

≤ C
1
t′

(∫
R

K(x)|u±|tdx
) 1

t

∫
R

(e
πt′mλκ

(
|u±|

∥u±∥1/2,2

)2

− 1)dx

 1
t′

≤ C∥u±∥Lt
K
.

This last inequality and (3.33) imply that

0 <
m′

0 − εC1

Cε
≤ C∥u±∥Lt

K
. (3.34)

Now, we suppose, by contradiction, that there exists (un) ⊂ S̃λ such that
∥u±n ∥Lq

K
→ 0 as n → ∞. From Lemma 3.10 we obtain that (u±n ) is bounded

in L2t(R). Consequently, since q < t < 2t, by the interpolation inequality
we get that ∥u±n ∥Lt

K
→ 0 as n → ∞, which is impossible in view of (3.34).

Thus, we have completed the proof.
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The next technical result will be used in the proof of Lemma 3.14.

Lemma 3.13. Assume (f3)−(f4). Then the function H(t) := f(t)t−2F (t)

satisfies

(i) H(0) = 0 and H(t) > 0, for all t ̸= 0;

(ii) H(t0) ≤ H(t1) if 0 < t0 ≤ t1;

(iii) H(t0) ≥ H(t1) if t0 ≤ t1 < 0.

Proof. Let us show (iii). First we note that H ∈ C1(R) and H ′(t) =

f ′(t)t− f(t), for all t ∈ R. From (f4), we have

d

dt

(
f(t)

|t|

)
≥ 0, for all t ∈ R \ {0}.

If t < 0 then f(t)− f ′(t)t ≥ 0 and therefore H ′(t) ≤ 0 for all t < 0. Thus,
H(t) is decreasing for t ≤ 0, which implies the item (iii). The proof of the
item (ii) is similar.

Next, we have all the results that will allow us to prove that the nodal
level c∗ is attained in a function u ∈ X with u+ ̸≡ 0 and u− ̸≡ 0.

Lemma 3.14. Assume that (V1)− (V2), (K1) and (f1)− (f5) hold and Cp

satisfies (1.13). Then there exists ũ ∈ Nnod such that I(ũ) = c∗.

Proof. Let (un) ⊂ Nnod be a sequence such that I(un) → c∗ as n → +∞.
We can assume that un ∈ S̃λ, for all n ∈ N. In particular, by Lemma 3.10,
we have

m′
0 ≤ ∥u±n ∥2 < ∥un∥2 ≤ mλ, for all n ∈ N, with mλ ∈

(
0,

1

κ

)
.

Thus, (un), (u+n ) and (u−n ) are bounded in X. Since X is a Hilbert space,
up to a subsequence, there exists u ∈ X such that u±n ⇀ u± and un ⇀ u in
X. Let q > 2. From Corollary 2.3, up to a subsequence, we have u±n → u±

in Lq
K and utilizing Lemma 3.12, there exists δq > 0 such that

0 < δq ≤
∫
R

K(x)|u±n |qdx <

∫
R

K(x)|un|qdx, for all n ∈ N.
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Hence u+ ̸≡ 0 and u− ̸≡ 0 in X. Now, from Lemma 3.6 there exist t, s ∈
(0,∞) such that ũ = tu++su− ∈ Nnod. We claim that I ′(u)u± ≤ 0. Since
supn∈N ∥un∥2 ≤ mλ and ∥un∥21/2,2 ≤ κ∥un∥2, we have supn∈N ∥un∥1/2,2 ∈
(0, 1). Moreover, since the embedding X ↪→ L2

loc(R) is compact, up to
a subsequence, we can assume that u±n (x) → u±(x) a.e. in R. By the
convergence (3.24) in Lemma 3.11 and by the Fatou Lemma, it follows
that

∥u+∥2 + ⟨u+, u−⟩ ≤ lim inf
n→+∞

(
∥u+n ∥2 + ⟨u+n , u−n ⟩

)
= lim inf

n→+∞

∫
R

K(x)f(u+n )u
+
n dx =

∫
R

K(x)f(u+)u+dx.

Hence, I ′(u)u+ ≤ 0. Similarly, we get I ′(u)u− ≤ 0. Then, by Lemma
3.7, we obtain 0 < t, s ≤ 1. In particular, ∥ũ∥2 ≤ ∥u∥2. Now, in order to
conclude the proof, note that using the convergence in Lemma 3.11 and
Lemma 3.13, it holds

c∗ ≤ I(ũ) = I(ũ)− 1

2
I ′(ũ)ũ =

1

2

∫
R

K(x) (f(ũ)ũ− 2F (ũ)) dx

=
1

2

∫
R

K(x)H(tu+)dx+
1

2

∫
R

K(x)H(su−)dx

and therefore

c∗ ≤ 1

2

∫
R

K(x)H(u+)dx+
1

2

∫
R

K(x)H(u−)dx

=
1

2

∫
R

K(x) (f(u)u− 2F (u)) dx

= I(un)−
1

2
I ′(un)un + on(1),

= I(un) + on(1) = c∗

which concludes the proof.

Next, we consider D = (12 ,
3
2)×(12 ,

3
2) and g : D → X given by g(α, β) =

αũ+ + βũ−, where ũ was obtained in Lemma 3.14. We shall prove an
auxiliary result and present some notations that will be used in the proof
of Theorem 1.1.
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Lemma 3.15. Let P = {u ∈ X : u(x) ≥ 0 a.e. x ∈ R} and −P =

{u ∈ X : u(x) ≤ 0 a.e. x ∈ R}. Then d′0 = dist(g(D),Λ) > 0, where
Λ := P ∪ (−P ).

Proof. We suppose, by contradiction, that d′0 = dist(g(D),Λ) = 0. Hence,
we can find (vn) ⊂ g(D) and (wn) ⊂ Λ such that ∥vn−wn∥ → 0 as n → ∞.
We can assume, without loss of generality, that wn ≥ 0 a.e. in R. Since
vn ∈ g(D), there exist αn, βn ∈ [12 ,

3
2 ] such that vn = αnũ

+ + βnũ
−. By

compactness of [12 ,
3
2 ], up to a subsequence, we have αn → a0 and βn → b0

as n → ∞. Hence
vn → a0ũ

+ + b0ũ
− in X.

Thus, we obtain wn → a0ũ
+ + b0ũ

− in X. Now, by Proposition 2.2, we
have

wn(x) → a0ũ
+(x) + b0ũ

−(x) a.e. in R.

Since ũ− ̸= 0, the convergence above produces a contradiction with the
assumption that wn ≥ 0 a.e. in R, which completes the proof.

4 Proof of Theorem 1.1

By Lemma 3.14, there exists ũ ∈ Nnod such that I(ũ) = c∗. We
shall prove that ũ is a critical point of the functional I. Suppose, by
contradiction, that I ′(ũ) ̸= 0. Thus, by the continuity of I ′, there exist
λ, δ > 0 with δ ≤ d′0

2 , where d′0 is given in Lemma 3.15, such that

∥I ′(v)∥ ≥ λ, for all v ∈ B3δ(ũ). (4.1)

From Lemma 3.8 we have that the function (I ◦ g)(α, β), for (α, β) ∈ D,
has a strict maximum point (1, 1). In particular,

m∗ = max
(α,β)∈∂D

(I ◦ g)(α, β) < c∗.

Let 0 < ε < min{(c∗ − m∗)/2, λδ/8} and S = Bδ(ũ). By the choice of
ε and by condition (4.1), if v ∈ S2δ = B3δ(ũ) we have ∥I ′(v)∥ ≥ 8ε

δ . In
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particular,

∀ v ∈ I−1([c∗ − 2ε, c∗ + 2ε]) ∩ S2δ, it has to satisfy ∥I ′(v)∥ ≥ 8ε

δ
.

Hence, by the Quantitative Deformation Lemma in [41, Lemma 2.3], there
exists η ∈ C([0, 1]×X,X) such that

(i) η(t, u) = u, if t = 0 or u /∈ I−1([c∗ − 2ε, c∗ + 2ε]) ∩ S2δ;

(ii) η(1, Ic
∗+ε ∩ S) ⊂ Ic

∗−ε;

(iii) η(t, ·) is a homeomorphism of X, ∀ t ∈ [0, 1];

(iv) ∥η(t, u)− u∥ ≤ δ, ∀u ∈ X, ∀ t ∈ [0, 1];

(v) I(η(·, u)) is non increasing, ∀u ∈ X;

(vi) I(η(t, u)) < c∗, ∀u ∈ Ic
∗ ∩ Sδ, ∀ t ∈ (0, 1].

As an application, we get

max
(α,β)∈D

I(η(1, g(α, β))) < c∗. (4.2)

Indeed, if (α, β) ∈ D with (α, β) ̸= (1, 1), by using Lemma 3.8 we have
I(g(α, β)) < c∗. Hence

I(η(1, g(α, β))) ≤ I(η(0, g(α, β))) = I(g(α, β)) < c∗.

If (α, β) = (1, 1) then g(1, 1) = ũ ∈ Ic
∗+ε∩S. Thus I(η(1, g(1, 1))) < c∗−ε,

showing (4.2). Notice that, by definition of c∗, inequality (4.2) implies that
η(1, g(D)) ∩Nnod = ∅.

Now, let us define h(α, β) = η(1, g(α, β)). We claim that

h(α, β) = g(α, β) in ∂D. (4.3)

Indeed, given (α, β) ∈ ∂D, by the definition of m∗ and by the choice of ε,
we have

I(g(α, β)) ≤ m∗ = c∗ − 2
(c∗ −m∗)

2
< c∗ − 2ε,

which implies that g(α, β) /∈ I−1([c∗ − 2ε, c∗ + 2ε]). Thus, by using the
properties of η, we get (4.3).
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Claim 4.1. It holds that h+(α, β) ̸= 0 and h−(α, β) ̸= 0 for all (α, β) ∈ D.

Indeed, let v ∈ Λ. By the choice of δ > 0 and Lemma 3.15, we have

∥h(α, β)− v∥ ≥ ∥g(α, β)− v∥ − ∥h(α, β)− g(α, β)∥

≥ ∥g(α, β)− v∥ − δ ≥ d′0 −
d′0
2

=
d′0
2
.

Consequently, h+(α, β) ̸= 0 and h−(α, β) ̸= 0 for all (α, β) ∈ D, conclud-
ing the statement.

Next, we consider the vector fields

F(α, β) = (I ′(g(α, β))ũ+, I ′(g(α, β))ũ−)

and

G(α, β) = (
1

α
I ′(h(α, β))h(α, β)+,

1

β
I ′(h(α, β))h(α, β)−).

From (4.3), we have F = G in ∂D. Hence, by the degree theory, we have

deg(F , D, (0, 0)) = deg(G, D, (0, 0)). (4.4)

Claim 4.2. deg(F , D, (0, 0)) = 1.

Indeed, consider

F1(α, β) = I ′(αũ+ + βũ−)ũ+ and F2(α, β) = I ′(αũ+ + βũ−)ũ−,

the coordinates functions of the vector field F . Calculating the partial
derivatives of F1 and F2, we get

∂F1

∂α
(α, β) = ∥ũ+∥2 −

∫
R

K(x)f ′(αũ+)(ũ+)2dx,

∂F1

∂β
(α, β) =

∂F2

∂α
(α, β) = ⟨ũ+, ũ−⟩,

∂F2

∂β
(α, β) = ∥ũ−∥2 −

∫
R

K(x)f ′(βũ−)(ũ−)2dx.
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Now, for (α, β) = (1, 1) in the above equations and since I ′(ũ)ũ+ = 0 and
I ′(ũ)ũ− = 0, we obtain

∂F1

∂α
(1, 1) = −⟨ũ+, ũ−⟩+

∫
R

K(x)G(ũ+)ũ+dx,

∂F1

∂β
(1, 1) =

∂F2

∂α
(1, 1) = ⟨ũ+, ũ−⟩,

∂F2

∂β
(1, 1) = −⟨ũ+, ũ−⟩+

∫
R

K(x)G(ũ−)ũ−dx,

where G(t) = f(t) − f ′(t)t, for t ∈ R. By (f4), ũ+ ̸= 0 and ũ− ̸= 0, it is
easy to see that

∫
R

K(x)G(ũ+)ũ+dx < 0 and
∫
R

K(x)G(ũ−)ũ−dx < 0. (4.5)

Hence, by (4.5) and ⟨ũ+, ũ−⟩ > 0, it follows that

det


∂F1

∂α
(1, 1)

∂F1

∂β
(1, 1)

∂F2

∂α
(1, 1)

∂F2

∂β
(1, 1)

 > 0.

Since (1, 1) is the unique solution of F(α, β) = (0, 0) in D, by the defini-
tion of topological degree, we have deg(F , D, (0, 0)) = 1, showing Claim
4.2.

In view of Claim 4.2 and (4.4), we obtain

deg(G, D, (0, 0)) = deg(F , D, (0, 0)) = 1

and therefore there exists (α0, β0) ∈ D such that G(α0, β0) = (0, 0), that
is, {

I ′(η(1, g(α0, β0)))η(1, g(α0, β0))
+ = 0,

I ′(η(1, g(α0, β0)))η(1, g(α0, β0))
− = 0.

(4.6)

By Claim 4.1, one has h(α0, β0)
+ ̸= 0 and h(α0, β0)

− ̸= 0. Hence, sys-
tem (4.6) implies that h(α0, β0) belongs to η(1, g(D)) ∩ Nnod and by the
definition of c∗, I(h(α0, β0)) = I(η(1, g(α0, β0)) ≥ c∗, which is a contra-
diction according to (4.2). Therefore, we conclude that I ′(ũ) = 0 and this
completes the proof of Theorem 1.1.



48 M. de Souza, U. B. Severo and T. L. O. do Rêgo

5 Proof of Theorem 1.2

First, we define the set Sλ = {u ∈ N : I(u) < c∗+λ}, where λ is given
in Lemma 3.10. By using similar ideas from of the proof of Lemma 3.14,
we find ṽ ∈ N such that I(ṽ) = c, where c is the ground state level defined
in (1.11). Moreover, utilizing the same steps of the proof of Theorem 1.1,
we show that the function ṽ satisfies that I ′(ṽ) = 0. Thus, ṽ is a ground
state solution of problem (1.1). Now, in order to prove (1.14), we consider
the function ũ obtained in Theorem 1.1. Since ũ+ ̸= 0 and ũ− ̸= 0, by
Lemma 3.1, there exists an unique pair (t1, t2) such that t1ũ

+ ∈ N and
t2ũ

− ∈ N . By Corollary 3.3, we have c > 0. Now, the definition of c,
Lemma 2.6, Lemma 3.7 and Lemma 3.8, we conclude that

0 < 2c ≤ I(t1ũ
+) + I(t2ũ

−) < I(t1ũ
+ + t2ũ

−) ≤ I(ũ+ + ũ−) = c∗,

showing (1.14). In particular, the inequality above shows that can not exist
a nodal ground state solution of problem (1.1). Therefore, the ground state
solution ṽ is positive or negative.

6 Appendix

In this section, we consider the problem

(−∆)1/2u+ V (x)u = K(x)|u|p−2u in R, (6.1)

where p > 2, V and K are such that (V1) − (V2) and (K1) hold. The
energy functional Ip : X → R associated to (6.1) is given by

Ip(u) =
1

2
∥u∥2 − 1

p
∥u∥p

Lp
K
.

We define the Nehari manifold and nodal set associated to Ip and the
respective ground state and nodal levels by

M = {u ∈ X \ {0} : I ′p(u)u = 0}, (6.2)

Mnod = {u ∈ X : u+ ̸≡ 0, u− ̸≡ 0, I ′p(u)u
+ = I ′p(u)u

− = 0}, (6.3)



On solutions for a class of fractional Schrödinger equations 49

cp = inf
u∈M

Ip(u), (6.4)

c∗p = inf
u∈Mnod

Ip(u). (6.5)

We will show that problem (6.1) has a nodal solution of least energy.
The steps to show this are the same of Sections 2, 3 and 4. Thus, many
computations will be omitted in order to avoid repetitions.

Lemma 6.1. Given u ∈ X \ {0}, there exists an unique t = t(u) > 0 such
that tu ∈ M. In addition, t satisfies

Ip(tu) = max
s≥0

Ip(su). (6.6)

Proof. Lethttps://pt.overleaf.com/project/6119b3013b27d19d037226ac h(s) :=
Ip(su) = s2∥u∥2/2− sp∥u∥p

Lp
K
/p, for s ≥ 0. Since p > 2, we have h(s) > 0

for s > 0 small enough and h(s) → −∞ as s → ∞. Hence, there exists a
t > 0 satisfying (6.6). In particular, tu ∈ M. Moreover, h′(t) = 0 if and
only if t = (∥u∥2/∥u∥p

Lp
K
)1/(p−2).

Corollary 6.2. Let u ∈ X \ {0}. Then u ∈ M if only if Ip(u) =

max
s≥0

Ip(su).

Lemma 6.3. There exist β0 > 0 and ℓ0 > 0 such that ∥u∥2 ≥ ℓ0, for all
u ∈ M, ∥u+∥2 ≥ ℓ0, ∥u−∥2 ≥ ℓ0, for all u ∈ Mnod and Ip(u) ≥ β0.

Proof. The proof of this result follows by Corollary 2.3 and using the same
ideas of Lemmas 3.2 and 3.4.

The lemma above shows that the levels cp and c∗p are well defined and
cp ≥ c∗p ≥ β0, since Mnod ⊂ M. The proofs of the next three result follow
the same ideas of Lemmas 3.6, 3.7 and 3.8, and we omit them.

Lemma 6.4. Given u ∈ X with u+ ̸≡ 0 and u− ̸≡ 0, there exists an
unique pair (t, s) of positive numbers such that tu+ + su− ∈ Mnod.

Lemma 6.5. Let u ∈ X such that u+ ̸≡ 0, u− ̸≡ 0, I ′p(u)u
+ ≤ 0 and

I ′p(u)u
− ≤ 0. Then the unique pair (t, s) given in Lemma 6.4 satisfies that

0 < t, s ≤ 1.
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Lemma 6.6. Let u ∈ X such that u+ ̸≡ 0 and u− ̸≡ 0, and (t, s) the
unique pair of positive numbers given in Lemma 6.4. Then (t, s) is the
unique maximum point of the function ϕp : R+ × R+ −→ R defined by
ϕp(α, β) = Ip(αu

+ + βu−).

Now, we shall show that the nodal level c∗p is attained.

Lemma 6.7. There exists ū ∈ Mnod such that Ip(ū) = c∗p.

Proof. Let (un) ⊂ Mnod be a sequence such that Ip(un) → c∗p. Since
un ∈ M, for all n ∈ N, we have

c∗p + on(1) = Ip(un) =
1

2
∥un∥2 −

1

p
∥un∥pLp

K
=

(
1

2
− 1

p

)
∥un∥2.

Hence, (un) is bounded in X. Therefore, (u+n ) and (u−n ) are also bounded
in X. Since X is a Hilbert space, up to a subsequence, there exists u ∈ X

such that u±n ⇀ u± in X. Since p > 2, utilizing Proposition 2.2 and
Corollary 2.3, passing to a subsequence, we can assume that u±n → u± in
Lp
K and u±n (x) → u±(x) a.e. in R.

We claim that u+ ̸≡ 0 and u− ̸≡ 0. We suppose, by contradiction,
that u+ ≡ 0 (similarly u− ≡ 0). Since un ∈ Mnod, we have I ′p(un)u

+
n = 0.

Thus,

⟨un, u+n ⟩ =
∫
R

K(x)|u+n |pdx →
∫
R

K(x)|u+|pdx = 0.

However, by Lemma 2.6 we have ⟨un, u+n ⟩ ≥ ∥u+n ∥2. This implies that
∥u+n ∥2 → 0, which is a contradiction in view of Lemma 6.3. Utilizing
Lemma 6.4, there exists a pair of positive numbers (t, s) such that tu+ +

su− ∈ Mnod. Let ū = tu+ + su−. We will show that I ′p(u)u
+ ≤ 0 and
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I ′p(u)u
− ≤ 0. Indeed, by Fatou’s lemma, we have

∥u+∥2 + ⟨u+, u−⟩ = ∥u+∥2

+
1

2π

∫
R2

(u+(x)− u+(y))(u−(x)− u−(y))

|x− y|2
dxdy

≤ lim inf
n→+∞

(
∥u+n ∥2 + ⟨u+n , u−n ⟩

)
= lim inf

n→+∞

∫
R

K(x)|u+n |pdx

=

∫
R

K(x)|u+|pdx = ∥u+∥p
Lp
K
.

Analogously, I ′p(u)u− ≤ 0. Hence, using Lemma 6.5, we have 0 < t, s ≤ 1.
In particular, ∥ū∥2 ≤ ∥u∥2. Now, by using that ū ∈ Mnod and Fatou’s
lemma, we reach

c∗p ≤ Ip(ū) = Ip(ū)−
1

p
I ′p(ū)ū

=

(
1

2
− 1

p

)
∥ū∥2 ≤

(
1

2
− 1

p

)
∥u∥2

≤ lim inf
n→+∞

(
1

2
− 1

p

)
∥un∥2 = lim inf

n→+∞

(
1

2
∥un∥2 −

1

p
∥un∥pLp

K

)
= c∗p

and this completes the proof.

Now, we will present the main result of this section.

Theorem 6.8. The function ū ∈ Mnod found in Lemma 6.7 is a nodal
solution of least energy of problem (6.1).

Proof. It follows by applying the same ideas used in the proof of Theorem
1.1 and we omit it.
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