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1 Introduction

Singularities appear in several fields of study as a sign of qualitative
change. We may experience them in Calculus, representing maximum or
minimum points of a function; in Dynamical Systems, as stationary so-
lutions that characterize the behaviour of solutions in their vicinity; or
in Physics, where they can appear on larger scales, for instance, when
a massive star undergoes a gravitational collapse after exhausting its in-
ternal nuclear fuel, which can lead to the birth of black holes or naked
singularities, the latter being discussed as potential particle accelerators,
acting like cosmic super-colliders. The formation of these so called space-
time singularities is a more general phenomena in which general theory of
relativity plays an important role [3]. And the most appealing example of
such singularity is perhaps the Big Bang.

One aspect of the theory that studies singularities is the interplay be-
tween blowdowns and blowups as shown in Figure 1.1 which depicts a
continuous deformation of a torus onto a pinched torus. In this scenario,
both maps are given intuitively by the initial and final stages of this de-
formation, as one goes back and forth in time, blowup and blowdown,
respectively. The deformation gives rise to a family of surfaces called a
smoothing of the singular surface, which in this case is produced by a
vanishing cycle.

Figure 1.1: Continuous deformation of the torus (left-most) onto the
pinched torus (right-most)

One would like to study how these deformations affect the topology of
the spaces. This is achieved by using a fascinating tool called the Euler
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characteristic formula.
Certainly among the most fruitful and beautiful formulas in the his-

tory of Mathematics, is the Euler formula for a polyhedron P given by
X (P ) = V −E+F = 2, where V is the number of vertices, E the number
of edges and F the number of faces. See [5]. This beloved formula has
entertained mathematicians such as Euler, Descartes, Cauchy and Lhuilier
who gave its final form X (S) = 2−2g, for what is now known as a smooth
closed connected orientable surface S of genus g. Remarkably, this Euler
characteristic determines precisely the closed surface up to homeomor-
phism.

One can say that an entire field, Algebraic Topology was inaugurated
by Henri Poincaré, inspired by this formula. To state it as simply as
possible, let K be a simplicial complex. Poincaré considered vector spaces
Ci (over Z2), of i-chains on K, where the sum is defined as the union
minus the intersection of the i-chains. He wanted to measure the presence
of special i-chains, called i-cycles that were not the border of an i + 1-
chain. This was accomplished by taking the quotient space of the space of
i-cycles of K, Zi(K) by all the i-cycles that are boundaries of i+1-chains,
Bi(K). Thus, this quotient space is called the i-th homology of K and

denoted by Hi(K) =
Zi(K)

Bi(K)
. The rank of Hi(K) is the i-th Betti number

of K, βi(K). The Euler characteristic is defined as the alternating sum of
the Betti numbers of K.

−→

—1-cycle α1

—1-cycle α2

—1-cycle α3

—1-cycle α4

Figure 1.2: Homology on a torus

In our 2-dimensional context, 1-cycles which belong to Z1(P ) and are
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not in B1(P ), play a very important role. See Figure 1.2. Two 1-cycles
are equivalent, more precisely homologous, if they form the boundary of
a 2-chain. For instance, in Figure 1.2, α1, α2, α3 and α4 all belong to
Z1(P ). However, α1 and α2 are homologous and α4 is also in B1(P ).

Hence, {α1, α3} is a basis of H1(P ) =
Z1(P )

B1(P )
and consequently, β1(P ) =

rankH1(P ) = 2. Clearly, all 0-cycles are homologous if P is connected.
Hence, β0(P ) = rankH0(P ) = 1. Also, there is only one 2-cycle, P itself,
that forms the basis of H2(P ). Hence, β2(P ) = rankH2(P ) = 1. The
Euler characteristic of P is X (P ) = β0(P )− β1(P ) + β2(P ) = 0.

It can be shown that for a smooth connected surface S with g handles,
β0(S) = β2(S) = 1 and that each handle contributes with two 1-cycles to
the basis of H1(S). Hence, β1(S) = 2g and X (S) = β0(S) − β1(S) +

β2(S) = 2− 2g. See [1] for more details.
Two important properties of the Euler characteristic that will be used

henceforth are:

i) (Homotopy invariance) Let A and B be two homotopically equivalent
spaces. Then, one has:

X (A) = X (B).

ii) (Inclusion-exclusion principle) Let A and B be any two closed sets.
Then, the following equality holds:

X (A ∪B) = X (A) + X (B)−X (A ∩B).

In what follows, the overarching idea is to understand the topology of
a singular manifold by studying a family of smooth manifolds that degen-
erate to it.

A very well-known and elementary example of passing from a smooth
surface to a singular surface, is the family of surfaces obtained from the
inverse images of the function f : R3 → R, given by f(x, y, z) = x2 +
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y2 − z2. Note that f−1(1) is a smooth surface, a one-sheet hyperboloid,
while f−1(0) is a singular surface, more specifically a double cone. By
considering the surfaces f−1(t) obtained by varying t continuously from
t = 1 to t = 0, one can see a circle whose radius is decreasing until the
circle degenerates into a point at the level curve z = 0. This contraction
is responsible for the birth of the singular cone point and consequently of
the singular surface.

One can visualize a similar situation in a polyhedron setting. See
Figure 1.3.

P P ′

Figure 1.3: Polyhedron P (left-most) collapsing to polyhedron P ′ (right-
most).

It is quite interesting to see the effect that this degeneracy has on the
Euler characteristic . The collapsing of the middle one cycle in P to a
vertex has the net effect of removing three vertices and four edges from
the formula X (P ) = V −E +F , where V , E, and F are, respectively, the
number of vertices, edges, and faces of the polyhedron P . See Figure 1.3.

X (P ′) = V ′−E′+F ′ = (V −3)−(E−4)+F = V −E+F +1 = X (P )+1.

In this work, we will consider this contraction and refer to it as a
collapsing operation. Two other operations on the images of loops on
smooth surfaces are considered: zipping and double loop identification both
of which produce singular surfaces.

Let M be a compact connected orientable surface. The surface M is of
type (g, b) if it has genus g and b boundary components and is denoted by
Mg,b. If b = 0, the surface is denoted by Mg and called a closed surface. A
loop in M is a smooth map α : S1 → M , which is identified to its image
in M . All loops will be orientation preserving. A loop is simple if α is
injective, that is, α has no self-intersection. A loop is trivial in M if it is
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homotopic to a point. Two loops are cobordant if the two loops bound a
subsurface.

Suppose that the smooth closed surface M is embedded in R3, thus
orientable. This embedding of M partitions R3 into a bounded region I
and an unbounded region O so that I∩O = M and such that I∪O = R3.

Definition 1.1. A simple loop α : S1 → M is called a handle loop if it is
trivial in the homology of I and non-trivial in the homology of O. A tunnel
loop is trivial in the homology of O and non-trivial in the homology of I.
Whenever (M − α) is not connected, α is called a separating loop. In
this case, we say that α splits Mg in two disjoint subsurfaces of genus k

and g − k.

Figure 1.4: Examples of handle (left-most), tunnel (center) and separating
loops (right-most) in red.

1.1 Simple loop operations

Now we define the operations that can be performed on simple loops
to create singular surfaces.

Definition 1.2. Let α : S1 → M and β : S1 → M ′ be simple loops
each of which are either separating, handle or tunnel; and M and M ′ are
smooth closed orientable surfaces, possibly the same. Define the following
operations, which will be called simple loop operations:

1. Collapsing of α: consider a disk D, up to homeomorphism, bounded
by α such that it is contractible to a point p in the complement of
M in R3. The collapsing of α is the retraction of D to p.
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Figure 1.5: Example of collapsing

2. Zipping of α: consider a disk D, up to homeomorphism, bounded
by α such that it is contractible to a curve d joining two distinct
points on α in the complement of M in R3. The zipping of α is the
retraction of D to d.

Figure 1.6: Example of zipping

3. Double loop identification of α and β: the loops α and β are
identified, via some orientation preserving homeomorphism h : α →
β;

Figure 1.7: Example of double loop identification

Once a specific loop operation is performed, the resulting singularity
or singular set can be easily identified and vice-versa. Typically, the op-
erations that are chosen in a singularization process, see Definition 1.4,
are based on the type of non-manifold set components that one wants the
singular surface to possess.

In this manner, note that by applying the collapsing operation one
obtains surfaces of revolution such as an eight surface (figure 1.8) and
a horn torus (figure 1.9), the latter appears as a cyclical model of the
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Universe.

Collapsing

Figure 1.8: Eight Surface

Collapsing

Figure 1.9: Horn Torus

On the other hand, the zipping operation appears in the family of
surfaces parametrized by ϕ(u, v) = ((a+b∗cos(v))∗cos(u), (a+b∗cos(v))∗
sin(u), b ∗ sin(v) ∗ cos(ku)), for a > b > 0. The number of folds present in
a surface of this family varies for different values of k:

Zipping

Figure 1.10: ϕ(u, v) with k = 0.5

The tori chain in Figure 1.12 illustrates a singular surface obtained by
double loop identifications.
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Figure 1.11: ϕ(u, v) with k = 1, k = 1.5, k = 2 (resp.)

Double loop−−−−−−−−−→
identification

Figure 1.12: Tori chain

Definition 1.3. Given a smooth, closed, connected, orientable surface Mg,
let L(Mg) be a collection of disjoint handle, tunnel, or separating loops in
Mg with a simple loop operation assigned to each one. This definition can
be extended to a disjoint union of surfaces, ⊔n

i=1Mgi .

For a finite collection of smooth connected orientable closed surfaces,
{Mgi | i = 1, . . . , n}, define G =

∑n
i=1 gi as the genus of ⊔n

i=1Mgi .

Definition 1.4. A singularization of a finite collection {Mgi | i =

1, . . . , n} of smooth, closed, connected, orientable surfaces will be at-
tained from L(⊔n

i=1Mgi) by performing the simple loop operations assigned
therein, and denoted by S(⊔n

i=1Mgi).

Examples of such singularization can be seen in Section 2.

We also note that the resulting singular surface S(⊔n
i=1Mgi) may not

be connected.
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2 Effect of Loop Operations on the Euler Charac-
teristic

In this section we will study the effect that the singularization of
a smooth surface Mg (respectively, a disjoint union of smooth surfaces
⊔n
i=1Mgi) has on the Euler characteristic of Mg (respectively, ⊔n

i=1Mgi).
The next theorem describes the effect on the original smooth surface’s

Euler characteristic after the simple loop operations are performed. In
other words, Theorem 2.1 describes how X (S) can be computed from
X (Mg). A collapsing or zipping operation adds one to the Euler charac-
teristic X (Mg), whereas a double loop identification leaves it unchanged.

Theorem 2.1. Let S(⊔n
i=1Mgi) be a singularized surface obtained from

the collection L(⊔n
i=1Mgi). Then the Euler characteristic of S(⊔n

i=1Mgi) is
independent of the number of double loop identifications performed and is
equal to:

X (S(⊔n
i=1Mgi)) =

(
n∑

i=1

X (Mgi)

)
+ C + Z = 2n− 2G+ C + Z,

where C is the number of collapsing operations, Z is the number of zipping

operations and G =

n∑
i=1

gi.

The proof of Theorem 2.1 will follow from a series of lemmas, each
of which will prove the effect on the Euler characteristic of ⊔n

i=1Mgi after
performing a specific type of operations, i.e. collapsing, zipping or double
loop identification, on a collection of loops L(⊔n

i=1Mgi).

Lemma 2.2 (Collapsing and Zipping). Let S(Mg) be a singularized surface
originating from Mg by performing C collapsings and Z zippings. Then

X (S(Mg)) = 2− 2g + C + Z.

Proof. The idea behind the proof is to show that by performing a collapsing
operation, as well as, a zipping operation on a loop in L(Mg) the effect on
the Euler characteristic, X (Mg), will be an increase by one.



264 N.G. Grulha, D.V.S. Lima, K.A. de Rezende and M.A.J. Zigart

a) First, note that collapsing a loop α ∈ L(Mg), where α is:

i) a separating simple loop, increases β2(Mg) by one;

ii) a tunnel loop, decreases β1(Mg) by one;

iii) a handle loop, decreases β1(Mg) by one, unless α is cobordant
to another handle loop β ∈ L(Mg) being collapsed. Recall that
if α and β are cobordant, then there is a subsurface Nk,2 ⊂ Mg,
for some k ∈ {1, . . . , g}, such that ∂(Nk,2) = α ∪ β. Thus, col-
lapsing α and β transforms Nk,2 in a closed subsurface, so that
one of them decreases β1(Mg) by one, and the other increases
β2(Mg) by one. Something similar occurs if n cobordant handle
loops in L(Mg) are collapsed.

Since the Euler characteristic of Mg is given by the alternating sum:

X (Mg) = β0(Mg)− β1(Mg) + β2(Mg),

the net effect of decreasing β1(Mg) by one as well as increasing
β2(Mg) by one is the increase of X (Mg) by one. So, if S(Mg) is
obtained by C collapsing operations, it follows that:

X (S(Mg)) = X (Mg) + C = 2− 2g + C;

b) Now, note that zipping a loop α ∈ L(Mg) is homotopically equivalent
to collapsing α. The homotopy simply contracts a segment to a point.
In other words, the following diagram is commutative:

Mg S(Mg)

S̃(Mg)

Z zippings

Z collapsings
Homotopy (2.1)

Consequently, by item a) and Euler characteristic’s invariance under
homotopy, if S(Mg) originates from Mg by performing Z zippings,
we have that X (S(Mg)) = 2− 2g + Z.
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c) Finally, once the loops in L(Mg) are all disjoint, if a total of C

collapsings and Z zippings are performed in the singularization of
Mg, it follows from a) and b) that X (S(Mg)) = 2− 2g + C + Z.

Zipping

Collapsing

Homotopy

Figure 2.1: Singularization via Collapsing and Zipping Operations

In Figure 2.1, a singularization via zipping and collapsing operations
of a genus g = 3 surface, a 3-torus, is presented. Note that the surfaces are
homotopy equivalent. Hence the Euler characteristic for both singularized
surfaces are the same, that is, X (S̃(M3)) = 2− 2× 3 + 5 = 1.

It is easy to see that Lemma 2.2 generalizes whenever the singular
surface is obtained from a collection {Mgi | i = 1, . . . , n} of smooth sur-
faces by performing C collapsing operations and Z zipping operations on
L(⊔n

i=1Mgi). In this case,

X (S(⊔n
i=1Mgi)) = 2n− 2G+ C + Z,

where G =
n∑

i=1

gi.
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The next couple of lemmas, Lemmas 2.3 and 2.5, will prove that double
loop identification on L(⊔n

i=1Mgi) does not change the Euler characteristic
given by

∑n
i=1X (Mgi).

Lemma 2.3 (Double loop identification). Let S(⊔n
i=1Mgi) be a singular

surface obtained from double loop identifications on L(⊔n
i=1Mgi) where each

double loop identification is performed on a pair of loops lying on different
surface components. Then the Euler characteristic of S(⊔n

i=1Mgi) remains
the same, that is,

X (S(⊔n
i=1Mgi)) =

n∑
i=1

X (Mgi) = 2n− 2G.

Proof. Since the singular surface S(⊔n
i=1Mgi) is a union of smooth sur-

faces ⊔n
i=1Mgi , intersecting along loops in L(⊔n

i=1Mgi), it follows from the
inclusion-exclusion principle that:

X (S(⊔n
i=1Mgi)) =

n∑
i=1

X (Mgi)−
D∑
i=1

X (S1), (2.2)

where D is the number of double loop identifications. Since X (S1) = 0,
the Euler characteristic of S(⊔n

i=1Mgi) does not depend on the number of
double loop identifications performed and is given by:

X (S(⊔n
i=1Mgi)) =

n∑
i=1

X (Mgi) =
n∑

i=1

2− 2gi = 2n− 2G.

Example 2.4. In Figure 2.2, an example of singularization via double loop
identifications on disjoint surfaces is presented. The collection {M1

2 ,M
2
2 ,M1}

contains two bi-tori M1
2 and M2

2 and a torus M1, as well as, a family of
loops identifications L. The singular surface S(⊔3

i=1Mgi), according to
Lemma 2.3, has Euler characteristic equal to:

X (S(⊔3
i=1Mgi)) = 2n− 2G = 2× 3− 2× 5 = −4.



The effect of singularization on the Euler characteristic 267

Double loop−−−−−−−−−→
identification

Figure 2.2: Surface chain

The following lemma will prove that the invariance of the Euler char-
acteristic under double loop identifications still holds when the loops are
chosen on the same smooth surface.

Lemma 2.5 (Double loop identification). Let α, β : S1 → Mg be two
disjoint simple loops and S(Mg) the singular surface obtained by a double
loop identification of α and β. Then

X (S(Mg)) = X (Mg)

Proof. Either the two loops α and β are cobordant, or they are not. We
consider both cases. Technically, this distinction is not needed, however
the cobordant case presents a more topological description of the singular
surface produced by the operation.

i) ααα and βββ are non-cobordant:

The quotient space Mg/α ∼ β given by a double loop identification
of α and β is homotopically equivalent to gluing a cylinder Cβ

α on
Mg, where α and β are each glued to an end circle of Cβ

α . The ho-
motopy is the contraction of the cylinder to a circle.
Hence it follows from the homotopy invariance of the Euler charac-
teristic and the inclusion-exclusion principle that:

X (S(Mg)) = X (Mg) + X (Cβ
α)−X (S1 ∪ S1) = X (Mg)
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Figure 2.3: Double loop identification of non-cobordant loops

ii) ααα and βββ are cobordant:

Since α and β are cobordant, there exists a connected subsurface
N ⊂ Mg such that ∂(N) = α ∪ β. Hence Mg = N ∪ N c, where
N c ⊂ Mg is the closure of Mg −N , with ∂(N c) = α ∪ β. Note that
N c need not be connected and N ∩N c = α ∪ β. Also note that the
quotient spaces N/α ∼ β and N c/α ∼ β are surfaces (since each
curve is single-sided in N and N c).

Thus, a double loop identification of α and β on Mg is equivalent
to considering the surfaces (N/α ∼ β) and (N c/α ∼ β) intersecting
along α ∼ β. It follows that:

(N/α ∼ β) = Mk and (N c/α ∼ β) = Mg−k+1,

for some k ∈ {1, . . . , g+1}, with Mk∩Mg−k+1 homeomorphic to S1.

α

β

N N c

≃

Mk =
N

α ∼ β

Mg−k+1 =
N c

α ∼ β

Figure 2.4: Double loop identification of cobordant loops

Thus, the result follows from the inclusion-exclusion principle for the
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Euler characteristic:

X (S(Mg)) = X (Mk) + X (Mg−k+1)−X (S1)

= (2− 2k) + (2− 2(g − k + 1))

= 2− 2g = X (Mg)

Now, by using Lemmas 2.2, 2.3 and 2.5 the proof of Theorem 2.1
follows.

Theorem 2.1. By the invariance of the Euler characteristic for double loop
identifications proven in Lemmas 2.3 and 2.5, and by applying the inclusion-
exclusion principle it follows that:

X (S(⊔n
i=1Mgi)) =

n∑
i=1

X (S(Mgi)),

where S(Mgi) is the singular surface obtained from the collection of Mgi by
performing the collapsing and zipping operations on the loops in L(Mgi).

According to Lemma 2.2, the equality holds:

X (S(Mgi)) = 2− 2gi + Ci + Zi,

where Ci and Zi are the numbers of loop collapsing operations and loop
zipping operations, respectively, that are performed on Mgi .

Thus, by adding X (Mgi) for i ∈ {1, . . . , n}, the proof follows:

X (S(⊔n
i=1Mgi)) =

n∑
i=1

X (S(Mgi))

=

n∑
i=1

2− 2gi + Ci + Zi = 2n− 2G+ C + Z



270 N.G. Grulha, D.V.S. Lima, K.A. de Rezende and M.A.J. Zigart

Singular surface Smooth data Collapsings Zippings Euler characteristic
(n,G) (C) (Z) (X = 2n− 2G+ C + Z)

(1, 0) 1 0 X = 3

(1, 1) 1 0 X = 1

(5, 5) 0 0 X = 0

(1, 1) 0 1 X = 1

(1, 1) 0 2 X = 2

(1, 1) 0 3 X = 3

(1, 1) 0 4 X = 4

Table 2.1: Computation of the Euler characteristic

In Table 2.1 we compute according to Theorem 2.1 the Euler charac-
teristics of the singular surfaces presented as examples in this article.

Example 2.6. In Figure 2.5, we consider a collection of three spheres
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{M1
0 ,M

2
0 ,M

3
0 } and on it a collection of loops

L(⊔3
i=1M

i
0) = {(M1

0 , ℓ1, C), (M1
0 , ℓ2;M

2
0 , ℓ3, D), (M3

0 , ℓ4, C),

(M3
0 , ℓ5, C), (M3

0 , ℓ6, C)(M3
0 , ℓ7, C), (M3

0 , ℓ8, Z)}.

After all loop operations are performed, the singularized manifold, given by
S(⊔3

i=1Mgi), has two connected components and the Euler characteristic
on each connected component is:

X (S(⊔2
i=1M

i
0)) = 2× 2− 2× (0) + 1 + 0 = 5

and
X (S(M3

0 )) = 2× 1− 2× 0 + 4 + 1 = 7.

ℓ1
ℓ2

ℓ3

ℓ4 ℓ5

ℓ6 ℓ7

ℓ8

M1
0

M2
0

M3
0

S(⊔2
i=1M

i
0)

S(M3
0 )

Singularization

Figure 2.5: Example of singularization of three spheres

Definition 2.7. The genus gS of a singularized connected surface S(⊔n
i=1Mgi)

is the maximal number of disjoint simple closed curves that can be removed
from its nonsingular part without disconnecting S(⊔n

i=1Mgi).

Note that the above definition generalizes the classical definition of
genus for a smooth surface. Furthermore, the restriction on the removal
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of simple closed curves to the nonsingular part of the singularized surface,
avoids the problem of infinitely many simple closed curves intersecting a
one dimensional singular set without disconnecting it.

The next lemma shows that the genus of a connected singularized sur-
face S(⊔n

i=1Mgi) depends on the genus of the surfaces Mgi and the number
of double loop identifications performed. Moreover, it is invariant with re-
spect to collapsing and zipping.

Lemma 2.8. Let S(⊔n
i=1Mgi) be a connected singularized surface obtained

from the collection {Mgi | i = 1, . . . n} of smooth surfaces by a singular-
ization process. Then

gS =

(
n∑

i=1

gi

)
+ [D − (n− 1)],

where D is the number of double loop identification in L(⊔n
i=1Mgi).

Proof. In order for a singularized surface S(⊔n
i=1Mgi) to be connected, the

minimum number D of double loop identifications in L(⊔n
i=1Mgi) needed

to achieve this is n− 1. Thus, define k = D − (n− 1) as the number of
exceeding double loop identifications in the singularization. The
proof will follow by induction on k.

a) First, suppose k = 0, that is, D = n− 1;

In the nonsingular case, there is a one-to-one correspondence between
the genus gi and the number of handles on the surface Mgi . So for
each handle, one can pick either one of its handle loops or one of
its tunnel loops to be removed, and the number of handles gives the
maximum number gi of disjoint simple closed curves that can be
removed from Mgi without disconnecting it.

In the singular case, one can proceed in a similar fashion, since the
genus, gS , is equivalent to the maximum number of simple closed
curves in ⊔n

i=1Mgi , not intersecting loops in L(⊔n
i=1Mgi), which can

be removed from S(⊔n
i=1Mgi) without disconnecting it. Given a
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handle in ⊔n
i=1Mgi , if one of its handle (resp. tunnel) loops is in

L(⊔n
i=1Mgi), one chooses a handle (resp. tunnel) loop to be removed.

Otherwise, one can choose between removing a handle or a tunnel
loop.

Proceeding as above for each handle in ⊔n
i=1Mgi , one removes a total

of
∑n

i=1 gi simple closed curves in the nonsingular part of S(⊔n
i=1Mgi)

without disconnecting it. Thus, it follows that gS ≥
∑n

i=1 gi.

Suppose by contradiction that gS >
∑n

i=1 gi. Then there is one more
simple closed curve α in the nonsingular part of S(⊔n

i=1Mgi) that can
be removed without disconnecting it. However, α must lie in Mgi for
some i = 1, . . . , n. This means that gi + 1 simple closed curves are
being removed from Mgi . Hence Mgi becomes disconnected. Now
we have n + 1 disjoint connected components in ⊔n

i=1Mgi and only
D = n − 1 double loop operations in L(⊔n

i=1Mgi); this is clearly
not enough to obtain a connected space. Thus S(⊔n

i=1Mgi) is not
connected after the removal of α which is a contradiction.

Therefore, gS =
∑n

i=1 gi.

b) Suppose k ≥ 1 and the formula holds in the case that there are k−1

exceeding double loop identifications in L(⊔n
i=1Mgi). That is,

gS =
n∑

i=1

gi + [k − 1].

We prove that the formula still holds if a k-th exceeding double loop
identification is performed.

Suppose L(⊔n
i=1Mgi) contains k exceeding double loop identifications

and determines the singularized surface S(⊔n
i=1Mgi). Let S′(⊔n

i=1Mgi)

be the singularized surface determined by L(⊔n
i=1Mgi) with k−1 ex-

ceeding double loop identifications performed, leaving out the pair
of disjoint loops (α, α′) that will eventually be doubly identified. By
the induction hypothesis, a total of gS′

=
∑n

i=1 gi + [k − 1] disjoint
simple closed curves can be removed from the nonsingular part of
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S′(⊔n
i=1Mgi) without disconnecting it. The removal of any other

simple closed curve γ in the nonsingular part of S′(⊔n
i=1Mgi) will

divide it into two disjoint connected components. One can choose
γ in such a way that these disjoint connected components S′

1 and
S′
2 contains the loops α and α′ respectively. Therefore, by perform-

ing the double loop identification on (α, α′), these two components
S′
1 and S′

2 become connected forming S(⊔n
i=1Mgi). Hence, we have

shown that S(⊔n
i=1Mgi) remains connected after the removal of γ,

meaning that:

gS =
n∑

i=1

gi+ [k− 1]+ 1 =

(
n∑

i=1

gi

)
+ k =

(
n∑

i=1

gi

)
+ [D− (n− 1)],

concluding the proof.

Example 2.9. In Figure 2.6, a connected singularized surface is obtained
from the disjoint union of smooth surfaces, specifically a sphere M0, a
torus M1, and a 3-torus M3 by performing the operations in

L(M0⊔M1⊔M3)={(M1,ℓ1;M3,ℓ4,D), (M1,ℓ2;M3,ℓ6,D), (M0,ℓ3;M3,ℓ5,D)}.

By Lemma 2.8, gS = 1 + 0 + 3 + [3 − (3 − 1)] = 5. In Figure 2.6, we
show five disjoint curves missing the singularities that don’t separate the
singularized surface.

Theorem 2.10. Let S(⊔n
i=1Mgi) be a connected singularized surface ob-

tained from the disjoint union of smooth surfaces {Mgi | i = 1, . . . n} by
the singularization process determined by L(⊔n

i=1Mgi). Then the Euler
characteristic of S(⊔n

i=1Mgi) is given by:

X (S(⊔n
i=1Mgi)) = 2− 2gS + 2D + C + Z,

where C, Z and D are, respectively, the number of collapses, zips and
double loop identifications in L(⊔n

i=1Mgi).
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ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

M0

M1

M3

Double loop−−−−−−−−−→
identification

Figure 2.6: Genus 5 singularized surface

Proof. By Theorem 2.1, we have that:

X (S(⊔n
i=1Mgi)) = 2n− 2G+ C + Z (2.3)

where G =
∑n

i=1 gi.
By Lemma 2.8,

G = gS −D + (n− 1) (2.4)

Hence, the result follows by substituting (2.4) in (2.3):

X (S(⊔n
i=1Mgi)) = 2n− 2[gS −D + (n− 1)] + C + Z

= 2− 2gS + 2D + C + Z.

We conclude this article by remarking that many interesting questions
arise in the context of singularization. For instance, one can explore the
dependency of the singularized surface to the loop operations assigned
in a singularization. When are different assignments of loop operations
topologically equivalent? What are the ranges of the Euler characteristic
attainable in this case?

Note that, in general, the Euler characteristic is not a complete topo-
logical invariant for singularized surfaces, two singularized surfaces may
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have the same Euler characteristic but not be homeomorphic. Indeed, it is
easy to find two singularized surfaces having the same Euler characteristic
but with different singular sets. Are the singularized surfaces given here
classifiable?

More complex singularization operations can be investigated. A 3-
sheet cone and a triple crossing are examples of more degenerate singular
sets that appear to be attainable by quotient maps similar to the collaps-
ing and the double loop identification, respectively. Are all the singular
sets produced by quotient maps of loops more degenerated cases of the
singularities discussed here?

Also one can’t help but wonder the effect on the Euler Characteristic
of simple loop operations on a closed surface S where the family L of loops
are not necessarily disjoint.

The explicit computation of the Betti numbers of a singularized surface
can be posed as well, since their alternating sum yields another proof for
the Euler characteristic formula presented here. Moreover, one can search
if there is a relation between the Betti numbers of a singularized surface
and its genus, since in the smooth case the genus of a surface is half its
first Betti number.

There are many interesting and accessible questions that can be taken
up from where this article left off. We entrust our reader will accept the
challenge.

The results presented in this article have the potential to aid in the
development of the research line concerning characteristic classes of sin-
gular varieties. For example, in [4], Reinhart uses Euler classes and Euler
numbers to obtain cobordism results. Using the generalizations of char-
acteristic classes, notions and concepts introduced by Brasselet, Libardi,
Rizziolli and Saia in [2], it seems plausible that similar results may br
achieved in our context.
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