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1 Introduction

Let F : Kn → Kn, where K = C or K = R, be a polynomial map
and let us denote by JF (x) the Jacobian matrix of F at x ∈ Kn. The
determinant det(JF (x)) is a polynomial map from Kn to K. In 1939, O.
H. Keller [14] stated a famous conjecture known nowadays as the Jacobian
conjecture, whose statement is the following:

“A polynomial map F : Kn → Kn is nowhere vanishing Jacobian,
i.e. det(JF (x)) ̸= 0, for any x ∈ Kn, if and only if it is a polynomial
automorphism.”
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If F has a global inverse, then its inverse, being continous, maps com-
pact sets into compact sets, in other words F is proper. The smallest set
SF such that the map F : Kn \F−1(SF ) → Kn \SF is proper is called the
asymptotic set of F . The Jacobian conjecture reduces to show that the
asymptotic set of a polynomial map satisfying the nonvanishing Jacobian
condition is empty.

In the complex case, the Jacobian conjecture remains open today even
for the dimension 2. However, in the real case, the 2-dimensional Jacobian
conjecture was solved negatively by Pinchuk [18] in the year 1994. In fact,
Pinchuk provided counter-examples by giving a class of polynomial maps
(p, q) : R2 → R2 satisfying the condition det(J(p, q)(x, y)) > 0 for every
(x, y) ∈ R2 but F is not injective. Let us recall his construction: given
(x, y) ∈ R2, denote

t = xy − 1, h = t(xt+ 1), f = (xt+ 1)2(t2 + y).

Then the Pinchuk maps (p, q) are the ones with p = f +h and q varies for
different maps (p, q) but q always has the form

q = −t2 − 6th(h+ 1)− u(f, h)

where u is an auxiliary polynomial in f and h and is chosen such that

det(J(p, q)) = t2 + (t+ (f(13 + 15h))2 + f2

([18, Lemma 2.2]). Then det(J(p, q)(x, y)) > 0, for every (x, y) ∈ R2 since
if t = 0 then f = y = 1

x ̸= 0.
As the Remark at the end of the paper [18], the Pinchuk map con-

structed in the proof of [18, Lemma 2.2] has degree 40, where deg(p) = 10

and deg(q) = 40, but one can reduce deg(q) to 35 by a suitable choice of
the auxiliary polynomial u(f, h). In [8] (page 241), Arno van den Essen
choose

u(f, h) = 170fh+ 91h2 + 195fh2 + 69h3 + 75fh3 +
75

4
h4,
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and in this case the degree of the Pinchuk map is 25. This is also the one
that Andrew Campbell studies in the series of his papers [2, 3, 4, 5, 6].
Let us denote by P this Pinchuk map.

This paper is inspired by the paper [19]: in the year 2010, Anna Valette
and Guillaume Valette gave a new approach to study the complex Jaco-
bian conjecture. Given a polynomial map F : Cn → Cn, they constructed
some real 2n-dimensional pseudomanifolds VF contained in some Euclidean
space Rν , where ν > 2n and such that the singular loci of these pseudo-
manifolds are contained in (SF ×K0(F ))× {0Rν−2n}, where K0(F ) is the
set of critical values of F . In the case of dimension 2, they prove that for
a nonvanishing Jacobian polynomial map F : C2 → C2 (i.e, K0(F ) = ∅),
the condition “SF = ∅” is equivalent to the condition “the intersection
homology in dimension two and with any perversity of any constructed
pseudomanifold VF is trivial” (Theorem 3.2 in [19]). This result is gen-
eralized in the case of higher dimension in [16]. Moreover, the varieties
defined by Anna and Guillaume Valette can also be modified to study the
bifurcation set of a polynomial map G : Cn → Cn−1 ([17]).

We call Valette varieties for singular varieties VF constructed by Anna
and Guillaume Valette in [19]. Let us remark that the Valette varieties
can be defined also for real polynomial maps F : Rn → Rn (see Remark
2.7 of [19] or Proposition 3.8 of [16]). In this case, the Valette varieties
are not necessarily pseudomanifolds, they are just semi-algebraic stratified
sets. In this paper, we investigate the following two natural questions:

1) How are the behaviours of Valette varieties associated to the Pinchuk
map P of degree 25 mentioned above?

2) Is there a “real version” of Anna and Guillaume Valette’s result, i.e
if F : R2 → R2 is a nowhere vanishing Jacobian polynomial map then the
condition SF = ∅ is equivalent to the condition IH 0̄

1 (VF ) = 0? (Notice
that in this case, the dimension of VF is 2, then there is only one perversity:
the zero perversity).

Remark that since the Pinchuk map P satisfies the novanishing Jaco-
bian condition then the asymptotic variety SP is non-empty. We describe
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in this paper a Valette variety VP associated to the Pinchuk map P and
we calculate its intersection homology. The main result is Theorem 4.4:
the intersection homology of VP in dimension one and with the zero per-
versity is trivial. The main tool to prove this result is the description
of the behaviours of the asymptotic variety and the “asymptotic flower”
(the inverse image of the asymptotic variety) of the Pinchuk map P in the
papers [2, 3, 4].

The structrue of the paper is the following: Section 2 is the preliminary
about intersection homology. Section 3 gives some preliminaries about the
asymptotic variety and Valette varieties of a polynomial map F : Kn → Kn

for both cases K = R and K = C. We provide in this section two examples:
Example 3.3 is to illustrate the difference of the asymptotic set for the same
map but in complex and real situations; Example 3.4 is for illustrating the
construction of Valette varieties. We end the paper with Section 4 where
the main result (Theorem 4.4) is proved. This result shows that there is a
counter-example for a “real version” of the Valette’s result.

2 Intersection homology

Given a variety V in Rk, we denote by Reg(V ) and Sing(V ) the regular
and singular loci of the variety V , respectively. Moreover, V will stand for
the topological closure of V . The boundary of V will be denoted by ∂V .

We briefly recall the definition of intersection homology. For details,
the readers can see [9, 10] or [1].

Definition 2.1. Let V be an m-dimensional variety in Rk. A locally
topologically trivial stratification of V is the data of a finite filtration

V = Vm ⊃ Vm−1 ⊃ · · · ⊃ V0 ⊃ V−1 = ∅ (2.2)

such that:
1) for every i, the set Si = Vi \ Vi−1 is either empty or a topological

manifold of dimension i;
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2) for every x ∈ Vi \ Vi−1, for all i ≥ 0, there is an open neighborhood
Ux of x in V , a stratified set Li and a homeomorphism

h : Ux → (0, 1)i × cLi,

such that h maps the strata of Ux (induced stratification) onto the strata
of (0, 1)i × cLi (product stratification).

A connected component of Si is called a stratum of V .

Definition 2.3. A perversity is an (m+ 1)-uple of integers

p̄ = (p0, p1, p2, p3, . . . , pm)

such that p0 = p1 = p2 = 0 and pr+1 ∈ {pr, pr + 1} for 2 ≤ r ≤ m− 1.
The perversity 0 = (0, . . . , 0) is called the zero perversity.
In this paper, we consider the groups of i-dimensional PL chains Ci(V )

and we denote by c the support of a chain c. A chain c is (p̄, i)-allowable
if dim(c ∩ Vm−r) ≤ i − r + pr, for all r ≥ 0. It is easy to see that this
condition holds always when r = 0. Define ICp

i (V ) to be the R-vector
subspace of Ci(V ) consisting of the chains c such that c is (p, i)-allowable
and its boundary ∂c is (p, i− 1)-allowable, that means

ICp
i (V ) =

{
c ∈ Ci(V ) :

dim(c ∩ Vm−r) ≤ i− r + pr

dim((∂c) ∩ Vm−r ≤ (i− 1)− r + pr
, ∀r ≥ 1

}
.

(2.4)

Definition 2.5. The ith intersection homology group with perversity p, de-
noted by IHp

i (V ), is the ith homology group of the chain complex ICp
∗ (V ).

Recall that a pseudomanifold V is a variety such that its singular locus
is of codimension at least 2 in V and its regular locus is dense in V .
Goresky and MacPherson [9, 10] proved that the intersection homology of
a pseudomanifold does not depend on a choice of a locally topologically
trivial stratification (see also [1]).

In this paper, we consider the intersection homology with real coef-
ficients, i.e. the intersection homology groups IH p̄

i (V,R). Moreover, we



140 Thuy N.T.B.

consider the groups of PL chains with both compact supports and closed
supports. Given a triangulation of V , recall that a chain with compact
support is a chain of the form

∑
cσσ for which all coefficients cσ ∈ Z are

zero but a finite number, where σ are i-simplices. A chain with closed sup-
port is a locally finite linear combination

∑
cσσ with integer coefficients

cσ ∈ Z. Notice that if c is a chain with compact support, then c is also a
chain with closed support.

The homology groups with closed supports are called Borel Moore ho-
mology, or homology groups of deuxième espèce in [7]. The intersection
homology groups with closed supports are denoted by IH p̄,cl

i (V ). The
corresponding intersection homology groups with compact supports are
denoted by IH p̄,c

i (V ).

3 Asymptotic variety and Valette varieties

3.1 Asymptotic variety

Let F : Kn → Kn be a polynomial map, where K = C or K = R. We
denote by SF the set of points at which the map F is not proper, i.e.

SF = {α ∈ Kn such that ∃{ξk} ⊂ Kn, |ξk| → ∞, F (ξk) → α},

and call it the asymptotic variety. Notice that, by |ξk| we mean the usual
Euclidean norm of ξk in Kn. In the complex case, one has:

Theorem 3.1 ([12]). If F : Cn → Cn is a generically finite polynomial
map, then SF is either an (n − 1) pure dimensional algebraic variety or
the empty set.

Recall that one says that F is generically finite if there exists a subset
U ⊂ Cn dense in the target space Cn such that for any a ∈ U , the fiber
F−1(a) is finite.

In the real case, if the asymptotic variety is non-empty, then its dimen-
sion can be any integer between 1 and (n− 1):
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Theorem 3.2 ([13]). Let F : Rn → Rn be a non-constant polynomial
map. Then the set SF is a closed, semi-algebraic set and for every non-
empty connected component S ⊂ SF , we have 1 ≤ dimS ≤ n− 1.

In the following we provide an example to illustrate Theorem 3.1 and
Theorem 3.2 and to show that the asymptotic set of the same map may
be different in complex and real situations.

Example 3.3. Let F : C3 → C3 such that

F (x, y, z) = (x, y, (x2 + y2)z).

It is easy to see that F is generically finite since the subset U = {(α, β, γ) ∈
C3 : α2+β2 ̸= 0} is dense in the target space and F |F−1(U) : F

−1(U) → U

is bijective.
We determine now the asymptotic variety of F . Assume that {ξk} =

{(xk, yk, zk)} is a sequence tending to infinity in the source space such that
its image does not tend to infinity. Hence the coordinates xk and yk cannot
tend to infinity. Therefore, zk must tend to infinity. Since (x2k + y2k)z

2
k

cannot tend to infinity, then (x2k + y2k) must tend to zero. Consequenty,
the asymptotic variety of F is the algebraic variety of equation α2+β2 = 0.

As an illustration, let us take the sequence {(a + 1/k, b + 1/k, ck)}
tending to infinity in the source space such that a2 + b2 = 0. Then its
image tends to (a, b, 2(a + b)c). This point belongs to the hypersurface
α2 + β2 = 0.

Notice that, if we replace C by R, we get the same equation for the
asymptotic variety. However, the equation α2 + β2 = 0 reduces to a line
in R3, which is not anymore a hypersurface.

3.2 Valette varieties

3.2.1 Construction

Valette varieties VF are constructed originally in [19]. In this section,
we recall briefly this construction [19, Proposition 2.3]: Let F : Cn → Cn
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be a polynomial map, the construction of Valette varieties associated to F
consists of the following steps:

Step 1: Consider F as a real map F : R2n → R2n. Determine the set
of critical points Sing(F ) of F .

Step 2: Choose a covering {U1, . . . , Up} of MF = R2n \ Sing(F ) by
semi-algebraic open subsets (in R2n) such that on every element of this
covering, the map F induces a diffeomorphism onto its image. Choose
semi-algebraic closed subsets Vi ⊂ Ui (in MF ) which cover MF as well.

Step 3: For each i = 1, . . . , p, choose a Nash function ψi : MF → R,
such that:

(a) ψi is positive on Vi and negative on MF \ Ui,

(b) ψi(ξk) tends to zero whenever {ξk} ⊂ MF tends to infinity or to a
point in Sing(F ).

Recall that a Nash function ψ : W → R defined on W ⊂ R2n is
an analytic function such that there exists a non trivial polynomial P :

W × R → R such that P (x, ψ(x)) = 0 for any x ∈W .
The existence of Nash functions ψi comes from Mostowski’s Separation

Lemma (see Separation Lemma in [15], page 246).
Step 4: Determine the closure of the image of MF by (F,ψ1, . . . , ψp)

in R2n+p, that means:

VF := (F,ψ1, . . . , ψp)(MF ),

we obtain a Valette variety associated to the given map F and the chosen
covering {U1, . . . , Up} and the chosen Nash functions ψ1, . . . , ψp.

Notice that we may have many ways to choose the covering {U1, . . . , Up}
and, moreover, with each covering {U1, . . . , Up}, we may have many choices
of Nash functions ψ1, . . . , ψp. Then we may have more than one Valette
variety associated to a given polynomial map. However, the singular locus
of any Valette variety is always contained in (K0(F )∪SF )×{0Rp}, which
depends only on the given map F .
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In the real case, i.e. if F : Rn → Rn, the real map in the first step is
replaced by the map F itseft and the construction follows the same process.
However, in this case, Valette varieties are no longer pseudomanifolds in
general. They are simply real semi-algebraic varieties (see Remark 2.7 of
[19] or Proposition 3.8 of [16]). The reason is that, in the real case, the
dimension of the asymptotic variety may be greater than n− 2 (Theorem
3.2, see Example 3.3 for the illustration). Then K0(F )∪SF has no reason
to be of codimension 2.

In the following we illustrate the Valette’s construction above by a
simple example F : R → R. For more examples, one can see [19, Exemple
2.8] and [16, Exemple 3.9].

3.2.2 An example

Example 3.4. Let F : Rx → Rα be a polynomial map defined by F (x) =
x2. Here by Rx and Rα we denote the source space and the target space
respectively. We follow the four steps in the Valette’s construction in 3.2.1:

Step 1: By an easy calculation, we have

SF = ∅, Sing(F ) = {0}, K0(F ) = {0}.

Step 2: The set Sing(F ) divide Rx into two subsets:

U1 = {x ∈ Rx : x > 0} , U2 = {x ∈ Rx : x < 0}

and F (U1) = F (U2) = {α ∈ Rα : α > 0}.
These subsets U1 and U2 are semi-algebraic open subsets in Rx and on

each Ui, for i = 1, 2, the map F induces a diffeomorphism onto its image.
In this case, we can choose {U1, U2} as a covering of MF = R \ Sing(F ) =
R \ {0}.

We choose V1 = U1 and V2 = U2. In this case, V1 and V2 are closed
subsets of MF and they cover MF as well.

Step 3: We choose the Nash functions:

ψ1 :MF → R, ψ1(x) :=
x

1 + x2
and ψ2 :MF → R, ψ2(x) :=

−x
1 + x2

.
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We see that:

1. ψ1 is a Nash function because there exists the polynomial P (x, y) =
(x2 + 1)y − 1 such that P (x, ψ(x)) = 0 for any x ∈ MF . With the
same way, ψ2 is also a Nash function.

2. ψi is positive on Vi = Ui and negative on MF \ Ui = Uj , for i = 1, 2

and j ̸= i.

3. If {xk} ⊂ MF is a sequence tending to infinity, then ψi(xk) tends
to 0 and, if {xk} ⊂ MF is a sequence tending to 0 ∈ Sing(F ), then
ψi(xk) also tends to 0.

Then the functions ψi satisfy all the properties in the Valette’s construc-
tion.

Step 4: Now, in order to determine the Valette variety associated
to the given F and the chosen covering {U1, U2} and the chosen Nash
functions ψ1, ψ2, we need to calculate the closure of (F,ψ1, ψ2)(MF ) in
R3, that means, we have to calculate

(F,ψ1, ψ2)(MF ) =

{(
x2,

x

1 + x2
,

−x
1 + x2

)
: x ∈MF

}
.

By item (3) in Step 3, we have:

VF =

{(
x2,

x

1 + x2
,

−x
1 + x2

)
: x ̸= 0

}
∪ {(α, 0, 0) : ∃{xk} ⊂MF

such that xk → 0 and F (xk) → α}.

It is easy to see that if a sequence {xk} tends to zero, then (F,ψ1, ψ2)(xk)

tends to the origin of R3, which coincides with (F,ψ1, ψ2)(0). It follows
that the closure of (F,ψ1, ψ2)(MF ) is, in fact, the set (F,ψ1, ψ2)(R2), which
is smooth. Then the Valette variety VF associated to F (x) = x2 and the
chosen covering {U1, U2} and the chosen Nash functions ψ1, ψ2 above is
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a smooth space curve and it can be graphed 1 in Figure 3.1 (the Valette
variety in this case in the red curve).

Figure 3.1: A Valette variety of the polynomial map F (x) = x2.

3.2.3 Intersection homology of Valette singular varieties

The intersection homology of Valette semi-algebraic pseudomanifolds
VF associated to a given nonvanishing Jacobian polynomial map F : C2 →
C2 describes the geometry of singularities at infinity of the map (Theorem
3.2 of [19]). This result is generalized in [16, Theorem 4.5] in the case of
higher dimensions. In the following we simply recall these results. No-
tice that the following results hold for any Valette variety associated to a
given polynomial map. Notice also that the following theorems hold for
the intersection homology groups with both compact supports and closed
supports.

Theorem 3.5 ([19]). Let F : C2 → C2 be a polynomial map with nowhere
vanishing Jacobian. The following conditions are equivalent:

1The figure is graphed by the Software online: http://www.math.uri.edu/~bkaskosz/
flashmo/parcur/

http://www.math.uri.edu/~bkaskosz/flashmo/parcur/
http://www.math.uri.edu/~bkaskosz/flashmo/parcur/
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1. F is non proper.

2. IHp
2 (VF ,R) ̸= 0 for any (or some) perversity p.

Theorem 3.6 ([16]). Let F = (F1, . . . , Fn) : Cn → Cn be a polynomial
map with nowhere vanishing Jacobian. If RankC(DF̂i)i=1,...,n > n − 2,
where F̂i is the leading form of Fi and DF̂i is the (first) derivative of F̂i,
then the following conditions are equivalent:

1. F is non proper.

2. IHp
2 (VF ,R) ̸= 0 for any (or some) perversity p.

3. IHp,cl
2n−2(VF ,R) ̸= 0 for any (or some) perversity p.

4 Intersection Homology of a Valette variety as-
sociated to the Pinchuk map P

Let us recall that by the Pinchuk map P we mean the smallest degree
one mentioned in [8, page 241] and studied in the series paper [2, 3, 4, 5, 6],
constructed as follows: denote

t = xy − 1, h = t(xt+ 1), f = (xt+ 1)2(t2 + y)

then P = (p, q) with

p = f + h, q = −t2 − 6th(h+ 1)− u(f, h)

where

u(f, h) = 170fh+ 91h2 + 195fh2 + 69h3 + 75fh3 +
75

4
h4.

In this case det(J(P )(x, y)) > 0 for any (x, y) ∈ R2 but P is not injective.
In order to prove the main result of this paper (Theorem 4.4), we need

Lemma 4.1 and Lemma 4.3.



A singular variety associated to the Pinchuk map 147

Lemma 4.1. Let F : Kn → Kn be a polynomial map, where K = C or
C = R. Then any Valette variety VF is non-compact and

VF = (F,ψ1, . . . , ψp)(MF ) ∪ ((K0(F ) ∪ SF )× {0Rp}). (4.2)

Proof. The fact that Valette varieties are non-compact comes directly from
its definition (see Section 3.2.1) .

Now to prove the equality (4.2) for the complex case K = C and the real
case follows with the same way. We prove at first (F,ψ1, . . . , ψp)(MF ) ∪
((K0(F )∪SF )×{0Rp}) ⊂ VF . We observe first that it comes directly form
the definition that (F,ψ1, . . . , ψp)(MF ) ⊂ VF . Then we need to prove only
that SF × {0Rp} and K0(F )× {0Rp} are contained in VF .

Let us take a point α ∈ SF . Then there exists a sequence {ξk} ⊂ Cn

(in the source space) tending to infinity such that F (ξk) tends to α. Let
{ξkℓ} be a subsequence of {ξk} consisting of all points which do not belong
to Sing(F ), then {ξkℓ} ⊂ MF . Notice that the sequence {ξkℓ} also tends
to infinity. Moreover, F (ξkℓ) tends to α. By the construction of Valette
varieties (see Section 3.2.1), the image of ξkℓ by Nash function ψi tend
to zero, for i = 1, . . . , p. Then (F,ψ1, . . . , ψp)(ξkℓ) tends to (α, 0Rp), it
follows that (α, 0Rp) is an accumulation point of (F,ψ1, . . . , ψp)(MF ). By
the definition of VF , the point (α, 0Rp) belongs to VF . Consequently, the
subset SF × {0Rp} is contained in VF .

We prove now that K0(F )× {0Rp} is contained in VF . For this, let us
take a point α ∈ K0(F ). Then there exists a point x ∈ Sing(F ) such that
α = F (x). Take a sequence {ξk} ⊂MF such that ξk tends to x. Again, by
the construction of Valette varieties, the image of ξk by the chosen Nash
function ψi must tend to zero, for i = 1, . . . , p. Then (F,ψ1, . . . , ψp)(ξk)

tends to (F (x), 0Rp) = (α, 0Rp). That means (α, 0Rp), which is a point in
K0(F ) × {0Rp}, is an accumulation point of (F,ψ1, . . . , ψp)(MF ). Conse-
quently, (α, 0Rp) belongs to VF .

We prove now the inclusion VF ⊂ (F,ψ1, . . . , ψp)(MF )∪((K0(F )∪SF )×
{0Rp}). Assume that β ∈ VF and β /∈ (F,ψ1, . . . , ψp)(MF ), we will prove
that β ∈ (K0(F )∪SF )×{0Rp}. Since β ∈ VF and β /∈ (F,ψ1, . . . , ψp)(MF )
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then by the definition of VF , there exists a sequence {ξk} ⊂MF such that
(F,ψ1, . . . , ψp)(ξk) tends to β. Assume that ξk tends to x, we claim that
x must be infinity or a point of Sing(F ). In fact, if x is neither infinity
nor a point in Sing(F ), then x belongs to MF . Since F is a polynomial
map and ψ1, . . . , ψp are Nash functions, then (F,ψ1, . . . , ψp)(ξk) tends to
(F,ψ1, . . . , ψp)(x). It follows β = (F,ψ1, . . . , ψp)(x) and then β belongs
to (F,ψ1, . . . , ψp)(MF ) and that provides a contradiction. Now if ξk tends
to infinity, then since (F,ψ1, . . . , ψp)(ξk) does not tend to infinity, F (ξk)
must tend to a point in SF . If ξk tends to a point x ∈ Sing(F ), then F (ξk)
tends to a point in K0(F ). In both of these cases, ψi(ξk) tends to zero, for
i = 1, . . . , p and it follows β ∈ (K0(F ) ∪ SF )× {0Rp}.

Lemma 4.3. There exists a covering {U1, U2, U3, U4} of R2 by semi-
algebraic open subsets such that on every element of this covering, the
Pinchuk map P induces a diffeomorphism onto its image. Moreover, there
exists also semi-algebraic closed subsets Vi ⊂ Ui in R2 which cover R2 as
well.

Proof. Let us remark first that since K0(P) = ∅, then the singular locus
Sing(P) of P is empty. The asymptotic variety of the Pinchuk map P and
its inverse image, which is called asymptotic flower in the papers [2, 3, 4],
are fully described and sketched in these papers. In Figure 4.1, we copy
from Figure 2 and Figure 3 from [4, Section 5, pages 31-33] 2 of the
asymptotic set and the asymptotic flower of the Pinchuk map P.

We use the following properties:

1. (See [2], page 1) The asymptotic variety SP of the Pinchuk’s map P
is a curve parametrized by the bijective polynomial:

p(s) = s2 − 1, q(s) = −75s5 +
345

4
s4 − 29s3 +

117

2
s2 − 163

4
,

where s ∈ R.
2The use of these figures was asked the authorization of the author.
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5. The Asymptotic Flower of F

In [2] the authors consider (primarily polynomial) maps of the real plane to itself
that are proper. The flower of a map is the inverse image of the set of critical values
(and a value is critical precisely if it is the image of a point at which the Jacobian
determinant vanishes). Away from the flower the map is locally a covering map
(proper and a local homeomorphism). In fact, it is a a covering map (over its im-
age) on any connected component of the complement of the flower. In the case of
Pinchuk’s map the flower as defined above is empty, but the covering property fails
to hold because the map is not proper. This suggests calling the above flower the
critical flower and introducing as well the asymptotic flower, defined as the inverse
image of the set of asymptotic values of the map. On the complement of the asymp-
totic flower, the restricted map to the complement of the set of asymptotic values
is proper. This is because, by definition, as the asymptotic flower is approached,
the image of a point will tend to infinity in the image plane or to an asymptotic
value. But since the codomain of the restricted map is the complement of the set of
asymptotic values, this means that the image is tending to infinity relative to that
codomain. (Note. Asymptotic values can be defined in terms of limits of sequences
as well on manifolds, using local pathwise connectedness to produce the appropriate
curves. More general definitions are possible as well.) On each component of the
complement of the total flower (the union of the critical and asymptotic flowers)
the restricted map to the complement of the critical and asymptotic values will be
a covering map over its image.

C1 ->

<- C2 <- C3

-200

-100

0

100

200

300

-1 -0.5 0 0.5 1 1.5

Figure 2. Three curves in the asymptotic variety.
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Since the asymptotic variety AV[F] has been identified for the F at hand, it
remains only to compute its inverse image to obtain AF[F ], the asymptotic flower
of F . By consulting Table 2, it becomes clear that

• exactly two points, (0, 0) and (−1, −163/4), have no inverse images
• every other point of AV[F ] has exactly one inverse image
• every point not in AV[F ] has exactly two inverse images

This follows from a case by case check, cases corresponding to rows of the table. If
one removes the two points that have no inverse images from AV[F ], it breaks up
into three connected curves. Call them C1, C2, C3, as follows.

C1 is the q− curve, starting at (−1, −163/4) and continuing up and to the right.
C2 is the portion of the q+ curve starting at (0, 0) and continuing down and to
the left, ending at (−1, −163/4). Finally, C3 is the portion of the q+ curve ending
at (0, 0) and arriving from down and to the right. Starting and ending points
mentioned are not actually points of these curves, since they represent precisely
points that were removed. The descriptions also imply orientations for the the
three curves. Figure 2 shows the curves and their orientations.

Each point of each of the three curves has exactly one inverse image. Further-
more, as a starting or ending point, finite or infinite, is approached, the inverse im-
age point tends to infinity. Thus the inverse image of each of C1, C2, C3 is a smooth
curve in the plane (no singularities and no self-intersections) that tends to infinity
at either end. Call these curves D1, D2, D3. By definition, AF[F ] = D1∪D2∪D3,
where the curves are considered as point sets.

B

A

<- D3

B

A

D1 ->

<- D2

-1.5

-1

-0.5

0

0.5

-1 -0.5 0 0.5 1

Figure 3. The asymptotic flower of Pinchuk’s map.

1!

1!

2!

2!

The!asymptotic!variety!The!asymptotic!flower!!

Figure 4.1: The “asymptotic flower” and the asymptotic variety of P de-
scribed in [4].

2. (See [4, Section 5, pages 32], see also [3] and [2, page 1]) The asymp-
totic variety SP intersects the vertical axis at (0, 0) and (0, 208) and
its leftmost point is (−1,−163/4). This leftmost point is also the
only singular point of the curve SP .

3. (See [4, Section 5, pages 32], see also [3]) Exactly two points, the
leftmost point (−1,−163/4) and the origin (0, 0), have no inverse
images. Moreover, every other point of the asymptotic variety SP has
exactly one inverse image. Furthermore, these two points (0, 0) and
(−1,−163/4) break up the asymptotic variety into three connected
curves C1, C2 and C3 (see Figure 4.1).

4. (See [4, Section 5, pages 32], see also [3]) The asymptotic flower
is the union of three curves D1, D2 and D3, which are the inverse
images of C1, C2 and C3, respectively, in the following way: two
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points (−1,−163/4) and (0, 0) that have no inverse images from
the asymptotic variety break up the asymptotic flower into three
connected curves D1, D2 and D3 such that each point of each of the
three curves C1, C2 and C3 has exactly one inverse image (see Figure
4.1).

5. (See [4, Section 5, pages 33], see also [3]) Each of the three curves D1,
D2, D3 divides the source space into simply connected parts, which
may be described as the regions left and right of the curve, using the
induced orientations to define left and right. Removing the curves
D1, D2 and D3, it leaves exactly four simply connected open compo-
nents: two regions A and two regions B. In Figure 4.1, we denote by
A1 (resp., B1) the region A (resp., B) on the left and A2 (resp., B2)
is the region A (resp., B) on the right. Remark that the restriction
of P to each of the regions A1, A2, B1, B2 is homeomorphism (see
Figure 4.1).

By the above properties, one can choose the semi-algebraic closed sub-
set {Vi}i=1,..., 4 as follows:

V1 = A1∪D3, V2 = B1∪D3∪D1, V3 = A2∪D1∪D2, V4 = B2∪D2.

Moreover, by the item (5) above, one can choose an covering {Ui}i=1,..., 4

of R2 by semi-algebraic open subsets such that: Ui ⊃ Vi and the restriction
P|Ui is homeomorphism, for i = 1, . . . , 4.

Theorem 4.4. There exists a Valette variety VP associated to the Pinchuk
map P such that IH 0̄,c

1 (VP) = IH 0̄,cl
1 (VP) = 0.

Proof. By the construction of Valette varieties (Section 3.2.1) and Lemma
4.1 and Lemma 4.3, the Valetty varieties VP of the Pinchuk map P asso-
ciated the covering {Ui}i=1,...,4 chosen in Lemma 4.3 has four components
of dimension 2: they are smooth, non-compact, connected and are glued
along the asymptotic variety SP as follows: F (A2) and F (B1) are glued
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along the curve C1, F (A2) and F (B2) are glued along the curve C2, and
F (A1) and F (B1) are glued along the curve C3. These Valette varieties
are 2-dimensional varieties embedded in R6 and its planar presentations
can be illustrated (topologically) as in Figure 4.2.

C1

•
L

C2

C3L

F (B1) F (B2) F (A1)

F (A2) F (B1)
ℓ

c2

c1

O•

SF

Figure 4.2: The Valette variety associated to the Pinchuk map with the
chosen covering and some types of allowable chains for the intersection ho-
mology IH 0̄

1 (VP). The chains c1 and l are homologous for the intersection
homology.

Let us consider the following stratification of the varieties VP :

VP ⊃ V0 = {L,O} ⊃ ∅,

where L = (−1,−163/4, 0R4) and O = (0, 0, 0R4). This stratification is
locally topologically trivial stratification.

Let us remark that since dimR VP = 2, then we have only one per-
versity: the zero perversity 0̄ and p0 = p1 = p2 = 0. We look for the
1-dimensional allowable chains. For this, we have to verify the condition
(2.4), i.e. for a 1-dimensional chain c be (0̄, 1)-allowable, at first, c must
be satisfied the condition

dim(c ∩ V2−2) ≤ 1− 2 + 0.
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Hence, if c is (0̄, 1)-allowable then dim(c ∩ V0) ≤ −1. Consequently, the
chain c cannot contain neither L nor the origin O. In this case, the bounda-
ry ∂c of c, which consists of points or is an emptyset, does not meet the set
{L,O}. Thus ∂c is also (0̄, 1)-allowable, since dim(∂c∩V0) = dim ∅ = −∞.
Then the 1-dimensional allowable chains of VP are the chains of types c1
(with closed supports) and c2 (with compact supports) (see Figure 4.2).
Notice that the chain ℓ as shown in Figure 4.2 is the same type of c1, since
ℓ and c1 are homologous chains for the intersection homology with respect
to the considered stratification. Now assume that τi is a 2-dimensional
chain such that the boundary of τi is ci, for i = 1, 2, then the condition
(2.4) is obviously true for τi since

dim(τi ∩ V2−2) ≤ dim(V0) = 0 = 2− 2 + 0.

This shows that the two chains τ1 and τ2 are (0̄, 2)-allowable. Then we
have IH 0̄,c

1 (VP) = IH 0̄,cl
1 (VP) = 0.

Remark 4.5. Since the stratification used in the proof is a locally topolo-
gically trivial stratification then the result of the Theorem 4.4 is an invari-
ant for any (another) locally topologically trivial stratification.

Corollary 4.6. The Valette varieties associated to the Pinchuk map P
constructed in the proof of the Theorem 4.4 is a counter example for the
“real version” of the Valette’s Theorem 3.5.
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