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1 Introduction

An analytic germ of a hypersurface (X,0) c (C"*1,0) is a quasi-
ordinary hypersurface if there exists a finite morphism o : (X,0) — (C",0)
such that its discriminant locus is contained in a normal crossing divi-
sor. If (X,0) is irreducible, then there exist suitable coordinates (depend-

ing on p) such that the hypersurface is defined by an equation f = 0
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with f € C{X}[X;+1] := C{Xy,..., X, }[X;41] an irreducible Weierstrass
o () = Xou(X) = X X u(X)
where u(X) € C{X}, u(0) # 0 and 6 = (61,...,d,) € N” where N := Z>.

In this case, we say that f is an irreducible q.o0. Weierstrass polynomial.

polynomial with discriminant A x

In [13], Zariski presents an alternative method of resolution of surfaces
singularities using quasi-ordinary surfaces and, in the Jung method (see
[9]) of analysing a germ of surface singularity by embedded resolution of
the discriminant of a finite morphism from the germ to a smooth surface,
the quasi-ordinary hypersurface singularities arise naturally.

The only quasi-ordinary hypersurface isolated singularities are plane
curves and normal surfaces in C3. Lipman (see [10], Remark 7.3.2) showed
that a quasi-ordinary hypersurface (X,0) C (C"*1, 0) is normal if and only
if it is analytically equivalent to a germ given by X', —TI5;_; Xi = 0 where
e < r is the equisingular dimension of (X,0), i.e., the finite morphism
0: (X,0) = (C",0) is an equisingular deformation of an e-dimensional
quasi-ordinary hypersurface, but not of a smaller-dimensional germ. If
e = r, than we say that (X,0) has maximal equisingular dimension.

Given a hypersurface (X,0) C (C"*1,0) it is a non trivial task to verify
if (X, 0) is a quasi-ordinary hypersurface because we must to guarantee the
existence of a finite morphism g : (X,0) — (C",0) such that its discrimi-
nant locus is contained in a normal crossing divisor.

In this work! we will consider irreducible quasi-ordinary hypersurface
with maximal equisingular dimension (shortly, q.0.h.). We present a par-
ticular way to obtain a q.o.h. in (C"*1,0) by a q.o.h. in (C**1,0) with
r > s by avoiding the presentation of the finite morphism whose dis-
criminant locus is contained in a normal crossing divisor. We explore the
relation between numerical data of (C"™™1 0) and (C**1,0), as the general-
ized characteristic exponents and the set of dominant exponent of Kéahler
forms (see Section 3). In addition, we analyze the behavior of their pa-

rameterizations under changes of coordinates (see Section 4).

!This work is based on part of the Ph.D. thesis of the first author under supervision

of the second one (see [3]).
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2 Notation and preliminaries

In what follows we consider an irreducible quasi-ordinary hypersurface
(X,0) C (C™*1,0) given by the germ of the set {P € C"™!; f(P) =0}
where f € C{X}[X,41] is an irreducible q.o. Weierstrass polynomlal of
degree n > 1.

By the Abhyankar-Jung theorem (see [9] and [1]), we can assume
that any root ¢ of f (a quasi-ordinary branch) belongs to C{K%} =

1 1
C {X1" g, X } Consequently,

Axo s (F) = (=15 [ (@i — q7) = X° - u(X) € C{X}

i#]
where u(X) € C{X} a unit and gx, k¥ = 1,...,n are roots of f. In
A1(8,9) Ao (4,4) )\r('l]) 1
particular, ¢;—¢; = X; * Xy " .. X, " uu(&) € C{Xﬁ} with

ui;(X) a unit and N(¢,j) e Nfor [ =1,...,r

Let A1,..., Ay be the distinct r-tuples (¢, j). Considering < the par-
tial order in N” given by the usual order? < coordinate wise, we can reindex
the elements in {A1,..., Ay} in such a way that Ay < ... < A\, (Lemma 5.6
of [10]).

The r-tuples A1, ..., Ag are called (generalized) characteristic exponents
of f (or q).

The following result characterizes elements in C {X %} that are quasi-

ordinary branches.

Lemma 2.1. A non unit ¢ = ) s X0 € (C{X%} s a quasi-ordinary
branch if and only if there are {\1,..., g} C N, such that:

1. A1<>\2<"'<Ag withcﬁ;é().
2. If cs # 0 then nd € nZ" + 3\ 25 ZAi-

3.\ & Qj_l =nZ" + Z)\i<>\j ZN;.

2As usual, < means < and #.
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Proof. See Proposition 1.3 in [6]. O

To illustrate the above concepts and to motivate the next definition we

present the following example.

Example 2.2. Let us consider the irreducible Weierstrass polynomial
h(X,Y,Z) = Z? — X(Y — X)? € C{X,Y}[Z]. Notice that Az(h) =
4X(Y — X)?, so h is not a q.0. Weierstrass polynomial. Considering the
linear change of coordinates L(X,Y,Z) = (X, X+Y,Z) we get g = hoL =
Z%2—XY? with Az(g) = 4XY?, that is, g defines a q.0. hypersurface, X3y
is a root of g and (1,2) is the unique generalized characteristic exponent
of g.

In addition, taking the linear change of coordinates T'(X,Y,Z) =
(Y,X,Z) we have that f = goT = Z%2 — YX? is an irreducible q.o.
Weierstrass polynomial adminting root X Y2 and generalized characteris-

tic exponent (2,1).

The previous example shows that q.o. Weierstrass polynomials and
generalized characteristic exponents are sensitive by change of coordinates.
However, we can always to elect coordinates that keep a quasi-ordinary

branch in a special form:

Definition 2.3. A quasi-ordinary branch ¢ = Eq;&é e C {X%} with

generalized characteristic exponents Ay < ... < Ay is normalized if:
A
1. If ¢5 # 0 then nd = Ay, that is, ¢ = ¢, X 7 - u(X) with u(0) = 1.

2. The i-th coordinates A" of Ay, ..., Ay satisfy A" := (A1s, ..., Agi) >lex
N o= (Aqj,..Agg) for 1 <i<j<r.

3. If \ = ()\11,0,...,0), then A1 > n.

In [10], Lipman showed that for any irreducible quasi-ordinary hyper-
surface (X,0) there exists a system of coordinates in a such way that
(X,0) can be defined by a irreducible q.o. Weierstrass polynomial whose

roots are normalized quasi-ordinary branches. Moreover, all normalized
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quasi-ordinary branches associated to (X,0) have the same generalized
characteristic exponents.
The relevance of the generalized characteristic exponents in the theory

of q.o.h. is highlighted when we consider the topological equivalence.

Definition 2.4. We say that two quasi-ordinary hypersurface (X, 0) and
(¥,0) in (C"*1,0) are topologically equivalent, if there are a homeomor-
phism @ of (C"*1,0), neighborhoods U and V of origin 0 € C"*! such
that ®(XNU) = YNV. When ® is an analytic isomorphism, we say that
(X,0) and (Y,0) are analytically equivalent.

Using local ring saturation results, Lipman (see [10]) showed that the
sequence <%>f ) obtained from a normalized quasi-ordinary branch as-
sociated to (X,0) determines the topological class of it and Gau (in [6])
proved that the converse is true, that is, the topological class of (X,0)

A

g
allows to recover the sequence (;) .
i=1

Theorem 2.5 (Lipman-Gau, [10] and [6]). The topological class of a g.o.h.

1s completely characterized by the integers n and X\;, fori=1,...,q.

Let ¢ = 25 bs X' o ¢ C {X %} be a quasi-ordinary branch of an ir-
reducible q.o. Weierstrass polynomial f € C{X}[X,;1] defining (X,0).
Denoting

1
ti=X] for 1<i<r and S(t) =) cyt? € C{t}:=C{ts,... 1}
v

where v :=né € N" and ¢, := bs we say that

H:=Hy:= (t},...,t},S(t))

»Yro

is a quasi-ordinary parameterization (q.o. parameterization) of f or q.

As f is the minimal polynomial of ¢, the epimorphism of C-algebras

H*: (C{X,XT+1} - C{t?,,t?,S(E)}CC{j}
h(X, Xo1) = h(E, ... 47, ()



160 R. A. Barbosa and M. E. Hernandes

give us O = % = C{th, ..., 7, S(t)} where O is the analytic
algebra associated to (X, 0). Recall (see [4], section 8.2) that two q.o.h. are

analytically equivalent if and only if their analytic algebras are isomorphic.

Remark 2.6. If two q.o.h. are defined by q.0. Weierstrass polynomials
f1, f2 € C{X}[X,+1] and we identify such polynomials with map germs
from (C"*1,0) to (C,0), then analytic equivalence is translated to the K-
equivalence of f; and fa, that is, fo = u- ¥(f;) for some automorphism ¥
and some unit u of C{X, X, 41}.

Notice that an isomorphism of analytic algebras C{t7, ..., ¢, S(¢)} cor-

s by
responds to change of parameters and coordinates. In this way, identifying
a parameterization with the map germ from (C",0) to (C"*1, 0) defined by
H(t) = (t},...,t},S(t)), we have that two q.0.h. with parameterizations

sl
H; and H> are analytically equivalent if and only if there exist germs of
analytic isomorphisms o € Iso(C"™1 0) and p € Iso(C",0) of (C"*1,0)
and (C",0) respectively, such that Hy = o o Hy o p~ !,
group A = {(o, p) € Iso(C"1,0) x Iso(C",0)} and denoting its action on

Hi by oo Hjop™!, the analytic equivalence of q.0.h. can be translated by

Considering the

the A-equivalence of H and Ho.

Similarly to the case of plane curves, we can associate a discrete semi-
group to the analytic algebra that encodes the topological aspects of a
quasi-ordinary hypersurface. For this purpose, we introduce the following
concept.

We say that p € C{t} has dominant exponent V(p) := 6 € N" if p =
0 v(t) with v(0) # 0. Given h € C{X, X1} \ (f) if H*(h) has dominant
exponent we put Vg (h) := V(H*(h)).

Remark 2.7. Let p =3 ¢,1” be a non zero element of C {t} and consider
Supp(p) := {v € N";¢, # 0}. Denoting N (p) the Newton polyhedron of
p, that is, the convex closure in R" of Supp(p) + R”_, we have that p has
dominant exponent V(p) if and only if V(p) is the unique vertex of N'(p).

Given a q.o. parametrization H = (t7,...,t", S(t)) we set

Ty ={Vu(h): he C{X,X,+1}\{f) such that H*(h) has dominant exponent}.
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It is immediate that 'y C N" is an additive semigroup.

For an irreducible plane curve defined by f = 0 with associated pa-
rameterizaton H = (t",5(t)) we have that V(H*(h)) equals the intersec-
tion multiplicity of f and h given by I(f,h) = dimc % and, as
I(u-Y(f),u-V(h)) =I(f,h) for any automorphism ¥ and any unit u of
C{Xy, X2}, we conclude, by Remark 2.6, that Iy is an analytic invariant

for plane curves. The same is true for an arbitrary q.o.h., that is, 'y is an

analytic invariant (see [7] and [12]). Moreover, denoting nj = j:th’Zf - (see

definition of Q in Lemma 2.1), for k =1,...,g and

vi =nbj, for j=1,...,r,
Vrt1 = A1; (2.1)
Vpgi = Ni—1Vr4i—1 + A\i — Ai—1 forall 1=2,...,9

where {0, = (0,...,0,1,0,...,0), 1 < j < r} is the set of canonical

generators of the semigroup N” then
Ly =, .., Vrg) =Neov1+ - + Ny
In particular, if M, 4; denotes the maximal ideal of C{X, X, 4} then

{Vu(h): h € Myy1\ M2, such that H*(h) has dominant exponent} =

= {V17 ceey VT-l—l}‘
(2.2)
Given v € @y, for some 1 < k < g there are unique ay,...,a,4% € Z
with 0 < a,4; <mnjand j =1,...,k, such that v = Zg{“ a;v; that we call

the standard representation of . Moreover, if Z::f a;v; is the standard

representation of v € Qg then v € T'y := (14, ..., v4k) if and only if a; > 0

for every 1 <4 < r. In particular, denoting

g
Fr =Y (i = Dvryi — (n) (2:3)

i=1
with (n) := (n,...,n) € N". The element F € N" satisfies the following
property: if v > Fg then v € I'gr. Therefore the element Fp is called the

Frobenius vector of 'y (see [2]).
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By (2.1), the semigroup 'y determines and it is determined by the
generalized characteristic exponents, consequently I'z is also a topological

invariant of the q.o.h. with parameterization H.

Remark 2.8. If H; = (¢},...,t,S1(t)) is a q.o. parameterization for
(X1,0) with Si(t) = 25@\1 ast® then, by (2.2), for any A\; < &' with §' €
Supp(S1(t)) N T, there exists h € M2, such that Hj (k) = —azt? v(t)
with v(0) = 1. Considering the analytic isomorphisms p(f) = ¢ and
o(X, Xr41) = (X, Xy41+h) we get 0o Hy op_1 = Hy = (t},...,t}, S2(1))
with Sa(t) == D 5m, bst’, that is, we have a q.o.h. (A,0) analytically
equivalent to (&7,0) admiting a parametrization Hy satisfying bs = as for
all & ¢ Supp(H;(h)) and by = 0. In particular, Supp(Sa2(t) — S1(t)) C
0"+ N" and 0" & Supp(S2). We will refer to this property by saying that

the term fs/ can be eliminated from Hj.

A more general subset of N” that contains eliminable terms in a q.o.
parameterization H is given in [8]. Such subset is related with elements in

a subgroup A of A as defined in the sequel.

Definition 2.9 (8], Definition 2.3). Fixing a topological class of a q.o.h.
in (C™1,0) determined by {n, A1,...,\;} we denote by A the subgroup
of A consisting of all elements (o, p) € A given by p = (t1 - u1, ..., tr - u,)
and o = (01,...,0,41) such that

ogi=a;- X;+F;, o041 =Xrp1(arp1 + 1) + X7 0pga,

where w; € C{t} are units, v = ({%-‘ e [)‘#-D, ai,ar+1 € C\ {0},
P= Xi- e+ Xeq1-m, €601 € Mpgr, miynr € C{X, X1} for
i=1,...,rand n; = 0 if A;; < n.

Notice that the action of A on a normalized q.0. parameterization
provides us a parameterization with the same characteristic exponents but

not necessarily a q.o. parameterization.

Proposition 2.10. Given a q.o. parameterization H = (t7,...,t7, S(t))

s Yo

and (o,p) € A, as Definition 2.9, we have that o o H o p~ s a qo.
1
PZ-(H)>E

7

parameterization if and only if u; = (ai +
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Proof. First of all, notice that 0o Hop~! is a q.o. parameterization if and
only if

PN,
t? _ U¢OHOP71 — ai.(pfl)?+a(f—[op*1) — ((pl)l . (ai + PZ((Jz;()l)l)yL)) >

fori=1,...,r.

1
As piop~! =t;, we conclude that p;(t) =t; - K; - <ai + Pit(,lH)) " where

k3

ki =1fori=1,...,r.

Without loss of generality, we can consider x; = 1. O

Notice that the subset of elements in A that preserve q.o. parame-
terization H is not a subgroup since such elements depend on H. The
previous result was presented by Panek in her thesis (see [11]).

The description of a set of eliminable terms in a q.0. parameterization
by the A-action can be related with the set of dominant exponents of
Kahler r-forms.

Let f € C{X}[X,+1] be an irreducible q.o. Weierstrass polynomial
with a q.0. parameterization H = (t7,...,t", S(t)). We denote by 2}, the
Kihler differentials module of the analytic algebra O = (c{%’fxf“}, that
is, the O-module generated by {dX;; ¢ = 1,...,r + 1} under the relation
df = Z:;l x,dX; = 0. With this notations we indicate the O-module
of Kihler k-forms by Q% = A¥_, Q) where k € {1,...,7 + 1} and by
dx; the image of dX; in Q}Q Notice that an element w € Q’é can be
expressed by w = Z|I|:l~c hrdzi, A+ Adw;,, where I = {iy, ..., i} ranges
all increasing subsets of k elements from {1,...,7+ 1} and h; denotes the
class of hy € C{X, X, 41} in O.

Considering the isomorphism O = C{t},...,t" S(t)} C C{t} and
the C{t}-module QZ‘E{;} of differentials k-forms of C{t}, we get the O-

homomorphism

who0h - 0k,

w Zm:kH*(hI)dH*(Xil)/\'”AdH*(Xik),

where w = Z|I|:k hrdxi, A -+ Adxg, .
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Similarly to the semigroup I'y; we define

(UAS LUAS
AH = {VH (dtl/\H(w/zdtr> + (l), dtl/\Hi(w/zdtr has dominant eXponent} 5

where (1) = (1,...,1) € N".
By Proposition 2.15 and Theorem 3.1 in [8], we can relate elements in
Ay with tangent vectors to the A-orbit of H and, applying the Com-

plete Transversal Theorem (see [5]), we can identify eliminable terms

in H. More precisely, if 6 = Vg (%) + (1) € Ay where w =
Z;.";Lll(—l)”l*ihidxl A.. ./\d/a;i/\. ..Adxy4q is such that h; = 0;—a;- X; €
C{X, X, 11} with o; and a; described in Definition 2.9, then 9~ is elim-
inable from H.

Notice that Ay is a I'yg-monomodule, that is, 'y + Ay C Ag and, as

T, (day A Adzi A Nda
VH ( i (dzy i r+1)> = 221_11 Vj, we get

dty N—-Adty
J#i
r+1 r+1
U 'y + Z vi | C Ag.
i=1 =1
i
In particular, given a q.o. parameterization H = (t7,...,t,S(t)) and

A1 < 6 € Supp(S(t)) N Ty, there exists h = X,q1 - €41 + X7 - mpq1 €
M%_H, with €,41, 7,41 and v as described in the Definition 2.9, such that

6+ (n) =Vu(h) + (n) = Vu (W) € Apg, that is, 0 can be

eliminable as mentioned in the Remark 2.8.

3 Q.O.H. defined by others of smaller dimension

As mentioned in the introduction, it is not easy to verify if a hypersur-
face (X,0) C (C"*1,0) is a quase ordinary hypersurface. In addition, as
we illustrate in the Example 2.2, q.o. Weierstrass polynomials are sensitive
by change of coordinates. In this section, given a q.o.h. in (C*T1 0) we
define a q.o.h. in (C"*1,0) with 7 > s and we explore relations among the

semigroups and the set A associated to them.
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Fixing s,7 € N with 0 < s < r, we consider an ordered partition of

{1,2,...,r} given by

1 2,... 1 2,...
P— {Oé()+ 7a0+ ) ,Ql},{al + , O] + ) ,042}, ) 7 (31)
oo fasmi+H Laso1 + 2,00 o)

where 0 = ag < a1 < -+ < ag = r and we define the monomorphism of

C-algebras

Tp: C{uy,...,us} — C{t1,...,t}

| (3.2)
U = o i<jcati 105

Given (Xs,0) C (C*1,0) a q.o.h. with parameterization

Hs = (uf,...,ul, S(u1,...,us)),

) s

we define

Hy = (7,..., 7, Tp(S(u1,. .., us)))

and we indicate H ~1;> H,.

By construction, if 6 = (d1,...,0ds) € Supp(S(uq,...,us)), then dp :=
(01,...,01,02,...,02,...,05,...,05) € Supp(Tp(S(ui,...,us))) where ¢;
appears «; — «;_1 times in dp for each i =1,...,s.

Notice that dp = § - Mp where

0 0 0
o --- 01 «+ 1 -+ 0 --- 0

Mp = (M) 1ee = ;
0 00 0 1 1

q L ifoj 1 <j <oy
aln mij =
0, otherwise.

Remark 3.1. We have that 6 - Mp = v - Mp if and only if § =~ € N*.

Proposition 3.2. Given a q.o.h. (Xs,0) C (C*T1,0) with parameter-

ization Hy = (uf,...,ul,S(ui,...,us)) and an ordered partition P of
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{1,...,r} as (3.1) then H, such that Hg - H, is a q.o. parameteriza-
tion, that is, there exists a q.0.h. (X,,0) C (C™"1 0) that admits H, as a

parameterization.

Proof. Since Hg is a q.0. parameterization it corresponds to a quasi-
ordinary branch ¢ satisfying the Lemma 2.1. Let (\;)?_; be the generalized

characteristic exponents of q.

(i) As \j € Supp(S(u1,...,us)) and A\; < A; it follows immediately that
Xi- Mp € Supp(Tp(S(ui,...,us))) and Xj- Mp < Xj - Mp for i < j.

(i) If 6 € Supp(S(u1,...,us)), then § € nZ* + >\ L5 ZA;. In this way,
d-Mp € Supp(Tp(S(ui,...,us))) and

§-Mpe [nZ+ Y ZN | -MpcnZ'+ Y ZX-Mp.
Ai=0 Ai-Mp=6-Mp

(iii) Since Aj & nZ® + 3 5 .y, ZA; we get

Xi-Mp¢nZ'+ > L)\ Mp.
)\j'MP-<Ai~Mp

By Lemma 2.1, H, is a q.0. parametrization of a q.o.h. (X;,0) in
((CrJrl,Q). ]

If (\;)9_, are the generalized characteristic exponent of a q.o.h. (X, 0)
with parameterization Hy then, by the above proposition, (\; - Mp)J_; are
the generalized characteristic exponent of (AX,0) with parameterization
H, where H ? H,. In this way, as an immediate consequence we obtain

the following corollary.

Corollary 3.3. Given q.o0.h. (Xs,0), (X!, 0) in (C*T1,0) and (X,.,0), (X’,0)
in (C™*1,0) with parameterizations Hy, H., H, and H!. respectively, where
H, ~P5> H, and H! ~; H/ for some ordered partition P of {1,...,r}. The
q.0.h. (Xs,0) and (X.,0) are topologically equivalent if and only if (X, 0)
and (X/,0) are topologically equivalent.
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Given a q.0.h. (Xs,0) C (CT1 0) admitting a parameterization Hy =
(uf,...,u?, S(u)) and fixing an ordered partition P of {1,...,r} as (3.1)

)y s

we define the C-algebra monomorphism

TP: C{Yla"wY;Jrl} - C{Xla"'aXTJrl}
Y = [l X;for1<i<s (3.3)
Y51 — Xr+1

i—1<J<ay

and, considering the restriction of Tp on C{uy,...,u?, S(u)}, we get the

ERl

following commutative diagram of C-algebras

C{Yi,....Yer1} 5 Clul,...,ul,S(w)}
L TF L Tp (3.4)

C{X1, ... X1} 5 CLn,... 17, Tp(S(w))}.

Consequently, if (Xs,0) is defined by a q.0. Weierstrass polynomial
f € C{Y1,...,Ys}[Yes1] then the q.o.h. (X,.,0) C (C"*!,0) that admits
the parameterization H, with H, = H, is defined by the q.0. Weierstrass
polynomial T (f) € C{X}[X,41].

As Tp(C{u?,...,u?,S(w)}) C C{t},...,t7, Tp(S(u))}, if the element
h € C{Y,Ysy1} admits dominant exponent Vg, (h) then Vg (T (h)) =
Vi, (h) - Mp.

Let QF :=nZ® + 2)\]'<)VL ZA; and Qf := nZ® + Zkﬁki ZA\; - Mp, with
0 < i < g be the corresponding groups associated to the quasi-ordinary
branches determined by Hg and H, as described in Lemma 2.1. Notice
that

Q- Mp=nZ°-Mp CnZ" =@, and
Qf'Mp:Qf_l-Mp+Z>\i~MpCQz_leZ)\i'MP:Qg for1 <i<yg.

As (Bgr) M € Qiy, we et (a7 ) - Mp € Q- Mp C Q1
and consequently, ij? < QS . On the other hand, we have

(ij >>\ Mp—(di_1>\i_1+"'+d1)\1)‘MP+nd/GQ:—I
1—1
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with d; € Z for 1 < j < i and d’ € Z". In this way, d’ = d - Mp for some
d € 77 and, by the Remark 3.1, we have

<ﬁ Qi ) ANi=di—iAi—1+ -+ did +nd € QF_q,

T

i—1
that is, A >t 97 Hence, we must have
PRI TR ’
Qi Q7
ﬁ rl = ﬁ sZ : (35)
i—1 i—1
We denote the former number by n; for alli =1,...,g.

The above explanation allow us to relate the semigroup of Hs; and H,
for H, ? H,.

Theorem 3.4. Let (Xs,0) C (C**t1,0) be a g.o0.h. with parameterization
H,. If (X,,0) C (C™1,0) is the q.o.h. admitting parameterization H, and
H, ? H, for some ordered partition P of {1,...,r} as (3.1), then

Ty, = nN" +T'y,-Mp and Fg, = Fg, - Mp.

Proof. Tf (\;){_, are the generalized characteristic exponent of (X, 0) then,
by the Proposition 3.2, (A;- Mp)?_; are the generalized characteristic expo-
nent of (X,,0). Consequently, if I'y, = (v1,...,Vr4gq), by (2.1) and (3.5),
we get

j=1 j=1

FHr = TLNT+Z(VT+]-~MP) = TLNT+ (TLNS +Zl/r+j) ~Mp = TLNT‘FFHS ~MP.
In addition, by (2.3), we obtain

K
JT"HS'MP:Z(?’LZ‘—l)VZ“MP—i-(TL,...,TL)'Mp:./—"HT,
=1

here (n,...,n) € N5, O

According to the above theorem, if 6 € I'y, then 6 - Mp € I'y, for
any ordered partition P of {1,...,7}. On the other hand, it is clear that
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0 € I'y, does not imply that 6 € I'y, - Mp. In fact, considering an
ordered partition P as (3.1) with a3 > 1, we have (n,0,---,0) € I'y, but
nN" ¢ 'y, - Mp for any such partition. However, we have the following

result.
Proposition 3.5. If 6 € N° is such that 6 - Mp € 'y, then § € I'p,.

Proof. Denoting I'gy, = (v1,...,Vp4g) if v =0- Mp € I'y, we can consider
its standard representation v = n - (al, cap) + ng 1 bjVryj - Mp with

(a1,...,a,) € N" and 0 < b, <nj—j:th forall j =1,.

As v; = na; + Z] 10j(rgj - Mp); and Yo, 41 = ... = 7q, for all
1<k<sweget ag, ,+1 = ... = aq, for 1 <k <s. Consequently, there
exists (ci,...,cs) € N° such that (a1,...,a,) = (c1,...,¢5) - Mp and we
may write

’)/:(5~MP: n- Cl,..., +Zer+] -Mp.

So, by Remark 3.1, we get § =n - (c1,...,¢5) + Z?Zl bjvryj € 'y, O

As we have mentioned in the previous section, given a q.0.h. with
parameterization H, the set Ay can be used to identify some eliminable
terms in H. In this way, it is relevant to relate the sets Ay := Apy, and
A, := Ay, where H, denotes a parameterization of a q.o.h. in (C**1 0)
and H, 7; H, for some ordered partition P of {1,...,7}.

Theorem 3.6. Given Ag and A, as above we have
As - Mp + (n —nz% C A,

where {6; = (0,...,0,1,0,...,0), 1 < j <r} is the canonical generators
of the semigroup N, P is an ordered partition of {1,...,r} and a;—1 <
Bi <oy withi=1,...,s
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Proof. Let (X,,0) be q.o.h. in (C**! 0) with parameterizaion H, and
denote Q]é. the module of Kéhler k-forms of the analytic algebra O, of
(X, 0).

Given § € A, there exists w, = ZSH hidyi A~ - /\dyz/\ Adysy1 € Qp.
where h; denotes the class of h; € C{Y1,..., Y11} in O such that

i () Hu Ut A dus
=1

and v(u) € C{u} a unit.
Keeping the notation 77 and T for the C-linear maps
P
Sppjms hadyiy A Ay, = 30 TP (h)dTP (Yi) A A dTP(Y:)

where T (hy) denotes the class of T*(h;) € C{X, X, 41} in O, and

S T S
Q(C{u} = Q(C{t}

qw)duy A - ANdus +— Tp(q(w))dTp(ur) A--- ANdTp(us)

we have the following commutative diagram of C-linear maps

I s
Oy Or

LUy LUy
s Tp s
Qe — Yo

Notice that

5i—1
Tpo ‘I’ils (ws) = Hf:1 <Hai,1<jgaj tj) ~o(t) - /\f:1 d (Hai,lqgaj tj)

= ¢(0—)-Mp ~o(t) - /\f:1 (Zal <j<a [Teie <k<a; Lgdt; )

k#j

_ 4(6—(1))-M t1e..ty s
—E( (L)-Mp U(t) Z F51 ----- 5;) ' tﬁll'---‘tﬁs /\i:l dtﬁm
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where v(t) :=v (Ha0<j§a1 tiseo s o <j<an tj) € C{t} is a unit.
Now, for each 8 = (B1,...,08s) with a—1 < B; < o we take wg =

—

t?*l Nt T —
rT—S T—S8 e r
Bt B =l

we obtain the commutative diagram

TP

05, QY N Oy

Loy, Loy, Ly,

03 Tp 03 \IﬂI:I:‘S (WB)/\ QOr
Cluy — 7 oy — c{t}

In this way, we get T (wg) Aws € Qg and
Uy (T (wp) Aws) = Wi *(wp) AT (U, (ws)) € Qg

adimitting dominant expoent ¢ - Mp + (n) — n)>.; ;03 € A,, where
{0; = (0,...,0,1,0,...,0), 1 < j < r} is the canonical generators of
the semigroup N". O

Notice that the inclusion presented in the above theorem is proper. In
fact, considering w = dz1 A -+ Adz, € QY we get Vi, (w) = (n) € A, but
(n) € As- Mp+n—n).; ,0; for any ordered partition P of {1,...,r}
and any choice of §; with a;_1 < 8; < o withi=1,... s.

Corollary 3.7. With the same above notation we have As- Mp+(n) C A,.

Proof. By the previous theorem, we get 6 - Mp + (n) —n >, 0; € A, for
§€Asand aj_1 < B; < a; withi =1,...,s. As, n) ; 6, € Ty, and
Iy, + A, C Ay, it follows that

nY 0i+0-Mp+(n)—nd 0; =05 Mp+(n)€ A
i=1 =1
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4 A-action on H, with H, > H,

In the previous section we show that q.o.h. with parameterizations H
and H/ are topologically equivalent if and only if the q.0.h. admitting pa-
rameterizations H, and H] with Hy " H, and H] " HJ are topologically
equivalent. So, it is natural to ask about the behavior of such q.o.h. with
respect to the A-equivalence.

Firstly we remark that the property H «; H, is sensitive with respect
to the fl—equivalence. In fact, considering the parameterization Hi =
(u?,u?) of a plane branch, that is a q.o.h. in C? and taking » = 2, then
the unique ordered partition of {1,2} as (3.1) is P = {{1,2}} and we
obtain H; 5 Hy with Hy = (t3,2,t3t3). Now, taking (o, p) € A given
by (X1, X2, X3) = (X1, X2, X3 + X7X3) and p(t1,t2) = (t1,t2) we get
HY =00 Hyop™t = (213,33 + t{t$) and obviously there is no a plane
curve parameterization H{ in a such way that H] = HJ.

As we are considering q.o0. parameterizations, our focus will be on
elements in A satisfying the Proposition 2.10.

In that follows we consider a q.o.h. (X, 0) € (C5*1,0) (resp. (&;,0) €
(C™*1,0)) defined by a q.o. Weierstrass polynomial fs € C{Y1,..., Y11}
(resp. fr € C{X1,...,X,+1}) with q.o. parameterization Hy (resp. H;)

such that H = H,. for some ordered partition

P={{aw+1=1,...,<a1},....{as—1,...,as=r}}of {1,...,r}.

Recall that a q.o. parameterization H, = (t,...,t7,S(t)) satisfies

Y Er

H, 5 H, for some H; if and only if S(t) € Im(Tp) where Tp is the
C-algebras monomorphism given in (3.2).

With the above notations we have the following result.

Proposition 4.1. Given H, «; H, and (o, p) € A with

oi=a;- X;i+ P, 041 = X1 (aps1 + TP (Brgr)) + X7MP TP (N, 49)

1
and p; = t; - <ai+ Pi(HT)>n, with a;,ary1 € C\ {0}, v € N*, P =

n
ti

X;-TP(E; + Yoi1- N;), where TT is the C-monomorphism given in (3.3),
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Ei,Eri1,N; € Mgy fori=1,...,r and N,y1 € C{Y1,...,Ys11}, then

there exists a q.o. parameterization H. such that H oo H,op™ !

As H, = (t},...,t7,S(t)) is a q.o. parameterization and, by hypoth-
esis, (o,p) € A satifies the assumption of the Proposition 2.10 we have
oo Hyop™t = (t7,...,t% 0,410 H,.0p~ ') is a q.0. parameterization. So,

the Proposition 4.1 is equivalent to show that
orpr10 Hpo p_1 € Im(Tp). (4.1)
We will proof (4.1) by using the following claims:

Claim 1: Considering pr, 1 < k < r given in Proposition 4.1 we get
Bi
I, (Hai_1<j§ai (p_l)j> € Im(Tp) for all 5; € N.

Initially we will show that
Gt):=J[ ("= ast’ € Im(Tp).
a;—1<j<a; )
Denoting pi(t) =ty - uk(t) with ug(0) # 0 we get

[T t=60w)=> a ]ty uk®. (4.2)
1 k=1

a;—1<j<a;
By the above equality, we must have § € N° - Mp for all § € Supp(G(t)),
otherwise taking v = min<, {0 € Supp (G(t)); 6 ¢ N°- Mp}, where the
symbol <., denotes the lexicographical order in N, the monomial ¢” does
not vanish in the right side of (4.2).
Now, § € N®* . Mp for all 6 € Supp(G(t)) implies that G(t) € Im(Tp)

and, as Tp is a C-algebra homomorphism, we get the Claim 1.

Claim 2: With the hypothesis of Proposition 4.1, if H, = (¢, ...,t",S(t))
then we get S(p~t) € Im(Tp).

Bi
As Hy b= H,, we have S(t) = > gap[[i, (Haj,lq'gai tj> with
B; € N. In this way, by the Claim 1, we get
Bi
S

S => as]] [T Y| emmT)

B i=1 \ai-1<j<a;
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Claim 3: Given qi(t),...,qr+1(t) € C{t} satisfying
II @ an@eimTe); 1<i<s

a;—1<j<ay
then G(q1(t),...,q-+1(t)) € Im(Tp) for all G € Im(TF). In particular,
G(H,) € Im(Tp) for any G € Im(TT).

If G = TP(F) with F = Y5 ¢5 [[:51 Y% then
d;
G(X, Xp11) = ZC5 H I x| -xx
=1 \o;_1<j<ay

Denoting [1,, |, jca, () = Tp(pi(w)) for 1 < i < s and gur(t) =
Tp(pst+1(w)) with pg(u) € C{u} for 1 <k <s+1, we get

C@0)-raenr®) = Sses T (Tayjca 50) - ara(0)
=S se [1121 Tr(pi(w)®
= Tp (S5 es [I2 piw)™) € Im(Tp).
In particular G(H,) = G@},...,t7Tp(S(u))) € Im(Tp) because
Haz 1<j<ay ] TP( )

Proof. of Proposition 4.1:

As we have mentioned it is sufficient to show (4.1).

Notice that H.op™t = ((p™1)7,..., (p~ )7, S(p~ 1)), by the Claim 1 and
the Claim 2, we get [[ (p™);,S(p™t) € Im(Tp). By hypothesis,

a;i—1<j<ay
orr1 = Xeg1 - (arp1 + TP (Brpn)) + X0MP  TP(N, )
=T (Yes1 (ar41+ Erp1) + Y7 - Npjr) € Im(TF)

1

and, by the Claim 3, we have 0,41 0 H, o p~* € Im(Tp) proving the

proposition. L]

At the beginning of this section we ask about the behavior of q.o.h.
Hy 7; H, under the /I—equivalence. The next example shows that if H; is
A-equivalent to H ! with Hy 5 H, and H| - H/, then H, is not necessarily

A-equivalent to H, !
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Example 4.2. Let H; = (u?,u* +v’) and H| = (u3,u*) be parameteri-
zations of q.o.h. (X1,0) and (&7,0) in (C?,0) respectively, that is, plane
curves. Considering w := yadys € Q}Dl where O, is the analytic algebra of

vl (@)

(X1,0), we get Vi, ( = ) +1=8=5+3 ¢ Ay, and, according to the

explanation in the end of the Section 2, u® is an eliminable term in H;. So,
H, is A-equivalent to (u?,u* + Y isgait’). As the semigroup associated
to (X1,0) is 'y, = (3,4), its Frobenius vector is 5, consequently v € I'g,
for any v > 6 and, by Remark 2.8, u” is eliminable. In this way, H; is
A-equivalent® to H 1.

Now, let us consider the q.o. parameterizations Ho = (3,3, t1t3+17t3)
and Hy = (t3,13,t43), that is, H; ~> Hy and Hj ~ Hj. If Hy is A-
equivalent to H} then there exists (o, p) € A such that oo Hyop~' = H}.
In particular, 3¢5 should be eliminable in Hy by change of coordinates and
parameters described in the Proposition 2.10, that is,

t3

(ST

pi(ti,t2) =t; - (a; + P;(t))® where Pi(t) =¢; +

0i(X1, Xo, X3) = X;-(ai+€)+ X510, 03(X1, X2, X3) = X3-(az+e3)+ X7 X313

with a;,a3 € C\ {0}, €;,e3 € M3 and n;,n3 € C{X, X3} for i = 1,2.
Notice that (p~!); = t; - v;(t) with v;(0,0) # 0, then for any h €

M2\ {0} we have (61,82) € Supp(h(p~!)) with §; > 6 or 52 > 6. So, in

order to eliminate ¢3¢ in Hy it is suficient to consider €3 = 73 = 0 and in

this way, we get
g3 Hyop™' =ag- (tity - vi(t) - v3(t) + 383 - 07 () - v3(1)) -

The only possibility to cancel the monomial 3 in the above expression
is to obtain t; € Supp(vi(t)) for i« = 1,2, but this is equivalent to get
t; € Supp(P;(t)) for i = 1,2 that is impossible.

Hence, the term t3t3 is not eliminable in Hy and consequently Hy is

not A-equivalent to Hb.

3In [14], Zariski showed that plane curves with parameterization (u®, u* + «°) and

(u®,u*) are analytical equivalent.
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On the other hand, if there exists (o, p) € A as in the Proposition 4.1
and oo H.op~! = H! with Hy = H, and H! = H] then we can conclude
that H, is A-equivalent to H . This is the conclusion of our last result,

for which we will use the following lemmas.

Lemma 4.3. Considering pi, 1 < k <1 given in Proposition 4.1, we get
Hoc,-_1<j§oci pj € Im(TP)

1
Proof. Recall that p; =t; - (aj + %) " and
J

Pj(Hr)
£

= T"(Ej + Yaoy1 - Nj)(H,).

As T? is a C-algebras homomorphism, we get

1

II tj‘(“ﬁpjinm))n: [ &) (arcim):
J

a;i—1<j<a; a;i—1<j<ay

with ¢; = Hai_1<chw a; and G; € Im(TF) for all 1 < i < s. Notice that
Gi; = TP(Ji + Yei1 - K;) with J;, K; € (Y1,...,Ys1) then, by (3.4) we
obtain GZ(HT) = H:(Gz) = Tp(H:(JZ‘ + Y;_H . Kz)) and

1 »=1r (u . <ci + Qi?)) e Im(Tp).  (4.3)

a;—1<j<a; i

where Q; =Y - (Jz + Yot Kz) ]

By Claim 1 and (4.3), we have that

IT @ =Te(uw) and [ i) =Te(0:(w) (44)

a;—1<j<a; ai—1<j<ay

S|=

with p;(u),0;(u) = u; - (ci + %) € C{u} where ¢; € C\ {0} and
Qi=Y; (Ji + Ysi1 - Ki).

Lemma 4.4. Considering the above notation, we have 61 = u where

0= (01,...,0s) and pp = (p1, .-, fis)-
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Proof. By (4.4) we get

II t=Te)op 1()=9i( I ¢ 11 (pl)j>-

a;i1<j<a; ap<j<ai as—1<j<as

As Tp is a C-algebra monomorphism and

Tp(w) =[] t=0:(Tp(m),--, Te(us) = Te(bi(p, - -, p1s))

a;i—1<j<ay

we obtain 0;(uq(w), ..., pus(uw)) =wu; for 1 < i < s, that is, 0 = (01,...,0s)
admits inverse g = (f1, ..., is)- O

The previous results allow us to obtain the following theorem.

y s

Theorem 4.5. Given Hg = (uf,...,u?,S(u)) such that H = H,, (o0,p) €
A as described in the Proposition 4.1 and H! noo H,op™', then H, is
A-equivalent to H'.

Proof. Given (o, p) € A, as described in the Proposition 4.1, we consider
(7,0) € Iso(C**1,0) x Iso(C?,0), where 8 = (01,...,05) is determined in
(4.4), 7 = (11,...,Ts+1) With

Ti=¢-Yi+ Qi 1<i<s and 7y =Yep1 - (arp1+ Erp1) +Y7 - Nogr.

In this way, we get To Hy00™ ! = (rpo Hy0 07}, ... 7 10 Hio071)
with
TioHsofh =c¢;- (0717 + Qi(H(071))

_ ((9_1)i. (ci-+ Q) )n

:(giogfl)":u?, for1 <i<s

and, using that §~! = pu,

S

Tor10Hg 007 = S(p) - (ars1+ Ery1 (Hs (1)) +H(l‘?)% Ny (Hy(p)) = S'(w),

=1

that is, 70 Hg 0 071 (u) = (uf,...,u?, S (u)).

y s
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Now, as Tp is a C-algebra homomorphism, by (4.4), we get

Tp(Sw) =S| [I Y- TI ] =Te(S)op™,

ap<j<ai as—1<j<as

Tp(Eri1(Hy()) = Erp1(Te(py), - - Tp(ps), Tp(S(1))))

= Lpr41 H (pil)‘?a”'v H (Pil)%TP(S) Opil

ag<j<o as—1<j<os
=T"(Er1)(Hyop™")
and similarly,
Tp <H)u?)% : Nr-i-l(HS(N))) =T"(Y" Npsa)(Hpop™h).
=1

Consequently, Tp(S’(u)) = 0,410 H,.0p~! and H., = 70 Hs06 that proofs
the theorem. O
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