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Abstract. This note contains a de Rham Theorem for intersection
spaces of depth one stratified pseudomanifolds with nonisolated sin-
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1 Introduction

The goal of this note is to show, that the de Rham model ΩI•p̄ , which
was introduced in [5], computes the reduced cohomology of the intersection
spaces in a nonisolated singularity setting. This de Rham type theorem
was proven in [5, Theorem 9.11] for spaces with isolated singularities. One
should be precise here, because there are two different notions of de Rham
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Theorems - they always relate the cohomology of some complex of differ-
ential forms to the dual space of the homology of some geometric chain
complex (e.g. the singular chain complex). But the isomorphism can either
be an isomorphism of vector spaces (i.e. an isomorphism in the category
of vector spaces) or an isomorphism of rings. For spaces with isolated sin-
gularities, Banagl proved that the cohomology of ΩI•p̄ (X) is isomorphic to
the dual space of the reduced homology H̃∗(I

p̄X) of the intersection space
as a vector space. This result was generalized by F. Schlöder and the au-
thor in [14]. There, we showed, that the the cohomology ring of ΩI•p̄ (X)

and the (reduced) singular cohomology ring of I p̄X are isomorphic.
In this note, Banagl’s de Rham Theorem for intersection space coho-

mology is generalized to depth one Thom-Mather stratified pseudomani-
folds with trivializable link bundles for the singular strata.
Notation and Remarks In this paper, all (co)homology groups are taken
with real coefficients. For a real vector space V , we denote its dual space
by V † := Hom(V,R). For background information on intersection spaces,
consult the survey article [7], Banagl’s book on intersection spaces [3]
and his article on the de Rham model [5]. The contents of this note
were covered in the author’s diploma thesis, which was written under the
supervision of Prof. Markus Banagl at the University of Heidelberg.

2 The Main Result

The main result of this note is a de Rham Theorem for intersection
spaces of depth one Thom-Mather stratified pseudomanifold with product
link bundles. To get a feeling for the stratified spaces of that type, consider
the following.

X =M ∪∂M=Σ×L (Σ× cone(L))

In this decomposition, M,Σ, L are smooth manifolds of positive dimension,
in the case of M with boundary ∂M = Σ × L. Σ is the singular set of
X and the singular strata are its connected components. Note, that in
general, the links of the different path components of the singular set Σ
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Figure 2.1: Illustration of a depth one Thom-Mather stratified space with
trivial link bundle and a two torus as link.

can be different. The term nonisolated singular set is reflected by the
positive dimensionality of Σ. L is the link of the singular set and M is a
(compact) homotopy model for the regular part X \ Σ of X.

A more formal description of the singular spaces considered in this ar-
ticle is the following. Consider Thom-Mather stratified pseudomanifolds
X of depth one with singular set Σ, such that for every connected compo-
nent S ⊂ Σ, there is a neighbourhood U = ρ−1[0, ϵ) ⊂ X of S ⊂ X that
is stratified isomorphic to S × cone(L) for a smooth manifold L. These
are called depth one Thom-Mather stratified pseudomanifolds with prod-
uct link bundles. The map ρ measures the distance to the singular set.
Stratified isomorphic means that the homeomorphism restricts to diffeo-
morphisms ρ−1(t) → S×L for all t ̸= 0. All the results of this note hold in
this setting, but to keep the notation simpler, pretend that all the spaces
have the shape X = M ∪∂M (Σ× cone(L)) and that the singular set Σ is
connected.

Intersection spaces of singular pseudomanifolds were introduced in [3].
The construction for spaces with isolated singularities as well as results
on deformation invariance of the resulting homology theory are surveyed
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in [7]. Let us recall Banagl’s construction for singular spaces of the form
X = M ∪∂M (Σ × cone(L)), which can be found in [3, Section 2.9]. The
main ingredient is the spatial homology truncation of the link L of Σ ⊂ X,
introduced in [3, Chapter 1]. The spatial homology truncation of a CW-
complex L in degree k ∈ N is a pair (L<k, f) of a CW-complex L<k together
with a map f : L<k → L such that

f∗ : Hr(L<k)
∼=−→ Hr(L) for r < k and Hr(L<k) = 0 for r ≥ k.

Spatial homology truncations exist for all simply-connected CW-complexes
of dim ̸= 2 by [3, Proposition 1.1.6] and can be constructed by hand in most
other cases. The process lacks functorial properties in general, though.

The idea of the intersection spaces is the following: One replaces the
tube Σ×cone(L) of the singular set Σ ⊂ X by the cone cone(Sigma×L<k).
By doing so, one forgets about the homology information of the links in
low dimensions, namely in dimensions < k. The truncation values that
are of interest are fixed by a so called perversity function p̄ in the sense of
Goresky-MacPherson, see [10, 11]. That is a function p̄ : {2, 3, 4, . . .} → Z
with the properties p̄(2) = 0 and p̄(t) ≤ p̄(t+ 1) ≤ p̄(t) + 1 for all t. The
cutoff value is k = c− 1− p̄(c), where c = codim(Σ) is the codimension of
Σ in X.

Definition 2.1 (Intersection Space). The intersection space I p̄X of X =

M ∪∂M (Σ× coneL) with respect to the perversity p̄ is the mapping cone
of the map

g : Σ× L<k
id×f−−−→ Σ× L = ∂M ↪→M.

In other words,

I p̄X := cone(g) =M ∪id×f cone(Σ× L<k).

The complex of differential forms, which gives a de Rham model for
the cohomology of the intersection space consits of forms ω on the regular
part X \ Σ = X \ Σ, such that the pullback t∗ω ∈ Ω•(T \ Σ) satisfies a
cotruncation condition (see below), where T = Σ × cone(L) is the tube
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Figure 2.2: Illustration of an intersection space associated with the singular
space from Figure 2.1; the homology truncation of the link is the 1-skeleton

of Σ and t : Σ × (L × (0, 1)) ∼= T \ Σ ↪→ X \ Σ is the embedding of the
nonsingular tube.

In order to describe this cotruncation condition for t∗ω, one first in-
troduces the geometric cotruncation of the complex Ω•(L) in degree k =

c − 1 − p̄(c). Fix some Riemannian metric gL on L and let d∗ : Ωr(L) →
Ωr−1(L) be the adjoint of the differential d with respect to the induced
inner product on Ω•(L). Define

τ≥kΩ
•L := . . .→ 0 → ker d∗ → Ωk+1(L)

d−→ . . . ≤ Ω•(L)

By the real Hodge Decomposition Theorem, the subcomplex τ≥kΩ•(L) ≤
Ω•(L) has vanishing cohomology in degrees < k and the computes the de
Rham cohomology of L in degrees ≥ k.

Cotruncated forms on L can be multiplied with forms on Σ to give
so called fiberwisely cotruncated forms on Σ × L. The definition of said
complex ft≥kΩ•

MS works in the more general setting where the product
space Σ × L is replaced by the total space E of a geometrically flat fiber
bundle p : E → B with fiber L. See [5, Section 5.4] for the definition of
such bundles.

Definition 2.2 (Fiberwisely cotruncated forms on product spaces). For
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Figure 2.3: Illustration of the conditions on forms ω ∈ ΩI•p̄ (X)

any k ∈ Z the complex of fiberwisely cotruncated forms on the product
Σ× L is definied as

ft≥kΩ•
MS(Σ× L) := ⟨{π∗1η ∧ π∗2γ : η ∈ Ω•(Σ), γ ∈ τ≥kΩ

•(L)}⟩ .

The compact smooth Riemannian manifold L is called fiber in this context.

Note, that ft≥kΩ•
MS(Σ×L) ≤ Ω•(Σ×L) is a subcomplex. To define the

ΩI•p̄ forms on the singular space X with stratification depth one and trivial
link bundle Σ×L for the singular set Σ ⊂ X, recall the following notation.
Let X =M ∪∂M (Σ× cone(L)) and let T = (Σ× cone(L)) denote the tube
of Σ ⊂ X. We denote by t : T \ Σ = Σ× L× (0, 1) ↪→ X \ Σ the smooth
embedding of the tube into the regular part of X and by j : Σ × L ↪→ T

the embedding at 1
2 . Then, for any perversity function p̄, the ΩI•p̄ -complex

is defined as follows.

Definition 2.3 (ΩI•p̄ -forms).

ΩI•p̄ (X) := {ω ∈ Ω•(X \ Σ) : t∗ω = j∗η, η ∈ ft≥kΩ•
MS(Σ× L)} .

The main statement of this note is, that this complex ΩI•p̄ (X) gives a
de Rham model for the (reduced) cohomology of the intersection spaces for
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depth one Thom-Mather stratified pseudomanifolds. It is an isomorphism
in the category of vector spaces and comes from integrating forms over
smooth chains.

Theorem 2.4 (de Rham Theorem for Intersection Space Cohomology).
For a depth one Thom-Mather stratified pseudomanifold X with product
link bundles, integration of differential forms ω ∈ ΩI•p̄ (X) over partially
smooth chains on I p̄X induces isomorphisms of vector spaces

H•(ΩI•p̄ (X)
)

H•
(
I p̄X

)†
.

∼= (2.1)

To prove the theorem, one needs the following tools.

1. A chain complex model for the homology of the intersection space,
which consists of partially smooth chains.

2. Suitable de Rham morphisms, that enable us to use a Five-Lemma
argument to prove our main statement.

3. In particular, the previous point includes a de Rham morphism that
integrates fiberwisely cotruncated multiplicative forms on the prod-
uct Σ × L. Therefore, one needs the Künneth map to integrate
product forms over product chains.

The technical preliminaries are collected in the following sections. The in-
terplay of the Künneth map with smoothing of singular chains is revisited
first. Afterwards, the partially smooth chain model for the intersection
space homology is constructed, generalizing the construction from [5, Sec-
tion 9]. Last, the different de Rham morphisms and their relations with
each other are discussed.

3 Smoothing of chains on product spaces

Differential forms on smooth manifoldsM can be integrated over smooth
singular chains. These chains form a complex S∞

• (M), which is a sub-
complex of the singular chain complex. The subcomplex inclusion ιM :
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S∞
• (M) ↪→ S•(M) induces an isomorphism on cohomology. The inverse

is induced by the smoothing operator sM : S•(M) → S∞
• (M). The con-

struction of this operator can be found in [13, Chapter 16].
On product manifolds Σ × L, product chains also compute the whole

homology by the Künneth Theorem. The Künneth morphism

κ : H•(Σ)⊗H•(L)
∼=−→ H•(Σ× L)

is decomposed as κ = P∗ ◦ µ.

µ : H•(Σ)⊗H•(L)
∼=−→ H• (S•(Σ)⊗ S•(L)) ,

[x]⊗ [y] 7→ [x⊗ y]

denotes the algebraic Künneth morphism and P : S•(Σ)⊗S•(L) → S•(Σ×
L) a natural Eilenberg-Zilber chain transformation, that can be explicitly
defined on simplices by the formula

P (σ ⊗ τ) :=
∑
λ

sgn(λ) ((σ × τ) ◦ λ) .

In this formula, σ : ∆p → Σ is a p-simplex and τ : ∆q → L is a q-
simplex and the sum is taken over all (p, q)-shuffles λ, which naturally
give a triangulation of ∆p × ∆q by (p + q)-simplices. See [15, Chapter
9.7] and [12, Chapter VIII] for more details. The Künneth map can be
defined in the same way on the homologies of the smooth singular chain
complexes,

κ∞ : H∞
• (Σ)⊗H∞

• (L)
∼=−→ H∞

• (Σ× L).

Lemma 3.1 (Smoothing of product chains). Let κ, κ∞ be the Künneth
isomorphisms introduced above and let sΣ and sL be smoothing operators
on Σ and L. Then, there is a special smoothing operator sΣ×L on Σ × L

such that
κ∞ ◦ ((sΣ)∗ ⊗ (sL)∗) = (sΣ×L)∗ ◦ κ.

Proof. The construction of the smoothing operators s− : S•(−) → S∞
• (−)

in [13, Chapter 16] is based on the construction of homotopies between
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simplices and smooth simplices, which interact nicely with face maps, see
[13, Lemma 16.7]. In the product space setting Σ × L, one can take the
following product type homotopies for product simplices (σ×τ)◦λ, where
σ : ∆p → Σ, τ : ∆q → L are simplices and λ := (λ1, λ2) : ∆p+q ↪→ ∆p×∆q

is a (smooth) embedding.

Hσ×τ : ∆p+q × I → Σ× L,

Hσ×τ (x, t) := (Hσ(λ1(x), t), Hτ (λ2(x), t)) .

There, Hσ andHτ are homotopies for σ and τ , which satisfiy the conditions
of [13, Lemma 16.7]. Together with the definition sΣ×L(σ)(x) := Hσ(x, 1)

for the smoothing operator, this construction implies the following prop-
erty for product simplices:

sΣ×L ((σ × τ) ◦ λ) = ((sΣσ)× (sLτ)) ◦ λ

Using this property, one can calculate the following commutativity of the
Eilenberg-Zilber chain transformation P and the smoothing operators.
Again, σ is a simplex on Σ and τ is a simplex on L.

P ◦ (sΣ ⊗ sL)(σ ⊗ τ) =
∑
λ

sgn(λ) ((sΣσ × sLτ) ◦ λ)

=
∑
λ

sgn(λ)sΣ×L ((σ × τ) ◦ λ) = sΣ×LP (σ ⊗ τ).

By definition, the algebraic Künneth maps satisfy

µ∞ ◦ (sΣ ⊗ sL) = ((sΣ)∗ ⊗ (sL)∗) ◦ µ

and thus, the statement of the lemma is justified.

From now on, the short hand notation a × b ∈ S•(Σ × L) is used for
the chains, which are the Eilenberg-Zilber transformation of a product
a⊗b ∈ S•(Σ)⊗S•(L). Precisely, a×b = P (a⊗b). In the proof of the main
statement of this note, one needs to integrate multiplicative differential
forms on Σ × L over (smooth) product chains. An application of the
Integral Theorem of Fubini and Tonelli results in the following formula.
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Lemma 3.2 (Integration of product forms over product chains). Let a ∈
S∞
p (Σ), b ∈ S∞

q (L), η ∈ Ωp(Σ) and γ ∈ Ωq(L). Let further π1 : Σ×L→ Σ,

π2 : Σ × L → L denote the first and second factor projections. Then, the
following formula holds.∫

a×b
π∗1η ∧ π∗2γ =

∫
a
η ·

∫
b
γ.

Proof. Assume without loss of generalization, that a = σ, b = τ are sim-
plices. Note, that the shuffles λ : ∆p+q → ∆p ×∆q, triangulate ∆p ×∆q

and thus ∫
∆p×∆q

. . . =
∑
λ

sgn(λ)
∫
λ
. . .

The dots emphasize that this formula holds for any integrand.
If σ and τ are smooth simplices, then for any shuffle λ the simplex

(σ × τ) ◦ λ is also smooth. Gathering these facts, the formula of the
lemma can be derived as follows. Denote by π̃1 : ∆p × ∆q → ∆p and
π̃2 : ∆p×∆q → ∆q the first and second factor projections on the standard
simplices to avoid confusions with the projections on Σ× L.∫
σ×τ

π∗1η ∧ π∗2γ =
∑
λ

sgn(λ)
∫
(σ×τ)◦λ

π∗1η ∧ π∗2γ

=
∑
λ

sgn(λ)
∫
λ
π̃∗1σ

∗η ∧ π̃∗2τ∗γ =

∫
∆p×∆q

π̃∗1σ
∗η ∧ π̃∗2τ∗γ

=

∫
∆p

σ∗η ·
∫
∆q

τ∗γ =

∫
σ
η ·

∫
τ
γ.

In the last line, the Fubini and Tonelli Integral Theorem was applied to-
gether with the fact that the pullbacks with respect to the first and second
factor projections are constant in the other factor.

4 Partial smooth models for intersection spaces

To establish a de Rham theorem for intersection space homology, one
needs (smooth) singular chains on a smooth manifold, so that differential
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forms can be integrated over those chains. The smooth manifold will be
the compact manifold M . Below, the the partially smooth chain complex
S∝
• (g) is itnroduced. This chain model is a variation of the mapping cone

of the map Σ×L<k →M from Definition 2.1 and computes the homology
of I p̄X. The definition goes back to [5, Section 9.1], where it was introduced
for pseudomanifolds with isolated singularities. In the definition, splittings
Zk = Bk⊕H ′

k of the singular cycles on Σ×L<k are needed to define a map
q : H•(Σ × L<k) → Sk(Σ × L<k), which maps a homology class to some
representative. To be precise, q is defined as the following composition.

Hk(Σ× L<k) =
Zk
Bk

=
Bk ⊕H ′

k

Bk
∼= H ′

k ↪→ Zk ↪→ Sk(Σ× L<k).

Note, that the partially smooth chain complex depends on the choice of
these splittings Zk = Bk ⊕H ′

k.

Definition 4.1 (Partially smooth chain complex).

S∝
k (g) := Hk−1(Σ× L<k)⊕ S∞

k (M),

∂(x, v) := (0, ∂v − sMg∗q(x)) .

The arguments of [5, Section 9.1] extend to the current setting. Thus,
H• (S

∞
• (g)) ∼= H• (cone(g)) . In other words, S∞

• (g) computes the reduced
homology of the intersection space, since that is the topological mapping
cone of g.

5 De Rham maps

This section is built upon standard de Rham maps ΦZ : H•
dR(Z)

∼=−→
H•(Z)

†, for smooth manifolds Z. These are used in the context Z ∈
{X \ Σ,Σ, L,Σ × L}. The de Rham map is defined using the smoothing
operator sZ : S∞

• (Z) → S•(Z) by integrating differential k-forms over
smooth singular simplices. Let ω ∈ Ωk(Z) be a closed k-form and

∑
nσσ ∈

Sk(Z) a singular cycle. Then,

ΦZ ([ω])
(∑

nσσ
)
:=

∑
nσ

∫
∆k

(sZσ)
∗ω. (5.1)
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To get a de Rham map H•(ΩI•p̄ (X)) → H• (S
∝
• (g))

† , it has to be shown
that integrating forms ω ∈ ΩI•p̄ (X) over the second component of partially
smooth chains (x, v) ∈ S∝

• (g) induces a map on (co)homology. In the
definition, the embedding α : M ↪→ X \ Σ of the compact manifold M

with boundary ∂M = Σ×L into the regular part X \Σ of X is used. This
embedding is a homotopy equivalence and M is a deformation retract of
X \ Σ.

Proposition 5.1. For any perversity function p̄, the assignment

Φp̄ [ω] [(x, v)] :=

∫
α∗v

ω

gives a well defined map Φp̄ : H
•(ΩI•p̄ (X)) → H• (S

∝
• (g))

† .

Proof. Left to the reader. Compare to [5, Proposition 9.8] and make use
of the Künneth Theorem to represent homology classes on Σ× L<k.

To prove that Φp̄ is an isomorphism, it will be compared to two other
de Rham maps: The almost standard de Rham map Φreg on X \ Σ and a
product de Rham map Φ<k on Σ × L, which will be expained below. In
the definition of Φreg, the subcomplex Ω•

∂MS(X \Σ) ≤ Ω•(X \Σ) occurs.
It is defined as follows.

Ω•
∂MS(X \ Σ) := {ω ∈ Ω•(X \ Σ) : t∗ω = j∗η, η ∈ Ω•

MS(Σ× L)} .

In this definition, Ω•
MS(Σ × L) := ⟨{π∗1η ∧ π∗2γ : η ∈ Ω•(Σ), γ ∈ Ω•(L)}⟩

is the complex of product forms on Σ × L. The subcomplex inclusion of
Ω•
∂MS(X \Σ) into Ω•(X \Σ) gives rise to an isomorphism on cohomology

by [5, Proposition 6.3].

Definition 5.2 (The almost standard de Rham map onX\Σ). The almost
standard de Rham map Φreg on X \ Σ is defined as the composition

H•(Ω•
∂MS(X \ Σ)) ∼= H•

dR(X \ Σ) H∞
• (X \ Σ)† H∞

• (M)†.
∼=

ΦX\Σ

∼=
α∗†

By construction, Φreg is an isomorphism and it fits into the following
commutative square.
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Lemma 5.3. Let i : ΩI•p̄ (X) ↪→ Ω•
∂MS(X \Σ) and inc : S∞

• (M) ↪→ S∝
• (g)

denote the subcomplex inclusions. Then, the following square commutes.

H• (ΩI•p̄ (X)
)

H•(Ω•
∂MS(X \ Σ))

H• (S
∝
• (g))

† H∞
• (M)†

i∗

Φp̄ Φreg∼=

(inc∗)†

Proof. This is a direct consequence of the definitions of Φp̄ and Φreg.

Before the aforementioned map Φ<k is introduced, its definition shall
be motivated by the role it has to play in the proof of the main theorem.
The center of that proof is a Five-Lemma argument. The partially smooth
chain complex S∝

• (g), which models the homology of the intersection space,
fits into the following short exact sequence

0 → S∞
• (M) → S∝

• (g) → H•−1(Σ× L<k) → 0 (5.2)

The dual space of the homology of the first two complexes in this se-
quence is paired with the cohomologies of the two complexes ΩI•p̄ (X) ↪→
Ω•
∂MS(X\Σ) by Φp̄ and Φreg. To apply a Five-Lemma argument, one needs

to pair the cohomology of the cokernel Ω•
∂MS(X \ Σ)/ΩI•p̄ (X) of this subcom-

plex inclusion with H•−1(Σ×L<k). The following lemma provides a much
nicer description of Ω•

∂MS(X \ Σ)/ΩI•p̄ (X). Using the truncated complex

τ<kΩ
•(L) := . . .→ Ωk−1(L) → im ∂ → 0 → . . . ,

one defines the complex of fiberwisely truncated forms on Σ×L as follows.

ft<kΩ•
MS(Σ× L) := ⟨{π∗1η ∧ π∗2γ : η ∈ Ω•(Σ), γ ∈ τ<kΩ

•(L)}⟩ .

Note, that the complexes of fiberwisely (co)truncated forms are isomor-
phic to tensor products. ft<kΩ•

MS(Σ × L) ∼= Ω•(Σ) ⊗ τ<kΩ
•(L) and

ft≥kΩ•
MS(Σ × L) ∼= Ω•(Σ) ⊗ τ≥kΩ

•(L). Thus, the orthogonal direct sum
decomposition Ω•(L) = τ<kΩ

•(L) ⊕ τ≥kΩ
•(L), which is a consequence of
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the Hodge Decomposition Theorem, introduces the following direct sum
decomposition of Ω•

MS(Σ× L).

Ω•
MS(Σ× L) = ft<kΩ•

MS(Σ× L)⊕ ft≥kΩ•
MS(Σ× L).

This decomposition is used later, in Lemma 5.7.

Lemma 5.4. Let J = t ◦ j : Σ× L ↪→ Xreg = X \ Σ be the embedding of
Σ× L, the total space of the link bundle, into the nonsingular part X \ Σ
of X (at 1/2). Then, pullback under J induces the following isomorphism.

J∗ :
Ω•
∂MS(X \ Σ)
ΩI•p̄ (X)

∼=−→
Ω•
MS(Σ× L)

ft≥kΩ•
MS(Σ× L)

∼= ft<kΩ
•
MS(Σ× L).

Thus, there is a short exact sequence

0 → ΩI•p̄ (X) → Ω•
∂MS(X \ Σ) → ft<kΩ

•
MS(Σ× L) → 0 (5.3)

Proof. The result about J∗ can be found on the pp. 36-37 of [5]. The
existence of the short exact sequence is a direct consequence.

Based on that result, one needs to introduce a de Rham map

Φ<k : H
•(ft<kΩ•

MS(Σ× L)) → H•(Σ× L<k)
†.

To define it, use the de Rham map ΦΣ×L : H•(Σ× L) → H•(Σ× L)† and
the homology truncation map f : L<k → L.

Definition 5.5. The map Φ<k is defined as the following composition.

H•(ft<kΩ•
MS(Σ× L)) H•(Σ× L<k)

†

H•
dR(Σ× L) H•(Σ× L)†

Φ<k

ΦΣ×L

∼=

(id×f)∗†

Compared to the regular de Rham cohomology of Σ× L, the cohomology
of the subcomplex ft<kΩ•

MS(Σ × L) misses the same information in the
fiber direction that is absent in H•(Σ× L<k). This leads to the following
statement.
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Lemma 5.6. The map Φ<k is an isomorphism.

Proof. First, compare the de Rham isomorphism for the product Σ × L

with the tensor product of the de Rham isomorphisms for Σ and L.

H•
dR(Σ× L) H•

dR(Σ)⊗H•
dR(L)

H∞
• (Σ× L)† (H∞

• (Σ)⊗H∞
• (L))†

H•(Σ× L)† (H•(Σ)⊗H•(L))
†

∫∼=

ΦΣ×L

ψ

∼=

∫
⊗

∫∼=

ΦΣ⊗ΦL

(κ∞)†

∼=

(sΣ×L∗)
†∼= (sΣ∗⊗sL∗)

†∼=

κ†

∼=

The horizontal map ψ in the top line is the Künneth isomorphism for de
Rham cohomology, see [8, I §5]. The vertical map starting on the top left
maps [ω] to the functional

∫
− ω. The vertical map on the top right maps

[η] ⊗ [τ ] to the functional, which sends [x] ⊗ [y] ∈ H∞
• (Σ) ⊗ H∞

• (L) to∫
x η ·

∫
y τ. The first square commutes because of Lemma 3.2, the second

square because of Lemma 3.1.
Now, consider the following diagram.

H•(ft<kΩ•
MS(Σ× L))

⊕k−1
ℓ=0 H

n−1−ℓ
dR (Σ)⊗Hℓ

dR(L)

H•
dR(Σ× L) H•

dR(Σ)⊗H•
dR(L)

H•(Σ× L)† (H•(Σ)⊗H•(L))
†

H•(Σ× L<k)
† (H•(Σ)⊗H•(L<k))

†

ψ|

∼=

ΦΣ×L∼=

ψ

∼=

ΦΣ⊗ΦL
∼=

κ†

∼=

(id×f∗)† (id⊗f∗)†

κ†

∼=

The bottom square commutes because of the naturality of the Künneth
isomorphism. Since the homology truncation map f : L<k → L induces
an isomorphism f∗ : Hℓ(L<k) → Hℓ(L) in degrees ℓ < k, while Hℓ(L<k) =

0 for ℓ ≥ k, the composition of the maps in the second column is an
isomorphism. This property transfers to Φ<k, since it is the composition
of the maps in the first column.
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Since smoothing of singular chains can be arranged to be compatible
with pullback under the embeddings j : Σ×L ↪→M , α :M ↪→ X \Σ and
hence also J = α ◦ j : Σ × L ↪→ X \ Σ, the de Rham maps Φreg and Φ<k

are compatible. In other words, the following lemma is true.

Lemma 5.7 (Compatibility of Φreg and Φ<k). The following square com-
mutes.

H• (Ω•
∂MS(X \ Σ)) H• (Ω•

MS(Σ× L)) H• (ft<kΩ•
MS(Σ× L))

H∞
• (M)† H•(M)† H•(Σ× L<k)

†

J∗

Φreg∼=

proj∗

Φ<k∼=
(sM )∗

†

∼=
g∗†

The projection in the upper row comes from the direct sum decomposition
Ω•
MS(Σ× L) = ft<kΩ•

MS(Σ× L)⊕ ft≥kΩ•
MS(Σ× L).

Proof. Note, that for a closed form η ∈ Ω•
MS(Σ × L) and a cycle x ∈

S•(Σ× L<k), it holds that

ΦΣ×L ([η]) ((sΣ×L)∗(id×f)∗[x]) = ΦΣ×L (proj∗[η]) ((sΣ×L)∗(id×f)∗[x]) .

Thus, the following calculation proves the statement. Let ω ∈ Ω•
∂MS(X \

Σ) be a closed form and let x ∈ S•(Σ× L<k) be a cycle. Then,

Φreg ([ω]) ((sM )∗g∗[x]) = Φreg ([ω]) (j∗(sΣ×L)∗(id×f)∗[x])

= ΦΣ×L (J
∗[ω]) ((sΣ×L)∗(id×f)∗[x])

= ΦΣ×L (proj∗J∗[ω]) ((sΣ×L)∗(id×f)∗[x])

= Φ<k (proj∗J∗[ω]) ([x]) .

The compatibility of Φ<k and Φp̄ is covered in the following lemma.

Lemma 5.8 (Compatibility of Φp̄ and Φ<k). Let δ : H• (ft<kΩ•
MS(Σ× L)) →

H•+1
(
ΩI•p̄ (X)

)
be the connecting homomorphism of the cohomology se-

quence associated with the short exact sequence (5.3) and let ξ : S∝
• (g) →
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H•−1(Σ × L<k) denote the projection. These two morphisms fit into the
following commutative square, connecting Φp̄ and Φ<k.

H• (ft<kΩ•
MS(Σ× L)) H•+1

(
ΩI•p̄ (X)

)

H•(Σ× L<k)
† H•+1 (S

∝
• (g))

†

δ

Φ<k∼= Φp̄

ξ∗†

Proof. Let η ∈ ft<kΩ•
MS(Σ × L) be closed. By a standard technique -

namely pulling back to a collar, cutting off and extending by zero - η
is the pullback of a form ω ∈ Ω•

∂MS(X \ Σ), that is J∗ω = η. Then,
dω ∈ ΩI•p̄ (X) and δ[η] = [dω]. Further, let ([x], v) ∈ S∝

• (g) be closed, i.e.
∂v = sM g∗x. There, the cycle x ∈ S•−1(Σ×L<k) is chosen in such a way,
that q ([x]) = x. Then,

Φp̄ (δ[η]) [([x], v)] =

∫
α∗v

dω =

∫
α∗sMg∗x

ω =

∫
sΣ×L(id×f)∗x

J∗ω

=

∫
sΣ×L(id×f)∗x

η = Φ<k[η] ([x]) = Φ<k[η] (ξ∗ [([x], v)]) .
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6 Proof of the main thoerem

The long exact (co)homology sequences associated with the short exact
sequences (5.2) and (5.3) fit into the following diagram.

...
...

H•−1
(
ft<kΩ•

MS(Σ× L)
)

H•−1(Σ× L<k)
†

H•(ΩI•p̄ (X)
)

H• (S
∝
• (g))

†

H• (Ω•
∂MS(X \ Σ)) H∞

• (M)†

H• (ft<kΩ•
MS(Σ× L)) H•(Σ× L<k)

†

...
...

Φ<k

∼=

δ ξ∗†

Φp̄

i∗ (inc∗)†

Φreg
∼=

proj∗J∗ g∗†(sM )∗
†

Φ<k

∼=

This diagram commutes by the results of Section 5 and thus, the Five-
Lemma proves the statement of the main theorem.

The following two questions are not addressed in this note.

Remark 6.1 (Is Φp̄ a ring isomorphism?). By the main theorem, the
de Rham map Φp̄ is an isomorphism of vector spaces. The proof does
not imply, that it is a ring isomorphism. A natural question is: Do the
arguments of [14] for spaces with isolated singularities generalize to the
setting of this paper?

Remark 6.2 (Twisted link bundles). Another question is, whether the
present result generalizes to depth one pseudomanifolds with twisted link
bundles. Intersection spaces have been defined in this context by Banagl
and Chriestenson in [6] if the link bundles have equivariant Moore ap-
proximations. The de Rham model for intersection space cohomology is
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avaidable in the more general context of fiber bundles with locally con-
stant transition functions and structure group the isometries of the fiber
(for some Riemannian metric). Such bundles are called geometrically flat.
Unfortunately, not all geometrically flat fiber bundles admit equivariant
Moore approximations. The author expects that the de Rham Theorem
for intersection spaces can be extended to pseudomanifolds with geomet-
rically flat fiber bundles, which can be endowed with equivariant Moore
approximations. To show that, one needs to relate the cohomology of fiber-
wisely cotruncated forms with the cohomology of the homotopy cofiber of
the equivariant Moore approximation of the fiber bundles, e.g. using local
to global techniques and small singular simplices.

Equivariant Moore approximations for geometrically flat bundles are
obstructed by certain cohomology classes, which were introduced in [6,
Section 6]. These classes are rather subtle, which can be seen in Example
6.13 of [6]. There, the cohomology classes do not vanish for a bundle with
completely trivial differentials in the Serre spectral sequence.

Remark 6.3 (Greater stratification depth). In greater stratification depth,
first examples of intersection spaces, given in [4], were generalized by
Agustín and Bobadilla in [2], e.g. for pseudomanifolds with compatibly
trivializable link bundles, such as projective toric varieties. In ongoing
work, the de Rham model for greater stratification depth, which was in-
troduced by the author in [9], is compared to the cohomology of Agustin
and Bobadilla’s intersection spaces. The results of [1] are important tools
in this setting, especially the uniqueness results when passing to the de-
rived category.
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