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Introduction

The study of bi-Lipschitz equisingularity was started at the end of the
1960s with the works of Zariski [13], Pham [11] and Teissier [10]. At the
end of the 1980s, Mostowski [9] introduced a new technique for the study
of Bi-Lipschitz equisingularity from the existence of Lipschitz vector fields.

In [5] Gaffney defined the concept of the double of an ideal and devel-
oped the infinitesimal Lipschitz conditions for a family of hypersurfaces
using the integral closure of modules, namely, the double of some jacobian
ideals. In [6] Gaffney used the double and the integral closure of modules
to get algebraic conditions for bi-Lipschitz equisingularity of a family of
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irreducible curves. In [1] the authors also used the double and the inte-
gral closure of ideals to get an algebraic condition to get a canonical vec-
tor field defined along an Essentially Isolated Determinantal Singularities
(EIDS) family, which is Lipschitz provided the matrix of deformation of
the 1-unfolding which defines the EIDS is constant. In [2] they used these
techniques to deal with normal forms of square matrices in this landscape.

In [4] it was extended the notion of the double for modules, and we
generalize the infinitesimal theorem of [5]. In [3] we prove that the in-
finitesimal condition is necessary for the strongly bi-Lipschitz triviality, as
developed by Fernandes and Ruas in [7].

In this work, our main goal is to look at the categorical properties of
the double.

In the first section, we define the double morphism and we rephrase
several results from Commutative Algebra that relate the standard prop-
erties of a morphism and its double.

In the second section we apply the double morphism to get an equiv-
alence between the second and third Lipschitz saturation of modules, de-
fined in [4], for a special class of modules.

In the third section, we develop some relations between the homological
behavior of chain complexes and their doubles.

Finally, in the fourth section, we extend the notion of a double mor-
phism between two submodules embedded on finite powers of local rings of
possibly different analytic varieties which are linked by an analytic map-
germ between them.

1 Background for the double morphism

Let X ⊆ Cn be an analytic space and let OX be the analytic sheaf of
local rings over X, and let x ∈ X. It is defined in [4] the concept of a
double of a OX,x-submodule M of Op

X,x. We recall the definition now.

Consider the projection maps π1, π2 : X ×X → X.
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Definition 1.1. 1. Let h ∈ Op
X,x. The double of h is defined as

hD := (h ◦ π1, h ◦ π2) ∈ O2p
X×X,(x,x).

2. The double ofM is denoted byMD and is defined as the OX×X,(x,x)-
submodule of O2p

X×X,(x,x) generated by {hD | h ∈M}.

It is well known we have the analytic tensor product in the analytic
category in a way that OX×X,(x,x) can be viewed as OX,x⊗̂

C
OX,x. Once

Gaffney’s double structure was conceived to deal with bi-Lipschitz equi-
singularity, it is convenient to work on OX×X,(x,x) instead of OX,x⊗̂

C
OX,x.

Because of it, in this section, we rephrase some classical results from Com-
mutative Algebra from this point of view.

The first result is a quite useful tool many times when we work with
the double.

Proposition 1.2. Let M,N ⊆ Op
X,x submodules and h, g ∈ Op

X,x. Then:

a) h=g if, and only if, hD = gD;

b) h ∈M if, and only if, hD ∈MD;

c) M ⊆ N if, and only if, MD ⊆ ND;

d) M = N if, and only if, MD = ND.

Corollary 1.3. For each OX,x-submodule M of Op
X,x, the natural map

DM : M −→ MD

h 7−→ hD

is an injective group morphism. In particular, we can see M as an additive
subgroup of MD.

Our main goal is to give a categorical sense of the double structure.
The next theorem is the key to it.
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Theorem 1.4. Let M ⊆ Op
X,x and N ⊆ Oq

X,x be OX,x-submodules. If
ϕ : M → N is an OX,x-module morphism then there exists a unique
OX×X,(x,x)-module morphism ϕD :MD → ND such that

ϕD(hD) = (ϕ(h))D,∀h ∈M,

i.e, the following diagram commutes:

M N

MD ND

ϕ

DM DN

ϕD

The map ϕD is called the double of ϕ.

From now on, all the modules are objects in T (OX,x) and their doubles
are objects in T (OX×X,(x,x)).

Notice that if idM : M → M and idMD
: MD → MD are the identity

morphisms of M and MD, then

(idM )D = idMD
.

The next proposition gives us a relation between images and kernels of
a module morphism.

Proposition 1.5. Let ϕ :M → N be an OX,x-module morphism and
ϕD :MD → ND its double. Then:

a) Im(ϕD) = (Im(ϕ))D;

b) (ker(ϕ))D ⊆ ker(ϕD).

The next proposition shows that double morphism has good behavior
concerning sum and composition.

Proposition 1.6. Let ϕ, ϕ′ : M → N and γ : N → P be OX,x-module
morphisms.

a) ϕ = ϕ′ ⇐⇒ ϕD = ϕ′D;
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b) (γ ◦ ϕ)D = γD ◦ ϕD;

c) (ϕ+ ϕ′)D = ϕD + ϕ′D.

Corollary 1.7. Let ϕ :M → N be an OX,x-module morphism. Then:

a) ϕ : M → N is surjective if, and only if, ϕD : MD → ND is a
surjective;

b) If ϕD :MD → ND is injective then ϕ :M → N is injective;

c) ϕ :M → N is an OX,x-isomorphism if, and only if, ϕD :MD → ND

is an OX×X,(x,x)-isomorphism;

d) ϕ : M → N is the zero morphism if, and only if, ϕD : MD → ND is
the zero morphism.

As an application of the double morphism, we prove in the next theo-
rem that the double structure is compatible with the finite direct sum of
modules.

Theorem 1.8. Let M ⊆ Op
X,x and N ⊆ Oq

X,x be OX,x-submodules. Then

(M ⊕N)D ∼=MD ⊕ND

as OX×X,(x,x)-submodules of O2(p+q)
X×X,(x,x).

Furthermore, there exists an isomorphism

η : (M ⊕N)D −→MD ⊕ND

such that η((h, g)D) = (hD, gD), for all h ∈M and g ∈ N .

Corollary 1.9. Let Mi ⊆ Opi
X,x be OX,x-submodules, for each i ∈ {1, ..., r}.

Then
(M1 ⊕ ...⊕Mr)D ∼= (M1)D ⊕ ...⊕ (Mr)D

as OX×X,(x,x)-submodules of O2(p1+...+pr)
X×X,(x,x) through an isomorphism such

that
(h1, ..., hr)D 7−→ ((h1)D, ..., (hr)D)

for all hi ∈Mi.
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Proposition 1.10. Let M ⊆ N be OX,x-submodules of Op
X,x.

a) If MD has finite length then M has finite length and ℓ(M) ≤ ℓ(MD);

b) If MD has finite colength in ND then M has finite colength in N .

2 Applications on the equivalence of the Lipschitz
saturation of modules

In this section, we want to apply the double morphism to compare
two different types of Lipschitz saturation (which were defined in [4]) for
a special class of modules. However, we need some tools first.

Definition 2.1. We say that an OX,x-morphism ϕ : M ⊆ Op
X,x → N ⊆

Oq
X,x is induced by a q × p matrix if there exists A ∈ Matq×p(OX,x) such

that ϕ(h) = A · h, ∀h ∈M .

Lemma 2.2. An OX,x-morphism ϕ : M ⊆ Op
X,x → N ⊆ Oq

X,x is induced
by a q×p matrix if, and only if, there exists an OX,x-morphism ϕ̃ : Op

X,x →
Oq

X,x such that ϕ̃(M) ⊆ N and ϕ̃ |M= ϕ.

Proof. (=⇒) By hypothesis there exists a q × p matrix A with entries in
OX,x such that ϕ(h) = A · h, ∀h ∈M . From this matrix A, we can define
ϕ̃ : Op

X,x → Oq
X,x given by ϕ̃(g) := A · g, which is an OX,x-morphism.

Clearly, ϕ̃ |M= ϕ, and for all h ∈ M we have ϕ̃(h) = ϕ(h) ∈ N , so
ϕ̃(M) ⊆ N .

(⇐=) Let e1, ..., ep be the canonical elements in Op
X,x. Let A be the q×p

matrix whose columns are ϕ(e1), ..., ϕ(ep). Then ϕ̃(g) = A · g,∀g ∈ Op
X,x.

Since ϕ̃ |M= ϕ then ϕ(h) = ϕ̃(h) = A · h,∀h ∈M . Therefore, ϕ is induced
by a q × p matrix.

In the next proposition, we prove the double morphism inherits to be
induced by a matrix from the original one.
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Proposition 2.3. If ϕ : M ⊆ Op
X,x → N ⊆ Oq

X,x is an OX,x-morphism
induced by a q × p matrix then

ϕD :MD ⊆ O2p
X×X,(x,x) → ND ⊆ O2q

X×X,(x,x)

is an OX×X,(x,x)-morphism induced by a 2q × 2p matrix.

Proof. By hypothesis there exists a q × p matrix A with entries in OX,x

such that ϕ(h) = A · h, ∀h ∈M . Then, for all h ∈M we have

ϕD(hD) =

[
ϕ(h) ◦ π1
ϕ(h) ◦ π2

]
=

[
(A · h) ◦ π1
(A · h) ◦ π2

]
=

[
(A ◦ π1) · (h ◦ π1)
(A ◦ π2) · (h ◦ π2)

]
.

So, taking the 2q × 2p matrix

B :=

[
A ◦ π1 0q×p

0q×p A ◦ π2

]

we conclude that ϕD(hD) = B · hD, and the proposition is proved, once
MD is generated by hD, h ∈M .

The next proposition gives the persistence of the integral closure of
modules.

Proposition 2.4. Let φ : M ⊆ Op
X,x → N ⊆ Oq

X,x be a morphism of
OX,x-modules which can be extended to a morphism φ̃ : Op

X,x → Oq
X,x,

given by φ̃(h) = A · h, where A is a q× p matrix with entries in OX,x. Let
h ∈ Op

X,x.

a) If h ∈M then φ̃(h) ∈ φ(M);

b) Suppose q = p. If A is an invertible matrix and φ is an isomorphism
of OX,x-modules then:

h ∈M if and only if φ̃(h) ∈ φ(M);

c) Suppose q = p and φ is injective. If φ̃(h) ∈ φ(M) then h ∈M .
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Proof. (a) Let ϕ : (C, 0) → (X,x) be an arbitrary analytic curve. By
hypothesis ϕ∗(h) ∈ ϕ∗(M) and we can write ϕ∗(h) =

∑
αiϕ

∗(gi), for some
gi ∈ M and αi ∈ OC,0. Thus: φ̃(h) ◦ ϕ = (A · h) ◦ ϕ = [A ◦ ϕ] · [h ◦ ϕ] =
[A ◦ ϕ] ·

∑
αiϕ

∗(gi) =
∑
αi([A · gi] ◦ ϕ) ∈ ϕ∗(φ(M)).

Hence, φ̃(h) ∈ φ(M).
(b) It suffices apply (a) in φ̃−1.
(c) It suffices consider the isomorphism φ̂ : M → φ(M) given by

φ̂(h) = φ(h) and apply the item (b).

Following the notation in [4], let us recall the definitions of the second
and third Lipschitz saturations of modules.

Definition 2.5. The 2-Lipschitz saturation of the submodule M ⊆
Op

X,x is denoted by MS2 , and is defined by

MS2 := {h ∈ Op
X,x | hD ∈MD at (x, x)}.

Before defining the third Lipschitz saturation, let us fix some notations.
For each ψ : X → Hom(Cp,C) analytic map, ψ = (ψ1, ..., ψp) and h =

(h1, ..., hp) ∈ Op
X , we define ψ ·h ∈ OX given by (ψ ·h)(z) :=

p∑
i=1

ψi(z)hi(z).

We define ψ ·M as the ideal of OX generated {ψ · h | h ∈M}.

Definition 2.6. The 3-Lipschitz saturation of the submodule M ⊆
Op

X,x is denoted by MS3 , and is defined by

MS3 := {h ∈ Op
X,x | (ψ·h)D ∈ (ψ ·M)D, ∀ψ : X → Hom(Cp,C) analytic map}.

By Proposition 3.1.22 of [4], we already know that MS2 ⊆ MS3 . We
want to use double morphism to get an equivalence between the second
and third Lipschitz saturations.

For each i ∈ {1, ..., p} consider the i-th canonical global section of the
vector bundle Hom(Cp,C),

ξi : X → Hom(Cp,C)



Categorical aspects of Gaffney’s double structure of a module 221

given by ξi(x) = (0, .., 1, ...0), where 1 is on the i-th place. Let us denote

M̂ := ξ1 ·M ⊕ ...⊕ ξp ·M.

Notice that if M is an OX,x-submodule of Op
X,x then M ⊆ M̂ and it is

easy to see that ˆ̂
M = M̂ .

Now we are ready for the main theorem.

Theorem 2.7. Let M ⊆ Op
X,x be a submodule. Suppose that MD is a

reduction of M̂D. Then, MS2 =MS3.

Proof. Consider the inclusion i :M ↪→ ξ1 ·M ⊕ ...⊕ ξp ·M . Then we can
consider the inclusion iD :MD → (ξ1 ·M ⊕ ...⊕ ξp ·M)D which is induced
by an invertible 2p× 2p matrix. By Corollary 1.9 there is an isomorphism

γ : (ξ1 ·M ⊕ ...⊕ ξp ·M)D → (ξ1 ·M)D ⊕ ...⊕ (ξp ·M)D

and by the proof of this corollary, this isomorphism is induced by an in-
vertible 2p × 2p matrix. Taking the composition of iD with γ, we get an
injective morphism

η :MD → (ξ1 ·M)D ⊕ ...⊕ (ξp ·M)D

induced by an invertible 2p × 2p matrix B which extends to the isomor-
phism

η̃ : O2p
X×X,(x,x) → O2p

X×X,(x,x)

given by the multiplication by B, which satisfies the property

(g1, ..., gp)D 7→ ((g1)D, ..., (gp)D).

We already have the inclusion MS2 ⊆ MS3 . So, it suffices to check
another inclusion.

Let h ∈ MS3 . In particular, (ξi · h)D ∈ (ξi ·M)D, ∀i ∈ {1, ..., p}.
Let ϕ : (C, 0) → (X × X, (x, x)) be an arbitrary analytic curve. Then
ϕ∗((ξi · h)D) ∈ ϕ∗((ξi ·M)D), ∀i ∈ {1, ..., p} and

ϕ∗(η̃(hD)) = ϕ∗((ξ1 · h)D, ..., (ξp · h)D) = (ϕ∗((ξ1 · h)D), ..., ϕ∗((ξp · h)D))
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which belongs to ϕ∗((ξ1 ·M)D ⊕ ...⊕ (ξp ·M)D). Hence,

η̃(hD) ∈ (ξ1 ·M)D ⊕ ...⊕ (ξp ·M)D.

Since MD is a reduction of (ξ1 ·M ⊕ ...⊕ ξp ·M)D then by the previous
proposition we have that η(MD) is a reduction of (ξ1 ·M)D⊕...⊕(ξp ·M)D.
Thus, η̃(hD) ∈ η(MD), and by the previous proposition we conclude that
hD ∈MD, therefore h ∈MS2 .

Corollary 2.8. If M is an OX,x-submodule of Op
X,x and M̂ = M then

MS2 =MS3.

Corollary 2.9. If M is an OX,x-submodule of Op
X,x then M̂S2 = M̂S3 .

Example 2.10. Take f, g ∈ OX,x and let M be the OX,x-submodule of
O2

X,x generated by {(f, 0), (0, g)}. So, ξ1 ·M and ξ2 ·M are the principal
ideals of OX,x generated by f and g, respectively. Thus, if ϕ ∈ ξ1·M⊕ξ2·M ,
we can write ϕ = (β1f, β2g), for some β1, β2 ∈ OX,x. Then,

ϕ = β1(f, 0) + β2(0, g) ∈M.

This proves that M = ξ1 ·M ⊕ ξ2 ·M = M̂ hence, MS2 =MS3 .

3 Homological aspects of the double structure

In this section, we explore the double morphism to deal with homolog-
ical features in this context.

Proposition 3.1. Let

M N P
ϕ γ

be a sequence of OX,x-module morphism and consider the double sequence

MD ND PD
ϕD γD

If Im(ϕ) ⊆ ker(γ) then Im(ϕD) ⊆ ker(γD).
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Proof. Since Im(ϕ) ⊆ ker(γ) then (Im(ϕ))D ⊆ (ker(γ))D. Hence, Im(ϕD) =

(Im(ϕ))D ⊆ (ker(γ))D ⊆ ker(γD).

We will see that double morphism gives a natural way to study the
homology of the double structure.

Definition 3.2 (The double chain complex). Let C = (M•, ϕ•) be a chain
complex in T (OX,x). We define

CD := ((M•)D, (ϕ•)D)

and by Proposition 3.1 we have that CD is a chain complex in T (OX×X,(x,x)).
The chain complex CD is called the double of C.

Proposition 3.3. Let C = (M•, ϕ•) be a chain complex. If CD is an
exact sequence then C is an exact sequence. In other words, if CD has
trivial homology then C has trivial homology.

Proof. Let i ∈ Z be arbitrary. We have the sequences

Mi+1 Mi Mi−1 (Mi+1)D (Mi)D (Mi−1)D
ϕi+1 ϕi (ϕi+1)D (ϕi)D

We already know that Im(ϕi+1) ⊆ ker(ϕi). Since CD is an exact
sequence then Im((ϕi+1)D) = ker((ϕi)D). By Proposition 1.5 we have
(ker(ϕi))D ⊆ ker((ϕi)D) = Im((ϕi+1)D) = (Im(ϕi+1))D. By Proposition
1.2 (c), we conclude that ker(ϕi) ⊆ Im(ϕi+1). Therefore, Im(ϕi+1) =

ker(ϕi).

Proposition 3.4. Let C = (M•, ϕ•) and C′ = (M ′
•, ϕ

′
•) be chain complexes.

If α : C −→ C′ is a chain complex morphism then αD : CD −→ C′
D given

by
{(αi)D : (Mi)D → (M ′

i)D | i ∈ Z}

is a chain complex morphism, called the the double morphism of α.
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Proof. Let i ∈ Z. So we have the diagram

Mi Mi−1

M ′
i M ′

i−1

ϕi

αi αi−1

ϕ′
i

is commutative. By Proposition 1.6 (b) follows that (ϕ′i)D ◦ (αi)D = (ϕ′i ◦
αi)D = (αi−1 ◦ ϕi)D = (αi−1)D ◦ (ϕi)D, and the following diagram is also
commutative:

(Mi)D (Mi−1)D

(M ′
i)D (M ′

i−1)D

(ϕi)D

(αi)D (αi−1)D

(ϕ′
i)D

Corollary 3.5. If α : C −→ C′ and β : C′ −→ C′′ are chain morphisms
then

(β ◦ α)D = βD ◦ αD.

Proof. It is a straightforward consequence of the Proposition 1.6 (b).

Now, we will get some results related to chain homotopy.
Let C = (M•, ϕ•) and C′ = (M ′

•, ϕ
′
•) be chain complexes. Let µ :

C → C′ be a morphism of degree 1, i.e, µ is a collection of OX,x-module
morphisms {µi : Mi → M ′

i+1 | i ∈ Z}. We know this morphism induces
a chain morphism µ̃ : C → C′ given by {µ̃i : Mi → M ′

i | i ∈ Z}, where
µ̃i := ϕ′i+1 ◦ µi + µi−1 ◦ ϕi, ∀i ∈ Z.

If α, β : C → C′ are chain morphisms, remember that µ : C → C′ is
defined as a homotopy between α and β when µ̃ = α − β, and we
denote α ≃ β by µ.

Lemma 3.6. Consider µD : CD → C′
D the morphism of degree 1 given by

the double morphisms of µ : C → C′. Then µ̃D = (µ̃)D.
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Proof. For all i ∈ Z we have (µ̃D)i = (ϕ′i+1)D ◦ (µi)D + (µi−1)D ◦ (ϕi)D
= (ϕ′i+1 ◦ µi + µi−1 ◦ ϕi)D = (µ̃i)D, and the lemma is proved.

Proposition 3.7. Let α, β : C → C′ be chain morphisms and µ : C → C′

a morphism of degree 1. Then: µ is a homotopy between α and β if, and
only if, µD is a homotopy between αD and βD.

Proof. We have that µ is a homotopy between α and β ⇐⇒ µ̃ = α− β.
By Proposition 1.6 (a) and (c) and the previous lemma we have: µ̃ =

α − β ⇐⇒ (µ̃)D = (α − β)D ⇐⇒ µ̃D = αD − βD ⇐⇒ µD is a
homotopy between αD and βD.

Corollary 3.8. If α : C → C′ is a chain homotopy equivalence then αD :

CD → C′
D is a chain homotopy equivalence.

Proof. By hypothesis there exists a chain morphism β : C′ → C such
that β ◦ α ≃ idC and α ◦ β ≃ idC′ . By the previous proposition, we have
(β◦α)D ≃ (idC)D and (α◦β)D ≃ (idC′)D, and therefore (β)D◦(α)D ≃ idCD
and αD ◦ βD ≃ idC′

D
.

Corollary 3.9. If C is a contractible chain complex then CD is also con-
tractible.

Proof. Since C is contractible then idC ≃ 0C , and by Proposition 3.7 follows
that (idC)D ≃ (0C)D, thus idCD ≃ 0CD . Hence, CD is contractible.

Notice the nice relation between the Proposition 3.3 and Corollary 3.9.
We already know every contractible chain complex is an exact sequence.
The Proposition 3.3 says that the exactness on the double level implies the
exactness on the single level. The Corollary 3.9, which treats contractible
(stronger than exactness), says the opposite.

All the results obtained in this section can be naturally translated into
the cohomology language.
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4 The double morphism relative to an analytic
map germ

Let (Y, y) and (X,x) be germs of analytic spaces, and let φ : (Y, y) →
(X,x) be an analytic map germ. So, the pullback map φ∗ : OX,x → OY,y is
a ring morphism, which induces an OX,x-algebra structure in OY,y. Thus,
every OY,y-module is also an OX,x-module through this ring morphism.

We will see that there is a natural OX×X,(x,x)-algebra structure in
OY×Y,(y,y) induced by the pullback of φ. In fact, let

µX,x : OX,x⊗̂
C
OX,x −→ OX×X,(x,x)

be the C-algebra morphism such that µX,x(f⊗̂
C
g) is the germ of the map

U × U → C
(u, v) 7→ f(u).g(v)

and let

µY,y : OY,y⊗̂
C
OY,y −→ OY×Y,(y,y)

the same for (Y, y).
Since φ∗ : OX,x → OY,y is a ring morphism then we have a natural

C-algebra morphism

φ⊗̂ : OX,x⊗̂
C
OX,x −→ OY,y⊗̂

C
OY,y

such that φ⊗̂(f⊗̂
C
g) = (φ∗(f))⊗̂

C
(φ∗(g)), ∀f, g ∈ OX,x. Indeed, the map

OX,x ×OX,x −→ OY,y⊗̂
C
OY,y

(f, g) 7−→ (φ∗(f))⊗̂
C
(φ∗(g))

is C-bilinear. So, the existence and uniqueness of φ⊗̂ are provided by the
universal property of the tensor product. It is known that µX,x and µY,y are
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C-algebra isomorphisms, so we can consider the C-algebra morphism ϵφ :

OX×X,(x,x) → OY×Y,(y,y) such that the following diagram is commutative:

OX,x⊗̂
C
OX,x OX×X,(x,x)

OY,y⊗̂
C
OY,y OY×Y,(y,y)

µX,x

φ⊗̂ ϵφ

µY,y

Since µX,x and µY,y are C-algebra isomorphisms then we can identify
ϵφ ∼= φ⊗̂, and φ⊗̂ : OX×X,(x,x) → OY×Y,(y,y) induces in OY×Y,(y,y) an
OX×X,(x,x)-algebra structure.

Lemma 4.1. Let α ∈ OX×X,(x,x). Suppose that U is an open subset of X
containing x where a representative of α is defined on U × U . For each
w ∈ U let αw ∈ OX,x be the germ of the map

αw : U → C
z 7→ α(z, w)

For each y2 ∈ φ−1(U) let (φ⊗̂(α))y2 ∈ OY,y be the germ of the map

(φ⊗̂(α))y2 : φ−1(U) → C
y1 7→ (φ⊗̂(α))(y1, y2)

Then

φ∗(αφ(y2)) = (φ⊗̂(α))y2 ,∀y2 ∈ φ−1(U).

Proof. We can write α =
∑

(fi⊗̂
C
gi), with fi, gi ∈ OX,x. For all y1 ∈

φ−1(U) we have:
φ∗(αφ(y2))(y1) = αφ(y2)(φ(y1)) = α(φ(y1), φ(y2)) =

∑
(fi(φ(y1))⊗̂

C
gi(φ(y2))) =(∑

(φ∗(fi))⊗̂
C
(φ∗(gi))

)
(y1, y2) = (φ⊗̂(α))(y1, y2) = (φ⊗̂(α))y2(y1), and

the lemma is proved.
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We get the analogous result if we fix the first coordinate instead the
second one.

Consider the projections πX1 , πX2 : X ×X → X and πY1 , πY2 : Y × Y →
Y .

Theorem 4.2. Let M ⊆ Op
X,x and N ⊆ Oq

Y,y be submodules. If ϕ : M →
N is an OX,x-module morphism then there exists a unique OX×X,(x,x)-
module morphism ϕD,φ = ϕD :MD → ND such that

ϕD(hD) = (ϕ(h))D,∀h ∈M.

The map ϕD,φ = ϕD is called the double of ϕ relative to φ : (Y, y) → (X,x).

Proof. Since MD is generated by {hD | h ∈ M} then we can define ϕD :

MD → ND in a natural way: for each u =
∑
i
αi(hi)D with αi ∈ OX×X,(x,x)

and hi ∈M we define

ϕD(u) :=
∑
i

αi(ϕ(hi))D =
∑
i

φ⊗̂(αi)(ϕ(hi))D

which belongs to ND.
Claim: ϕD is well defined. In fact, suppose that

∑
i
αi(hi)D =∑

j
βj(gj)D, with αi, βj ∈ OX×X,(x,x) and hi, gj ∈ M . So, we get two

equations:

∑
i

αi(hi ◦ πX1 ) =
∑
j

βj(gj ◦ πX1 ) (1)

∑
i

αi(hi ◦ πX2 ) =
∑
j

βj(gj ◦ πX2 ). (2)

Take U an open neighborhood of x in X where αi, βj are defined on
U ×U , and hi, gj are defined on U . For each w ∈ U define αw

i , β
w
j ∈ OX,x

given by the germs of the maps

αw
i : U −→ C βwj : U −→ C

z 7−→ αi(z, w) z −→ βj(z, w)
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The equation (1) implies that
∑
i
αw
i hi =

∑
j
βwj gj , ∀w ∈ U . Applying

ϕ (which is a OX,x-morphism) in both sides of the last equation we get∑
i

αw
i ϕ(hi) =

∑
j

βwj ϕ(gj), ∀w ∈ U.

By the OX,x-module structure on N induced by φ∗, the last equation
boils down to ∑

i

φ∗(αw
i )ϕ(hi) =

∑
j

φ∗(βwj )ϕ(gj),∀w ∈ U.

By Lemma 4.1 we conclude that∑
i

(φ⊗̂(αi))
y2ϕ(hi) =

∑
j

(φ⊗̂(βj))
y2ϕ(gj),∀y2 ∈ φ−1(U).

Hence, ∑
i

φ⊗̂(αi)(ϕ(hi) ◦ πY1 ) =
∑
j

φ⊗̂(βj)(ϕ(gj) ◦ πY1 ).

Working with the analogous result of the Lemma 4.1, the equation (2)
implies that

∑
i

φ⊗̂(αi)(ϕ(hi) ◦ πY2 ) =
∑
j

φ⊗̂(βj)(ϕ(gj) ◦ πY2 ).

Therefore, ∑
i

φ⊗̂(αi)(ϕ(hi))D =
∑
j

φ⊗̂(βj)(ϕ(gj))D

and ϕD is well-defined.
Now, by the definition of ϕD, it is clear that ϕD is an OX×X,(x,x)-

module morphism and is the unique satisfying the property ϕD(hD) =

(ϕ(h))D, ∀h ∈M , i.e,

ϕD(h ◦ πX1 , h ◦ πX2 ) = (ϕ(h) ◦ πY1 , ϕ(h) ◦ πY2 ).
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Notice that this approach generalizes what we have defined in Section
1, taking φ : (X,x) → (X,x) as the identity map. The main motivation
of this approach is the fact that when we work with integral closure of
modules, the analytic curves φ : (C, 0) → (X,x) have a key role.

The Propositions 1.5, 1.6 (a,c), and the Corollary 1.7 (a,b,d) still hold
for the double morphism relative to an analytic map.

We can write the Proposition 1.6 (b) on this new language as follows:

Proposition 4.3. Let φ : (Y, y) → (X,x) and φ′ : (Z, z) → (Y, y) be
analytic map germs, M ⊆ Op

X,x, N ⊆ Oq
Y,y and P ⊆ Or

Z,z submodules. Let
ϕ : M → N be an OX,x-module morphism and ϕ′ : N → P be an OY,y-
module morphism. Then, ϕ′ ◦ ϕ : M → P is an OX,x-module morphism,
considering P with the OX,x-module structure induced by the pullback of
φ ◦ φ′ : (Z, z) → (X,x). Furthermore,

(ϕ′ ◦ ϕ)D,φ◦φ′ = ϕ′D,φ′ ◦ ϕD,φ.

Proof. For all α ∈ OX,x and h ∈ M , working with the module structures
induced by the pullbacks of the analytic map germs, we have:

ϕ′◦ϕ(αh) = ϕ′(αϕ(h)) = ϕ′(φ∗(α)ϕ(h)) = φ∗(α)ϕ′(ϕ(h)) = φ′∗(φ∗(α))(ϕ′◦
ϕ(h)) = (φ ◦ φ′)∗(α)(ϕ′ ◦ ϕ(h)) = α(ϕ′ ◦ ϕ(h)). So ϕ′ ◦ ϕ : M → P is an
OX,x-module morphism and (ϕ′ ◦ ϕ)D,φ◦φ′ is well defined and clearly is
equal to ϕ′D,φ′ ◦ ϕD,φ.
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