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Abstract. In this paper we consider quasi-ordinary hypersurface in
(Cr, 0) defined by quasi-ordinary hypersurface in (Cs, 0) with r ≥ s,
we explore the relation between their numerical data and the behav-
ior of their parameterizations under changes of coordinates.
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1 Introduction

An analytic germ of a hypersurface (X , 0) ⊂ (Cr+1, 0) is a quasi-
ordinary hypersurface if there exists a finite morphism ϱ : (X , 0) → (Cr, 0)

such that its discriminant locus is contained in a normal crossing divi-
sor. If (X , 0) is irreducible, then there exist suitable coordinates (depend-
ing on ϱ) such that the hypersurface is defined by an equation f = 0
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with f ∈ C{X}[Xr+1] := C{X1, . . . , Xr}[Xr+1] an irreducible Weierstrass
polynomial with discriminant ∆Xr+1(f) = Xδ.u(X) := Xδ1

1 . · · · .Xδr
r .u(X)

where u(X) ∈ C{X}, u(0) ̸= 0 and δ = (δ1, . . . , δr) ∈ Nr where N := Z≥0.
In this case, we say that f is an irreducible q.o. Weierstrass polynomial.

In [13], Zariski presents an alternative method of resolution of surfaces
singularities using quasi-ordinary surfaces and, in the Jung method (see
[9]) of analysing a germ of surface singularity by embedded resolution of
the discriminant of a finite morphism from the germ to a smooth surface,
the quasi-ordinary hypersurface singularities arise naturally.

The only quasi-ordinary hypersurface isolated singularities are plane
curves and normal surfaces in C3. Lipman (see [10], Remark 7.3.2) showed
that a quasi-ordinary hypersurface (X , 0) ⊂ (Cr+1, 0) is normal if and only
if it is analytically equivalent to a germ given by Xn

r+1−
∏e

i=1Xi = 0 where
e ≤ r is the equisingular dimension of (X , 0), i.e., the finite morphism
ϱ : (X , 0) → (Cr, 0) is an equisingular deformation of an e-dimensional
quasi-ordinary hypersurface, but not of a smaller-dimensional germ. If
e = r, than we say that (X , 0) has maximal equisingular dimension.

Given a hypersurface (X , 0) ⊂ (Cr+1, 0) it is a non trivial task to verify
if (X , 0) is a quasi-ordinary hypersurface because we must to guarantee the
existence of a finite morphism ϱ : (X , 0) → (Cr, 0) such that its discrimi-
nant locus is contained in a normal crossing divisor.

In this work1 we will consider irreducible quasi-ordinary hypersurface
with maximal equisingular dimension (shortly, q.o.h.). We present a par-
ticular way to obtain a q.o.h. in (Cr+1, 0) by a q.o.h. in (Cs+1, 0) with
r ≥ s by avoiding the presentation of the finite morphism whose dis-
criminant locus is contained in a normal crossing divisor. We explore the
relation between numerical data of (Cr+1, 0) and (Cs+1, 0), as the general-
ized characteristic exponents and the set of dominant exponent of Kähler
forms (see Section 3). In addition, we analyze the behavior of their pa-
rameterizations under changes of coordinates (see Section 4).

1This work is based on part of the Ph.D. thesis of the first author under supervision
of the second one (see [3]).
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2 Notation and preliminaries

In what follows we consider an irreducible quasi-ordinary hypersurface
(X , 0) ⊂ (Cr+1, 0) given by the germ of the set

{
P ∈ Cr+1; f(P ) = 0

}
where f ∈ C{X} [Xr+1] is an irreducible q.o. Weierstrass polynomial of
degree n > 1.

By the Abhyankar-Jung theorem (see [9] and [1]), we can assume
that any root q of f (a quasi-ordinary branch) belongs to C

{
X

1
n

}
:=

C
{
X

1
n
1 , · · · , X

1
n
r

}
. Consequently,

∆Xr+1(f) = (−1)
n(n−1)

2

∏
i ̸=j

(qi − qj) = Xδ · u(X) ∈ C {X}

where u(X) ∈ C {X} a unit and qk, k = 1, . . . , n are roots of f . In

particular, qi−qj = X
λ1(i,j)

n
1 ·X

λ2(i,j)
n

2 · . . . ·X
λr(i,j)

n
r ·uij(X) ∈ C

{
X

1
n

}
with

uij(X) a unit and λl(i, j) ∈ N for l = 1, . . . , r.
Let λ1, . . . , λg be the distinct r-tuples λl(i, j). Considering ⪯ the par-

tial order in Nr given by the usual order2 ≤ coordinate wise, we can reindex
the elements in {λ1, . . . , λg} in such a way that λ1 ≺ . . . ≺ λg (Lemma 5.6
of [10]).

The r-tuples λ1, . . . , λg are called (generalized) characteristic exponents
of f (or q).

The following result characterizes elements in C
{
X

1
n

}
that are quasi-

ordinary branches.

Lemma 2.1. A non unit q =
∑

δ cδX
δ ∈ C

{
X

1
n

}
is a quasi-ordinary

branch if and only if there are {λ1, . . . , λg} ⊂ Nr, such that:

1. λ1 ≺ λ2 ≺ · · · ≺ λg with cλi
n

̸= 0.

2. If cδ ̸= 0 then nδ ∈ nZr +
∑

λi⪯nδ Zλi.

3. λj ̸∈ Qj−1 := nZr +
∑

λi≺λj
Zλi.

2As usual, ≺ means ⪯ and ̸=.
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Proof. See Proposition 1.3 in [6].

To illustrate the above concepts and to motivate the next definition we
present the following example.

Example 2.2. Let us consider the irreducible Weierstrass polynomial
h(X,Y, Z) = Z2 − X(Y − X)2 ∈ C{X,Y }[Z]. Notice that ∆Z(h) =

4X(Y −X)2, so h is not a q.o. Weierstrass polynomial. Considering the
linear change of coordinates L(X,Y, Z) = (X,X+Y, Z) we get g = h◦L =

Z2−XY 2 with ∆Z(g) = 4XY 2, that is, g defines a q.o. hypersurface, X
1
2Y

is a root of g and (1, 2) is the unique generalized characteristic exponent
of g.

In addition, taking the linear change of coordinates T (X,Y, Z) =

(Y,X,Z) we have that f = g ◦ T = Z2 − Y X2 is an irreducible q.o.
Weierstrass polynomial adminting root XY

1
2 and generalized characteris-

tic exponent (2, 1).

The previous example shows that q.o. Weierstrass polynomials and
generalized characteristic exponents are sensitive by change of coordinates.
However, we can always to elect coordinates that keep a quasi-ordinary
branch in a special form:

Definition 2.3. A quasi-ordinary branch q =
∑

cδX
δ ∈ C

{
X

1
n

}
with

generalized characteristic exponents λ1 ≺ . . . ≺ λg is normalized if:

1. If cδ ̸= 0 then nδ ⪰ λ1, that is, q = cλ1
n

X
λ1
n · u(X) with u(0) = 1.

2. The i-th coordinates λi of λ1, . . . , λg satisfy λi := (λ1i, . . . , λgi) ≥lex

λj := (λ1j , . . . , λgj) for 1 ≤ i < j ≤ r.

3. If λ1 = (λ11, 0, . . . , 0), then λ11 > n.

In [10], Lipman showed that for any irreducible quasi-ordinary hyper-
surface (X , 0) there exists a system of coordinates in a such way that
(X , 0) can be defined by a irreducible q.o. Weierstrass polynomial whose
roots are normalized quasi-ordinary branches. Moreover, all normalized
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quasi-ordinary branches associated to (X , 0) have the same generalized
characteristic exponents.

The relevance of the generalized characteristic exponents in the theory
of q.o.h. is highlighted when we consider the topological equivalence.

Definition 2.4. We say that two quasi-ordinary hypersurface (X , 0) and
(Y, 0) in (Cr+1, 0) are topologically equivalent, if there are a homeomor-
phism Φ of (Cr+1, 0), neighborhoods U and V of origin 0 ∈ Cr+1 such
that Φ(X ∩U) = Y ∩ V . When Φ is an analytic isomorphism, we say that
(X , 0) and (Y, 0) are analytically equivalent.

Using local ring saturation results, Lipman (see [10]) showed that the
sequence

(
λi
n

)g
i=1

obtained from a normalized quasi-ordinary branch as-
sociated to (X , 0) determines the topological class of it and Gau (in [6])
proved that the converse is true, that is, the topological class of (X , 0)

allows to recover the sequence
(
λi
n

)g
i=1

.

Theorem 2.5 (Lipman-Gau, [10] and [6]). The topological class of a q.o.h.
is completely characterized by the integers n and λi, for i = 1, . . . , g.

Let q =
∑

δ bδX
δ ∈ C

{
X

1
n

}
be a quasi-ordinary branch of an ir-

reducible q.o. Weierstrass polynomial f ∈ C{X}[Xr+1] defining (X , 0).
Denoting

ti = X
1
n
i for 1 ≤ i ≤ r and S(t) =

∑
γ

cγt
γ ∈ C{t} := C{t1, . . . , tr}

where γ := nδ ∈ Nr and cγ := bδ we say that

H := Hf := (tn1 , . . . , t
n
r , S(t))

is a quasi-ordinary parameterization (q.o. parameterization) of f or q.
As f is the minimal polynomial of q, the epimorphism of C-algebras

H∗ : C{X,Xr+1} −→ C{tn1 , . . . , tnr , S(t)} ⊂ C{t}
h(X,Xr+1) 7→ h(tn1 , . . . , t

n
r , S(t))
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give us O := C{X,Xr+1}
⟨f⟩

∼= C{tn1 , . . . , tnr , S(t)} where O is the analytic
algebra associated to (X , 0). Recall (see [4], section 8.2) that two q.o.h. are
analytically equivalent if and only if their analytic algebras are isomorphic.

Remark 2.6. If two q.o.h. are defined by q.o. Weierstrass polynomials
f1, f2 ∈ C{X}[Xr+1] and we identify such polynomials with map germs
from (Cr+1, 0) to (C, 0), then analytic equivalence is translated to the K-
equivalence of f1 and f2, that is, f2 = u ·Ψ(f1) for some automorphism Ψ

and some unit u of C{X,Xr+1}.

Notice that an isomorphism of analytic algebras C{tn1 , . . . , tnr , S(t)} cor-
responds to change of parameters and coordinates. In this way, identifying
a parameterization with the map germ from (Cr, 0) to (Cr+1, 0) defined by
H(t) = (tn1 , . . . , t

n
r , S(t)), we have that two q.o.h. with parameterizations

H1 and H2 are analytically equivalent if and only if there exist germs of
analytic isomorphisms σ ∈ Iso(Cr+1, 0) and ρ ∈ Iso(Cr, 0) of (Cr+1, 0)

and (Cr, 0) respectively, such that H2 = σ ◦ H1 ◦ ρ−1. Considering the
group A = {(σ, ρ) ∈ Iso(Cr+1, 0)× Iso(Cr, 0)} and denoting its action on
H1 by σ ◦H1 ◦ ρ−1, the analytic equivalence of q.o.h. can be translated by
the A-equivalence of H1 and H2.

Similarly to the case of plane curves, we can associate a discrete semi-
group to the analytic algebra that encodes the topological aspects of a
quasi-ordinary hypersurface. For this purpose, we introduce the following
concept.

We say that p ∈ C{t} has dominant exponent V(p) := δ ∈ Nr if p =

tδ ·v(t) with v(0) ̸= 0. Given h ∈ C{X,Xr+1}\ ⟨f⟩ if H∗(h) has dominant
exponent we put VH(h) := V(H∗(h)).

Remark 2.7. Let p =
∑

γ cγt
γ be a non zero element of C {t} and consider

Supp(p) := {γ ∈ Nr; cγ ̸= 0}. Denoting N (p) the Newton polyhedron of
p, that is, the convex closure in Rr of Supp(p) + Rr

+, we have that p has
dominant exponent V(p) if and only if V(p) is the unique vertex of N (p).

Given a q.o. parametrization H = (tn1 , . . . , t
n
r , S(t)) we set

ΓH = {VH(h) : h ∈ C{X,Xr+1}\⟨f⟩ such that H∗(h) has dominant exponent}.
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It is immediate that ΓH ⊂ Nr is an additive semigroup.
For an irreducible plane curve defined by f = 0 with associated pa-

rameterizaton H = (tn, S(t)) we have that V(H∗(h)) equals the intersec-
tion multiplicity of f and h given by I(f, h) := dimC

C{X1,X2}
⟨f,h⟩ and, as

I(u ·Ψ(f), u ·Ψ(h)) = I(f, h) for any automorphism Ψ and any unit u of
C{X1, X2}, we conclude, by Remark 2.6, that ΓH is an analytic invariant
for plane curves. The same is true for an arbitrary q.o.h., that is, ΓH is an
analytic invariant (see [7] and [12]). Moreover, denoting nk = ♯ Qk

Qk−1
(see

definition of Qk in Lemma 2.1), for k = 1, . . . , g and

νj = nθj , for j = 1, . . . , r,

νr+1 = λ1;

νr+i = ni−1νr+i−1 + λi − λi−1 for all i = 2, . . . , g

(2.1)

where {θj = (0, . . . , 0, 1, 0, . . . , 0), 1 ≤ j ≤ r} is the set of canonical
generators of the semigroup Nr then

ΓH = ⟨ν1, . . . , νr+g⟩ := N · ν1 + · · ·+ N · νr+g.

In particular, if Mr+1 denotes the maximal ideal of C{X,Xr+1} then

{VH(h) : h ∈ Mr+1 \M2
r+1 such that H∗(h) has dominant exponent} =

= {ν1, . . . , νr+1}.
(2.2)

Given γ ∈ Qk for some 1 ≤ k ≤ g there are unique a1, . . . , ar+k ∈ Z
with 0 ≤ ar+j < nj and j = 1, . . . , k, such that γ =

∑r+k
i=1 aiνi that we call

the standard representation of γ. Moreover, if
∑r+k

i=1 aiνi is the standard
representation of γ ∈ Qk then γ ∈ Γk := ⟨ν1, . . . , νr+k⟩ if and only if ai ≥ 0

for every 1 ≤ i ≤ r. In particular, denoting

FH =

g∑
i=1

(ni − 1)νr+i − (n) (2.3)

with (n) := (n, . . . , n) ∈ Nr. The element FH ∈ Nr satisfies the following
property: if γ ≻ FH then γ ∈ ΓH . Therefore the element FH is called the
Frobenius vector of ΓH (see [2]).
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By (2.1), the semigroup ΓH determines and it is determined by the
generalized characteristic exponents, consequently ΓH is also a topological
invariant of the q.o.h. with parameterization H.

Remark 2.8. If H1 = (tn1 , . . . , t
n
r , S1(t)) is a q.o. parameterization for

(X1, 0) with S1(t) =
∑

δ⪰λ1
aδt

δ then, by (2.2), for any λ1 ≺ δ′ with δ′ ∈
Supp(S1(t)) ∩ ΓH1 there exists h ∈ M2

r+1 such that H∗
1 (h) = −aδ′t

δ′ .v(t)

with v(0) = 1. Considering the analytic isomorphisms ρ(t) = t and
σ(X,Xr+1) = (X,Xr+1+h) we get σ ◦H1 ◦ρ−1 = H2 = (tn1 , . . . , t

n
r , S2(t))

with S2(t) :=
∑

δ⪰λ1
bδt

δ, that is, we have a q.o.h. (X2, 0) analytically
equivalent to (X1, 0) admiting a parametrization H2 satisfying bδ = aδ for
all δ ̸∈ Supp(H∗

1 (h)) and bδ′ = 0. In particular, Supp(S2(t) − S1(t)) ⊂
δ′ + Nr and δ′ ̸∈ Supp(S2). We will refer to this property by saying that
the term tδ

′ can be eliminated from H1.

A more general subset of Nr that contains eliminable terms in a q.o.
parameterization H is given in [8]. Such subset is related with elements in
a subgroup Ã of A as defined in the sequel.

Definition 2.9 ([8], Definition 2.3). Fixing a topological class of a q.o.h.
in (Cr+1, 0) determined by {n, λ1, . . . , λg} we denote by Ã the subgroup
of A consisting of all elements (σ, ρ) ∈ A given by ρ = (t1 · u1, . . . , tr · ur)
and σ = (σ1, . . . , σr+1) such that

σi = ai ·Xi + Pi, σr+1 = Xr+1 · (ar+1 + ϵr+1) +Xγ · ηr+1,

where ui ∈ C{t} are units, γ =
(⌈

λ11
n

⌉
, . . . ,

⌈
λ1r
n

⌉)
, ai, ar+1 ∈ C \ {0},

Pi = Xi · ϵi + Xr+1 · ηi, ϵi, ϵr+1 ∈ Mr+1, ηi, ηr+1 ∈ C{X,Xr+1} for
i = 1, . . . , r and ηi = 0 if λ1i < n.

Notice that the action of Ã on a normalized q.o. parameterization
provides us a parameterization with the same characteristic exponents but
not necessarily a q.o. parameterization.

Proposition 2.10. Given a q.o. parameterization H = (tn1 , . . . , t
n
r , S(t))

and (σ, ρ) ∈ Ã, as Definition 2.9, we have that σ ◦ H ◦ ρ−1 is a q.o.

parameterization if and only if ui =
(
ai +

Pi(H)
tni

) 1
n .
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Proof. First of all, notice that σ ◦H ◦ρ−1 is a q.o. parameterization if and
only if

tni = σi◦H ◦ρ−1 = ai ·(ρ−1)ni +Pi(H ◦ρ−1) =

(
(ρ−1)i ·

(
ai +

Pi(H ◦ ρ−1)

(ρ−1)ni

) 1
n

)n

for i = 1, . . . , r.

As ρi ◦ ρ−1 = ti, we conclude that ρi(t) = ti · κi ·
(
ai +

Pi(H)
tni

) 1
n where

κni = 1 for i = 1, . . . , r.
Without loss of generality, we can consider κi = 1.

Notice that the subset of elements in Ã that preserve q.o. parame-
terization H is not a subgroup since such elements depend on H. The
previous result was presented by Panek in her thesis (see [11]).

The description of a set of eliminable terms in a q.o. parameterization
by the Ã-action can be related with the set of dominant exponents of
Kähler r-forms.

Let f ∈ C{X}[Xr+1] be an irreducible q.o. Weierstrass polynomial
with a q.o. parameterization H = (tn1 , . . . , t

n
r , S(t)). We denote by Ω1

O the
Kähler differentials module of the analytic algebra O = C{X,Xr+1}

⟨f⟩ , that
is, the O-module generated by {dXi; i = 1, . . . , r + 1} under the relation
df =

∑r+1
i=1 fXidXi = 0. With this notations we indicate the O-module

of Kähler k-forms by Ωk
O =

∧k
i=1Ω

1
O where k ∈ {1, . . . , r + 1} and by

dxi the image of dXi in Ω1
O. Notice that an element ω ∈ Ωk

O can be
expressed by ω =

∑
|I|=k hIdxi1 ∧ · · · ∧ dxik , where I = {i1, . . . , ik} ranges

all increasing subsets of k elements from {1, . . . , r+1} and hI denotes the
class of hI ∈ C{X,Xr+1} in O.

Considering the isomorphism O ∼= C{tn1 , . . . , tnr , S(t)} ⊂ C{t} and
the C{t}-module Ωk

C{t} of differentials k-forms of C{t}, we get the O-
homomorphism

Ψk
H : Ωk

O → Ωk
C{t}

ω 7→
∑

|I|=k H
∗(hI)dH

∗(Xi1) ∧ · · · ∧ dH∗(Xik),

where ω =
∑

|I|=k hIdxi1 ∧ · · · ∧ dxik .
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Similarly to the semigroup ΓH we define

ΛH =

{
VH

(
Ψr

H(ω)

dt1 ∧ · · · ∧ dtr

)
+ (1);

Ψr
H(ω)

dt1 ∧ · · · ∧ dtr
has dominant exponent

}
,

where (1) = (1, . . . , 1) ∈ Nr.
By Proposition 2.15 and Theorem 3.1 in [8], we can relate elements in

ΛH with tangent vectors to the Ã-orbit of H and, applying the Com-
plete Transversal Theorem (see [5]), we can identify eliminable terms
in H. More precisely, if δ = VH

(
Ψr

H(ω)
dt1∧···∧dtr

)
+ (1) ∈ ΛH where ω =∑r+1

i=1 (−1)r+1−ihidx1∧ . . .∧ d̂xi∧ . . .∧dxr+1 is such that hi = σi−ai ·Xi ∈
C{X,Xr+1} with σi and ai described in Definition 2.9, then tδ−(n) is elim-
inable from H.

Notice that ΛH is a ΓH -monomodule, that is, ΓH + ΛH ⊂ ΛH and, as

VH

(
Ψr

H(dx1∧···∧d̂xi∧···∧dxr+1)
dt1∧···∧dtr

)
=
∑r+1

j=1
j ̸=i

νj , we get

r+1⋃
i=1

ΓH +
r+1∑
j=1
j ̸=i

νj

 ⊂ ΛH .

In particular, given a q.o. parameterization H = (tn1 , . . . , t
n
r , S(t)) and

λ1 ≺ δ ∈ Supp(S(t)) ∩ ΓH , there exists h = Xr+1 · ϵr+1 + Xγ · ηr+1 ∈
M2

r+1, with ϵr+1, ηr+1 and γ as described in the Definition 2.9, such that

δ + (n) = VH(h) + (n) = VH

(
Ψr

H(hdx1∧···∧dxr)
dt1∧···∧dtr

)
∈ ΛH , that is, δ can be

eliminable as mentioned in the Remark 2.8.

3 Q.O.H. defined by others of smaller dimension

As mentioned in the introduction, it is not easy to verify if a hypersur-
face (X , 0) ⊂ (Cr+1, 0) is a quase ordinary hypersurface. In addition, as
we illustrate in the Example 2.2, q.o. Weierstrass polynomials are sensitive
by change of coordinates. In this section, given a q.o.h. in (Cs+1, 0) we
define a q.o.h. in (Cr+1, 0) with r > s and we explore relations among the
semigroups and the set Λ associated to them.
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Fixing s, r ∈ N with 0 < s < r, we consider an ordered partition of
{1, 2, . . . , r} given by

P =

{
{α0 + 1, α0 + 2, . . . , α1}, {α1 + 1, α1 + 2, . . . , α2}, . . . ,

. . . , {αs−1 + 1, αs−1 + 2, . . . , αs}

}
, (3.1)

where 0 = α0 < α1 < · · · < αs = r and we define the monomorphism of
C-algebras

TP : C{u1, . . . , us} −→ C{t1, . . . , tr}
ui 7→

∏
αi−1<j≤αi

tj 1 ≤ i ≤ s.
(3.2)

Given (Xs, 0) ⊂ (Cs+1, 0) a q.o.h. with parameterization

Hs = (un1 , . . . , u
n
s , S(u1, . . . , us)),

we define
Hr = (tn1 , . . . , t

n
r , TP (S(u1, . . . , us)))

and we indicate Hs ⇝
P

Hr.

By construction, if δ = (δ1, . . . , δs) ∈ Supp(S(u1, . . . , us)), then δP :=

(δ1, . . . , δ1, δ2, . . . , δ2, . . . , δs, . . . , δs) ∈ Supp(TP (S(u1, . . . , us))) where δi

appears αi − αi−1 times in δP for each i = 1, . . . , s.
Notice that δP = δ ·MP where

MP := (mij) 1≤i≤s
1≤j≤r

=


1 · · · 1 0 · · · 0 · · · 0 · · · 0

0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...
0 · · · 0 0 · · · 0 · · · 1 · · · 1



and mij =

1, if αi−1 < j ≤ αi

0, otherwise.

Remark 3.1. We have that δ ·MP = γ ·MP if and only if δ = γ ∈ Ns.

Proposition 3.2. Given a q.o.h. (Xs, 0) ⊂ (Cs+1, 0) with parameter-
ization Hs = (un1 , . . . , u

n
s , S(u1, . . . , us)) and an ordered partition P of
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{1, . . . , r} as (3.1) then Hr such that Hs ⇝
P

Hr is a q.o. parameteriza-

tion, that is, there exists a q.o.h. (Xr, 0) ⊂ (Cr+1, 0) that admits Hr as a
parameterization.

Proof. Since Hs is a q.o. parameterization it corresponds to a quasi-
ordinary branch q satisfying the Lemma 2.1. Let (λi)

g
i=1 be the generalized

characteristic exponents of q.

(i) As λi ∈ Supp(S(u1, . . . , us)) and λi ≺ λj it follows immediately that
λi ·MP ∈ Supp(TP (S(u1, . . . , us))) and λi ·MP ≺ λj ·MP for i < j.

(ii) If δ ∈ Supp(S(u1, . . . , us)), then δ ∈ nZs +
∑

λi⪯δ Zλi. In this way,
δ ·MP ∈ Supp(TP (S(u1, . . . , us))) and

δ ·MP ∈

nZs +
∑
λi⪯δ

Zλi

 ·MP ⊂ nZr +
∑

λi·MP⪯δ·MP

Zλi ·MP .

(iii) Since λi /∈ nZs +
∑

λj≺λi
Zλj we get

λi ·MP /∈ nZr +
∑

λj ·MP≺λi·MP

Zλj ·MP .

By Lemma 2.1, Hr is a q.o. parametrization of a q.o.h. (Xr, 0) in
(Cr+1, 0).

If (λi)
g
i=1 are the generalized characteristic exponent of a q.o.h. (Xs, 0)

with parameterization Hs then, by the above proposition, (λi ·MP )
g
i=1 are

the generalized characteristic exponent of (Xr, 0) with parameterization
Hr where Hs ⇝

P
Hr. In this way, as an immediate consequence we obtain

the following corollary.

Corollary 3.3. Given q.o.h. (Xs, 0), (X ′
s, 0) in (Cs+1, 0) and (Xr, 0), (X ′

r, 0)

in (Cr+1, 0) with parameterizations Hs, H
′
s, Hr and H ′

r respectively, where
Hs ⇝

P
Hr and H ′

s ⇝
P

H ′
r for some ordered partition P of {1, . . . , r}. The

q.o.h. (Xs, 0) and (X ′
s, 0) are topologically equivalent if and only if (Xr, 0)

and (X ′
r, 0) are topologically equivalent.
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Given a q.o.h. (Xs, 0) ⊂ (Cs+1, 0) admitting a parameterization Hs =

(un1 , . . . , u
n
s , S(u)) and fixing an ordered partition P of {1, . . . , r} as (3.1)

we define the C-algebra monomorphism

TP : C{Y1, . . . , Ys+1} → C{X1, . . . , Xr+1}
Yi 7→

∏
αi−1<j≤αi

Xj for 1 ≤ i ≤ s

Ys+1 7→ Xr+1

(3.3)

and, considering the restriction of TP on C{un1 , . . . , uns , S(u)}, we get the
following commutative diagram of C-algebras

C{Y1, . . . , Ys+1}
H∗

s→ C{un1 , . . . , uns , S(u)}
↓ TP ↓ TP

C{X1, . . . , Xr+1}
H∗

r→ C{tn1 , . . . , tnr , TP (S(u))}.

(3.4)

Consequently, if (Xs, 0) is defined by a q.o. Weierstrass polynomial
f ∈ C{Y1, . . . , Ys}[Ys+1] then the q.o.h. (Xr, 0) ⊂ (Cr+1, 0) that admits
the parameterization Hr with Hs ⇝

P
Hr is defined by the q.o. Weierstrass

polynomial TP (f) ∈ C{X}[Xr+1].
As TP (C{un1 , . . . , uns , S(u)}) ⊂ C{tn1 , . . . , tnr , TP (S(u))}, if the element

h ∈ C{Y , Ys+1} admits dominant exponent VHs(h) then VHr(T
P (h)) =

VHs(h) ·MP .
Let Qs

i := nZs +
∑

λj≺λi
Zλj and Qr

i := nZs +
∑

λj≺λi
Zλj ·MP , with

0 ≤ i ≤ g be the corresponding groups associated to the quasi-ordinary
branches determined by Hs and Hr as described in Lemma 2.1. Notice
that

Qs
0 ·MP = nZs ·MP ⊂ nZr = Qr

0 and

Qs
i ·MP = Qs

i−1 ·MP + Zλi ·MP ⊂ Qr
i−1 + Zλi ·MP = Qr

i for 1 ≤ i ≤ g.

As
(
♯

Qs
i

Qs
i−1

)
λi ∈ Qs

i−1, we get
(
♯

Qs
i

Qs
i−1

)
λi · MP ∈ Qs

i−1 · MP ⊂ Qr
i−1

and consequently, ♯ Qr
i

Qr
i−1

≤ ♯
Qs

i
Qs

i−1
. On the other hand, we have(

♯
Qr

i

Qr
i−1

)
λi ·MP = (di−1λi−1 + · · ·+ d1λ1) ·MP + nd′ ∈ Qr

i−1
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with dj ∈ Z for 1 ≤ j < i and d′ ∈ Zr. In this way, d′ = d ·MP for some
d ∈ Zs and, by the Remark 3.1, we have(

♯
Qr

i

Qr
i−1

)
λi = di−1λi−1 + · · ·+ d1λ1 + nd ∈ Qs

i−1,

that is, ♯ Qr
i

Qr
i−1

≥ ♯
Qs

i
Qs

i−1
. Hence, we must have

♯
Qr

i

Qr
i−1

= ♯
Qs

i

Qs
i−1

. (3.5)

We denote the former number by ni for all i = 1, . . . , g.
The above explanation allow us to relate the semigroup of Hs and Hr

for Hs ⇝
P

Hr.

Theorem 3.4. Let (Xs, 0) ⊂ (Cs+1, 0) be a q.o.h. with parameterization
Hs. If (Xr, 0) ⊂ (Cr+1, 0) is the q.o.h. admitting parameterization Hr and
Hs ⇝

P
Hr for some ordered partition P of {1, . . . , r} as (3.1), then

ΓHr = nNr + ΓHs ·MP and FHr = FHs ·MP .

Proof. If (λi)
g
i=1 are the generalized characteristic exponent of (Xs, 0) then,

by the Proposition 3.2, (λi ·MP )
g
i=1 are the generalized characteristic expo-

nent of (Xr, 0). Consequently, if ΓHs = ⟨ν1, . . . , νr+g⟩, by (2.1) and (3.5),
we get

ΓHr = nNr+

r∑
j=1

(νr+j ·MP ) = nNr+

nNs +

r∑
j=1

νr+j

 ·MP = nNr+ΓHs ·MP .

In addition, by (2.3), we obtain

FHs ·MP =

g∑
i=1

(ni − 1)νi ·MP + (n, . . . , n) ·MP = FHr ,

here (n, . . . , n) ∈ Ns.

According to the above theorem, if δ ∈ ΓHs then δ · MP ∈ ΓHr for
any ordered partition P of {1, . . . , r}. On the other hand, it is clear that
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δ ∈ ΓHr does not imply that δ ∈ ΓHs · MP . In fact, considering an
ordered partition P as (3.1) with α1 > 1, we have (n, 0, · · · , 0) ∈ ΓHr but
nNr /∈ ΓHs · MP for any such partition. However, we have the following
result.

Proposition 3.5. If δ ∈ Ns is such that δ ·MP ∈ ΓHr then δ ∈ ΓHs .

Proof. Denoting ΓHs = ⟨ν1, . . . , νr+g⟩ if γ = δ ·MP ∈ ΓHr we can consider
its standard representation γ = n · (a1, . . . , ar) +

∑g
j=1 bjνr+j · MP with

(a1, . . . , ar) ∈ Nr and 0 ≤ bj < nj = ♯
Qr

j

Qr
j−1

for all j = 1, . . . , g.

As γi = nai +
∑g

j=1 bj(νr+j · MP )i and γαk−1+1 = . . . = γαk
for all

1 ≤ k ≤ s we get aαk−1+1 = . . . = aαk
for 1 ≤ k ≤ s. Consequently, there

exists (c1, . . . , cs) ∈ Ns such that (a1, . . . , ar) = (c1, . . . , cs) · MP and we
may write

γ = δ ·MP =

n · (c1, . . . , cs) +
g∑

j=1

bjνr+j

 ·MP .

So, by Remark 3.1, we get δ = n · (c1, . . . , cs) +
∑g

j=1 bjνr+j ∈ ΓHs .

As we have mentioned in the previous section, given a q.o.h. with
parameterization H, the set ΛH can be used to identify some eliminable
terms in H. In this way, it is relevant to relate the sets Λs := ΛHs and
Λr := ΛHr where H• denotes a parameterization of a q.o.h. in (C•+1, 0)

and Hs ⇝
P

Hr for some ordered partition P of {1, . . . , r}.

Theorem 3.6. Given Λs and Λr as above we have

Λs ·MP + (n)− n

s∑
i=1

θβi
⊂ Λr

where {θj = (0, . . . , 0, 1, 0, . . . , 0), 1 ≤ j ≤ r} is the canonical generators
of the semigroup Nr, P is an ordered partition of {1, . . . , r} and αi−1 <

βi ≤ αi with i = 1, . . . , s.
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Proof. Let (X•, 0) be q.o.h. in (C•+1, 0) with parameterizaion H• and
denote Ωk

O•
the module of Kähler k-forms of the analytic algebra O• of

(X•, 0).
Given δ ∈ Λs there exists ωs =

∑s+1
i=1 hidy1∧· · ·∧d̂yi∧· · ·∧dys+1 ∈ Ωs

Os

where hi denotes the class of hi ∈ C{Y1, . . . , Ys+1} in Os such that

Ψs
Hs

(ωs) =
s∏

i=1

uδi−1
i · v(u) ·

s∧
i=1

dui,

and v(u) ∈ C{u} a unit.
Keeping the notation TP and TP for the C-linear maps

Ωs
Os

TP

→ Ωs
Or∑

|I|=s hIdyi1 ∧ · · · ∧ dyis 7→
∑

|I|=s T
P (hI)dT

P (Yi1) ∧ · · · ∧ dTP (Yis)

where TP (hI) denotes the class of TP (hI) ∈ C{X,Xr+1} in Or and

Ωs
C{u}

TP→ Ωs
C{t}

q(u)du1 ∧ · · · ∧ dus 7→ TP (q(u))dTP (u1) ∧ · · · ∧ dTP (us)

we have the following commutative diagram of C-linear maps

Ωs
Os

TP

−→ Ωs
Or

↓ Ψs
Hs

↓ Ψs
Hr

Ωs
C{u}

TP→ Ωs
C{t}.

Notice that

TP ◦Ψs
Hs

(ωs) =
∏s

i=1

(∏
αi−1<j≤αj

tj

)δi−1
· v(t) ·

∧s
i=1 d

(∏
αi−1<j≤αj

tj

)

= t(δ−(1))·MP · v(t) ·
∧s

i=1

(∑
αi−1<j≤αi

∏
αi−1<k≤αj

k ̸=j

tkdtj

)

= t(δ−(1))·MP · v(t) ·
∑

(β1,...,βs)
αi−1<βj≤αi

t1·...·tr
tβ1 ·...·tβs

∧s
i=1 dtβi

,
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where v(t) := v
(∏

α0<j≤α1
tj , . . . ,

∏
αs−1<j≤αs

tj

)
∈ C{t} is a unit.

Now, for each β = (β1, . . . , βs) with αi−1 < βi ≤ αi we take ωβ :=∧s
i=1 dxαi−1+1 ∧ · · · ∧ d̂xβi

∧ · · · ∧ dxαi ∈ Ωr−s
Or

. As

Ψr−s
Hr

(ωβ) = nr−s t
n−1
1 · . . . · tn−1

r

tn−1
β1

· . . . · tn−1
βs

·
s∧

i=1

dtαi−1+1 ∧ · · · ∧ d̂tβi
∧ · · · ∧ dtαi

we obtain the commutative diagram

Ωs
Os

TP

−→ Ωs
Or

ωβ∧−→ Ωr
Or

↓ Ψs
Hs

↓ Ψs
Hr

↓ Ψr
Hr

Ωs
C{u}

TP−→ Ωs
C{t}

Ψr−s
Hr

(ωβ)∧
−→ Ωr

C{t}.

In this way, we get TP (ωβ) ∧ ωs ∈ Ωr
Or

and

Ψr
Hr

(TP (ωβ) ∧ ωs) = Ψr−s
Hr

(ωβ) ∧ TP

(
Ψs

Hr
(ωs)

)
∈ Ωr

C{t}

adimitting dominant expoent δ · MP + (n) − n
∑s

i=1 θβi
∈ Λr, where

{θj = (0, . . . , 0, 1, 0, . . . , 0), 1 ≤ j ≤ r} is the canonical generators of
the semigroup Nr.

Notice that the inclusion presented in the above theorem is proper. In
fact, considering ω = dx1 ∧ · · · ∧ dxr ∈ Ωr

Hr
we get VHr(ω) = (n) ∈ Λr but

(n) ̸∈ Λs · MP + n − n
∑s

i=1 θi for any ordered partition P of {1, . . . , r}
and any choice of βi with αi−1 < βi ≤ αi with i = 1, . . . , s.

Corollary 3.7. With the same above notation we have Λs ·MP +(n) ⊂ Λr.

Proof. By the previous theorem, we get δ ·MP + (n)− n
∑s

i=1 θi ∈ Λr for
δ ∈ Λs and αi−1 < βi ≤ αi with i = 1, . . . , s. As, n

∑s
i=1 θi ∈ ΓHr and

ΓHr + Λr ⊂ Λr, it follows that

n

s∑
i=1

θi + δ ·MP + (n)− n

s∑
i=1

θi = δ ·MP + (n) ∈ Λr.
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4 Ã-action on Hr with Hs ⇝
P

Hr

In the previous section we show that q.o.h. with parameterizations Hs

and H ′
s are topologically equivalent if and only if the q.o.h. admitting pa-

rameterizations Hr and H ′
r with Hs ⇝

P
Hr and H ′

s ⇝
P

H ′
r are topologically

equivalent. So, it is natural to ask about the behavior of such q.o.h. with
respect to the Ã-equivalence.

Firstly we remark that the property Hs ⇝
P

Hr is sensitive with respect

to the Ã-equivalence. In fact, considering the parameterization H1 =

(u2, u3) of a plane branch, that is a q.o.h. in C2 and taking r = 2, then
the unique ordered partition of {1, 2} as (3.1) is P = {{1, 2}} and we
obtain H1 ⇝

P
H2 with H2 = (t21, t

2
2, t

3
1t

3
2). Now, taking (σ, ρ) ∈ Ã given

by σ(X1, X2, X3) = (X1, X2, X3 + X2
1X

3
2 ) and ρ(t1, t2) = (t1, t2) we get

H ′
2 = σ ◦H2 ◦ ρ−1 = (t21, t

2
2, t

3
1t

3
2 + t41t

6
2) and obviously there is no a plane

curve parameterization H ′
1 in a such way that H ′

1 ⇝
P

H ′
2.

As we are considering q.o. parameterizations, our focus will be on
elements in Ã satisfying the Proposition 2.10.

In that follows we consider a q.o.h. (Xs, 0) ∈ (Cs+1, 0) (resp. (Xr, 0) ∈
(Cr+1, 0)) defined by a q.o. Weierstrass polynomial fs ∈ C{Y1, . . . , Ys+1}
(resp. fr ∈ C{X1, . . . , Xr+1}) with q.o. parameterization Hs (resp. Hr)
such that Hs ⇝

P
Hr for some ordered partition

P = {{α0 + 1 = 1, . . . , < α1}, . . . , {αs−1, . . . , αs = r}} of {1, . . . , r}.

Recall that a q.o. parameterization Hr = (tn1 , . . . , t
n
r , S(t)) satisfies

Hs ⇝
P

Hr for some Hs if and only if S(t) ∈ Im(TP ) where TP is the

C-algebras monomorphism given in (3.2).
With the above notations we have the following result.

Proposition 4.1. Given Hs ⇝
P

Hr and (σ, ρ) ∈ Ã with

σi = ai ·Xi + Pi, σr+1 = Xr+1 · (ar+1 + TP (Er+1)) +Xγ·MP · TP (Nr+1)

and ρi = ti ·
(
ai +

Pi(Hr)
tni

) 1
n
, with ai, ar+1 ∈ C \ {0}, γ ∈ Ns, Pi =

Xi · TP (Ei + Ys+1 ·Ni), where TP is the C-monomorphism given in (3.3),
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Ei, Er+1, Ni ∈ Ms+1 for i = 1, . . . , r and Nr+1 ∈ C{Y1, . . . , Ys+1}, then
there exists a q.o. parameterization H ′

s such that H ′
s ⇝

P
σ ◦Hr ◦ ρ−1.

As Hr = (tn1 , . . . , t
n
r , S(t)) is a q.o. parameterization and, by hypoth-

esis, (σ, ρ) ∈ Ã satifies the assumption of the Proposition 2.10 we have
σ ◦ Hr ◦ ρ−1 = (tn1 , . . . , t

n
r , σr+1 ◦Hr ◦ ρ−1) is a q.o. parameterization. So,

the Proposition 4.1 is equivalent to show that

σr+1 ◦Hr ◦ ρ−1 ∈ Im(TP ). (4.1)

We will proof (4.1) by using the following claims:

Claim 1: Considering ρk, 1 ≤ k ≤ r given in Proposition 4.1 we get∏s
i=1

(∏
αi−1<j≤αi

(ρ−1)j

)βi

∈ Im(TP ) for all βi ∈ N.

Initially we will show that

G(t) :=
∏

αi−1<j≤αi

(ρ−1)j =
∑
δ

aδt
δ ∈ Im(TP ).

Denoting ρk(t) = tk · uk(t) with uk(0) ̸= 0 we get∏
αi−1<j≤αi

tj = G(ρ(t)) =
∑
δ

aδ

r∏
k=1

tδkk · uδkk (t). (4.2)

By the above equality, we must have δ ∈ Ns ·MP for all δ ∈ Supp(G(t)),
otherwise taking γ = min⪯Lex {δ ∈ Supp (G(t)) ; δ ̸∈ Ns ·MP } , where the
symbol ⪯Lex denotes the lexicographical order in Nr, the monomial tγ does
not vanish in the right side of (4.2).

Now, δ ∈ Ns ·MP for all δ ∈ Supp(G(t)) implies that G(t) ∈ Im(TP )

and, as TP is a C-algebra homomorphism, we get the Claim 1.

Claim 2: With the hypothesis of Proposition 4.1, if Hr = (tn1 , . . . , t
n
r , S(t))

then we get S(ρ−1) ∈ Im(TP ).

As Hs ⇝
P

Hr, we have S(t) =
∑

β aβ
∏s

i=1

(∏
αj−1<j≤αi

tj

)βi

with
βi ∈ N. In this way, by the Claim 1, we get

S(ρ−1) =
∑
β

aβ

s∏
i=1

 ∏
αi−1<j≤αi

(ρ−1)j

βi

∈ Im(TP ).
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Claim 3: Given q1(t), . . . , qr+1(t) ∈ C{t} satisfying∏
αi−1<j≤αi

qj(t), qr+1(t) ∈ Im(TP ); 1 ≤ i ≤ s

then G(q1(t), . . . , qr+1(t)) ∈ Im(TP ) for all G ∈ Im(TP ). In particular,
G(Hr) ∈ Im(TP ) for any G ∈ Im(TP ).

If G = TP (F ) with F =
∑

δ cδ
∏s+1

i=1 Y
δi
i then

G(X,Xr+1) =
∑
δ

cδ

s∏
i=1

 ∏
αi−1<j≤αi

Xj

δi

·Xδs+1

r+1 .

Denoting
∏

αi−1<j≤αi
qj(t) = TP (pi(u)) for 1 ≤ i ≤ s and qr+1(t) =

TP (ps+1(u)) with pk(u) ∈ C{u} for 1 ≤ k ≤ s+ 1, we get

G(q1(t), . . . , qr+1(t)) =
∑

δ cδ
∏s

i=1

(∏
αi−1<j≤αi

qj(t)
)δi

· qr+1(t)
δs+1

=
∑

δ cδ
∏s+1

i=1 TP (pi(u))
δi

= TP

(∑
δ cδ

∏s+1
i=1 pi(u)

δi
)
∈ Im(TP ).

In particular, G(Hr) = G(tn1 , . . . , t
n
r , TP (S(u))) ∈ Im(TP ) because∏

αi−1<j≤αi
tnj = TP (u

n
i ).

Proof. of Proposition 4.1:
As we have mentioned it is sufficient to show (4.1).
Notice that Hr◦ρ−1 = ((ρ−1)n1 , . . . , (ρ

−1)nr , S(ρ
−1)), by the Claim 1 and

the Claim 2, we get
∏

αi−1<j≤αi
(ρ−1)j , S(ρ

−1) ∈ Im(TP ). By hypothesis,

σr+1 = Xr+1 · (ar+1 + TP (Er+1)) +Xγ·MP · TP (Nr+1)

= TP (Ys+1 · (ar+1 + Er+1) + Y γ ·Nr+1) ∈ Im(TP )

and, by the Claim 3, we have σr+1 ◦ Hr ◦ ρ−1 ∈ Im(TP ) proving the
proposition.

At the beginning of this section we ask about the behavior of q.o.h.
Hs ⇝

P
Hr under the Ã-equivalence. The next example shows that if Hs is

Ã-equivalent to H ′
s with Hs ⇝

P
Hr and H ′

s ⇝
P

H ′
r, then Hr is not necessarily

Ã-equivalent to H ′
r.
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Example 4.2. Let H1 = (u3, u4 + u5) and H ′
1 = (u3, u4) be parameteri-

zations of q.o.h. (X1, 0) and (X ′
1, 0) in (C2, 0) respectively, that is, plane

curves. Considering ω := y2dy2 ∈ Ω1
O1

where O1 is the analytic algebra of

(X1, 0), we get VH1

(
Ψ1

H1
(ω)

du

)
+1 = 8 = 5+3 ∈ ΛH1 and, according to the

explanation in the end of the Section 2, u5 is an eliminable term in H1. So,
H1 is Ã-equivalent to (u3, u4 +

∑
i≥6 aiu

i). As the semigroup associated
to (X1, 0) is ΓH1 = ⟨3, 4⟩, its Frobenius vector is 5, consequently γ ∈ ΓH1

for any γ ≥ 6 and, by Remark 2.8, uγ is eliminable. In this way, H1 is
Ã-equivalent3 to H ′

1.
Now, let us consider the q.o. parameterizations H2 = (t31, t

3
2, t

4
1t

4
2+t51t

5
2)

and H ′
2 = (t31, t

3
2, t

4
1t

4
2), that is, H1 ⇝

P
H2 and H ′

1 ⇝
P

H ′
2. If H2 is Ã-

equivalent to H ′
2 then there exists (σ, ρ) ∈ Ã such that σ ◦H2 ◦ ρ−1 = H ′

2.
In particular, t51t52 should be eliminable in H2 by change of coordinates and
parameters described in the Proposition 2.10, that is,

ρi(t1, t2) = ti · (ai + Pi(t))
1
3 where Pi(t) = ϵi +

(t41t
4
2 + t51t

5
2) · ηi

t3i

σi(X1, X2, X3) = Xi ·(ai+ϵi)+X3 ·ηi, σ3(X1, X2, X3) = X3 ·(a3+ϵ3)+X2
1X

2
2 ·η3

with ai, a3 ∈ C \ {0}, ϵi, ϵ3 ∈ M3 and ηi, η3 ∈ C{X,X3} for i = 1, 2.
Notice that (ρ−1)i = ti · vi(t) with vi(0, 0) ̸= 0, then for any h ∈

M2 \ {0} we have (δ1, δ2) ∈ Supp(h(ρ−1)) with δ1 ≥ 6 or δ2 ≥ 6. So, in
order to eliminate t51t

5
2 in H2 it is suficient to consider ϵ3 = η3 = 0 and in

this way, we get

σ3 ◦H2 ◦ ρ−1 = a3 ·
(
t41t

4
2 · v41(t) · v42(t) + t51t

5
2 · v51(t) · v52(t)

)
.

The only possibility to cancel the monomial t51t52 in the above expression
is to obtain ti ∈ Supp(vi(t)) for i = 1, 2, but this is equivalent to get
ti ∈ Supp(Pi(t)) for i = 1, 2 that is impossible.

Hence, the term t51t
5
2 is not eliminable in H2 and consequently H2 is

not Ã-equivalent to H ′
2.

3In [14], Zariski showed that plane curves with parameterization (u3, u4 + u5) and
(u3, u4) are analytical equivalent.
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On the other hand, if there exists (σ, ρ) ∈ Ã as in the Proposition 4.1
and σ ◦Hr ◦ ρ−1 = H ′

r with Hs ⇝
P

Hr and H ′
s ⇝

P
H ′

r then we can conclude

that Hs is Ã-equivalent to H ′
s. This is the conclusion of our last result,

for which we will use the following lemmas.

Lemma 4.3. Considering ρk, 1 ≤ k ≤ r given in Proposition 4.1, we get∏
αi−1<j≤αi

ρj ∈ Im(TP ).

Proof. Recall that ρj = tj ·
(
aj +

Pj(Hr)
tnj

) 1
n and

Pj(Hr)

tnj
= TP (Ej + Ys+1 ·Nj)(Hr).

As TP is a C-algebras homomorphism, we get

∏
αi−1<j≤αi

tj ·

(
aj +

Pj(Hr)

tnj

) 1
n

=

 ∏
αi−1<j≤αi

tj

 · (ci +Gi(Hr))
1
n

with ci =
∏

αi−1<j≤αi
aj and Gi ∈ Im(TP ) for all 1 ≤ i ≤ s. Notice that

Gi = TP (Ji + Ys+1 · Ki) with Ji,Ki ∈ ⟨Y1, . . . , Ys+1⟩ then, by (3.4) we
obtain Gi(Hr) = H∗

r (Gi) = TP (H
∗
s (Ji + Ys+1 ·Ki)) and

∏
αi−1<j≤αi

ρj = TP

(
ui ·

(
ci +

Qi(Hs)

uni

) 1
n

)
∈ Im(TP ). (4.3)

where Qi = Yi · (Ji + Ys+1 ·Ki).

By Claim 1 and (4.3), we have that∏
αi−1<j≤αi

(ρ−1)j(t) = TP (µi(u)) and
∏

αi−1<j≤αi

ρj(t) = TP (θi(u)) (4.4)

with µi(u), θi(u) = ui ·
(
ci +

Qi(Hs)
un
i

) 1
n ∈ C{u} where ci ∈ C \ {0} and

Qi = Yi · (Ji + Ys+1 ·Ki).

Lemma 4.4. Considering the above notation, we have θ−1 = µ where
θ = (θ1, . . . , θs) and µ = (µ1, . . . , µs).
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Proof. By (4.4) we get

∏
αi−1<j≤αi

tj = TP (θi) ◦ ρ−1(t) = θi

 ∏
α0<j≤α1

(ρ−1)j , . . . ,
∏

αs−1<j≤αs

(ρ−1)j

 .

As TP is a C-algebra monomorphism and

TP (ui) =
∏

αi−1<j≤αi

tj = θi(TP (µ1), . . . , TP (µs)) = TP (θi(µ1, . . . , µs))

we obtain θi(µ1(u), . . . , µs(u)) = ui for 1 ≤ i ≤ s, that is, θ = (θ1, . . . , θs)

admits inverse µ = (µ1, . . . , µs).

The previous results allow us to obtain the following theorem.

Theorem 4.5. Given Hs = (un1 , . . . , u
n
s , S(u)) such that Hs ⇝

P
Hr, (σ, ρ) ∈

Ã as described in the Proposition 4.1 and H ′
s ⇝

P
σ ◦Hr ◦ ρ−1, then Hs is

Ã-equivalent to H ′
s.

Proof. Given (σ, ρ) ∈ Ã, as described in the Proposition 4.1, we consider
(τ, θ) ∈ Iso(Cs+1, 0) × Iso(Cs, 0), where θ = (θ1, . . . , θs) is determined in
(4.4), τ = (τ1, . . . , τs+1) with

τi = ci · Yi +Qi, 1 ≤ i ≤ s and τs+1 = Ys+1 · (ar+1 +Er+1) + Y γ ·Nr+1.

In this way, we get τ ◦Hs ◦ θ−1 = (τ1 ◦Hs ◦ θ−1, . . . , τs+1 ◦Hs ◦ θ−1)

with
τi ◦Hs ◦ θ−1 = ci · (θ−1)ni +Qi(Hs(θ

−1))

=

(
(θ−1)i ·

(
ci +

Qi(Hs(θ−1))
(θ−1)ni

) 1
n

)n

= (θi ◦ θ−1)n = uni , for 1 ≤ i ≤ s

and, using that θ−1 = µ,

τs+1 ◦Hs ◦θ−1 = S(µ) · (ar+1+Er+1(Hs(µ)))+

s∏
i=1

(µn
i )

γi ·Nr+1(Hs(µ)) := S′(u),

that is, τ ◦Hs ◦ θ−1(u) = (un1 , . . . , u
n
s , S

′(u)).
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Now, as TP is a C-algebra homomorphism, by (4.4), we get

TP (S(µ)) = S

 ∏
α0<j≤α1

(ρ−1)j , . . . ,
∏

αs−1<j≤αs

(ρ−1)j

 = TP (S) ◦ ρ−1,

TP (Er+1(Hs(µ))) = Er+1(TP (µ
n
1 ), . . . , TP (µ

n
s ), TP (S(µ))))

= Er+1

 ∏
α0<j≤α1

(ρ−1)nj , . . . ,
∏

αs−1<j≤αs

(ρ−1)nj , TP (S) ◦ ρ−1


= TP (Er+1)(Hr ◦ ρ−1)

and similarly,

TP

(
s∏

i=1

)µn
i )γi ·Nr+1(Hs(µ))

)
= TP (Y γ ·Nr+1)(Hr ◦ ρ−1).

Consequently, TP (S
′(u)) = σr+1 ◦Hr ◦ρ−1 and H ′

s = τ ◦Hs ◦ θ that proofs
the theorem.
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