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Affine and projective Lê cycles
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Abstract. Lê cycles of germs of complex analytic functions are an-
alytic cycles that describe, among other things, the topology of the
local Milnor fibres: We know from [7, 8] that there is a Lê cycle in
each dimension, from 0 to that of the singular set, and the multi-
plicity of the Lê cycles at each point says how many handles of the
corresponding dimension we must attach to a ball in order to con-
struct the local Milnor fibre (up to homeomorphism).

In [1], José Seade, Roberto Callejas-Bedregal and I defined the
global Lê cycles (affine and projective), which are a global extension
of the Lê cycles defined by Massey in [7]. Here, the relationship
between affine and projective Lê cycles will be detailed, this is also
mentioned in [2].
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1 Introdution

Lê cycles are analytic cycles encoding deep information about singu-
larity germs f : (CN , 0) → (C, 0) and allow describing the topology and
diffeomorphism type of the local Milnor fibres. These were introduced by
D. Massey in [8] and detailed in section 2, on local Lê cycles.
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In the affine context, we have the description by Schürmann and Tibăr
in [12] about the Schwartz-MacPherson classes of a complex algebraic
proper subset X ⊂ CN using algebraic cycles. Motivated by this de-
scription the definition of affine Lê cycles appears and they are a global
extension of Massey’s local Lê cycles, which can be found in section 3.
In section 4, these are generalized to the compact projective setting via
projective Lê cycles.

Large portions of this paper appear in section 7.5 of an earlier article
′′Milnor numbers and Chern classes for singular varieties: an introduction
by Callejas-Bedregal, Morgado, and Seade in 2022′′ ([2]), but more detail
is given here in several cases. The main result of this paper is Theorem
4.4, which relates the affine and projective Lê cycles, originally appearing
without any proof in [2, Proposition 7.5.5].

Explicitly, let X ⊆ CPN be a d-dimensional projective variety en-
dowed with a Whitney stratification with connected strata, let β be a
constructible function on X, with respect to this stratification, and let
Lk+2 be a linear subvariety of CPN of codimension k + 2. Then the
projective Lê cycle ΛP

k (β, Lk+2) is the projection of the affine Lê cycle
ΛA
k+1

(
β̃,Cone (Lk+2)

)
, where β̃ is a constructible function induced by β

on Cone(X), i.e,

ΛP
k (β, Lk+2) = P

(
ΛA
k+1

(
β̃,Cone (Lk+2)

))
.

2 Local Lê cycles

Let us recall first the definition of Lê cycles and Lê numbers of
germs of complex analytic functions introduced by D. Massey in [7] (see
also [8]). We assume that the reader is familiar with the notion of gap
sheaves (see [13] and [8, Definition 1.1]). For a coherent sheaf of ideals α

and an analytic subset W in an affine space U , we denote by α/W the
corresponding gap sheaf, which is a coherent sheaf of ideals in OU , and
by V (α)/W the analytic space defined by the vanishing of α/W . It is
important to note that the analytic space V (α)/W does not depend on
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the structure of W as a scheme, but only as an analytic set (see [8, p. 10]).
Let U be an open subset of Cn+1 containing the origin, h : (U, 0) →

(C, 0) the germ of an analytic function, z = (z0, · · · , zn) a linear choice of
coordinates in Cn+1 and Σ(h) = V

(
∂h
∂z0

, . . . , ∂h
∂zn

)
the critical set of h. To

define the Lê cycles we need to define the relative polar cycles first, which
are associated to the relative polar varieties:

Definition 2.1. For each k with k with 0 ≤ k ≤ n, the k-th local polar
variety Γk

h,z is the analytic space V
(

∂h
∂zk

, . . . , ∂h
∂zn

)
/Σ(h).

Hence the analytic structure of Γk
h,z does not depend on the structure

Σ(h) as a scheme, but only as an analytic set. At the level of ideals, Γk
h,z

consists of those components of V
(

∂h
∂zk

, . . . , ∂h
∂zn

)
which are not contained

in the set Σ(h). Massey denotes by
[
Γk
h,z

]
the cycle associated with the

space Γk
h,z (see [8, p. 9]).

Definition 2.2. For each 0 ≤ k ≤ n, the k-th local Lê cycle Λk
h,z of h

with respect to the coordinate system z as the cycle is:

Λk
h,z :=

[
Γk+1
h,z ∩ V

(
∂h

∂zk

)]
−
[
Γk
h,z

]
.

If a point p = (p0, · · · , pn) ∈ U is an isolated point of the intersection
of Λk

h,z with the cycle of V (z0 − p0, · · · , zk−1 − pk−1), then the k-th Lê
number λk

h,z(p) is the intersection number at p :

λk
h,z(p) :=

(
Λk
h,z · V (z0 − p0, . . . , zk−1 − pk−1)

)
p
.

It is proved in [9, Theorem 7.5] (see also [8, Theorem 10.18]) that for
a generic choice of linear coordinates, all the Lê numbers of h at p are
defined and they are independent of the coordinates choice. Hence, these
are called the generic Lê numbers of h at p and they are denoted simply
by λk

h(p).
An important feature of the generic Lê numbers is that they allow to

describe a handle decomposition of the Milnor fiber Fh,p of h at p. In fact,
Massey proved in [8, Theorem 3.3; Theorem 10.3] the following:
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Theorem 2.3. Let U be an open subset of Cn+1, let h : (U, 0) → (C, 0)
be a germ of an analytic function, let s denote dim0Σ(h), and let z =

(z0, · · · , zn) be a generic choice of linear coordinates in Cn+1. Then the
local Lê cycles are a collection of analytic cycle germs Λi

h,z in Σ(h) at the
origin such that each Λi

h,z is purely i-dimensional and properly intersects
V (z0, . . . , zi−1) at the origin, and for all p ∈ Σ(h) near 0 we have that

1. If s ≤ n−2, then Fh,p p is obtained up to diffeomorphism from a real
2n-ball by successively attaching λn−k

h,z (p)k-handles, where n − s ≤
k ≤ n;

2. If s = n− 1, then Fh,p is obtained up to diffeomorphism from a real
2n-manifold with a homotopy-type of a bouquet λn−1

h,z (p) circles by
successively attaching λn−k

h,z (p)k-handles, where 2 ≤ k ≤ n.

3. The reduced Euler characteristic of the Milnor fiber of h at p is given
by

χ̃ (Fh,p) =

n∑
i=0

(−1)n−iλi
h,z(p).

Massey gives an alternative characterization of the local Lê cycles of a
hypersurface singularity, which leads to a generalization of the Lê numbers
that can be applied to any constructible complex of sheaves. From this
more general viewpoint, the case of the Lê numbers of a function h is
just the case where the underlying constructible complex of sheaves is the
sheaf of vanishing cycles along h. Let us explain this. We assume some
basic knowledge on derived categories, hypercohomology and sheaves of
vanishing cycles as described in [3].

If X is a complex analytic space then Db
c(X) denotes the derived cat-

egory of bounded, constructible complexes of sheaves of C-vector spaces
on X. We denote the objects of Db

c(X) by something of the form F •.
The shifted complex F •[l] is defined by (F •[l])k = F l+k and its differen-
tial is dk[l] = (−1)ldk+l. The constant sheaf CX on X induces an object
C•
X ∈ Db

c(X) by letting C0
X = CX and Ck

X = 0 for k ̸= 0.
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If h : X → C is an analytic map and F • ∈ Db
c(X) then we denote the

sheaf of vanishing cycles of F • with respect to h by ϕhF
•.

For F • ∈ Db
c(X) and p ∈ X, we denote by H∗ (F •)p the stalk coho-

mology of F • at p, and by χ (F •)p its Euler characteristic. That is

χ (F •)p =
∑
k

(−1)k dimCHk (F •)p .

We also denote by χ (X,F •) the Euler characteristic of X with coeffi-
cients in F •, i.e.,

χ (X,F •) =
∑
k

(−1)k dimCHk (X,F •) ,

where H∗ (X,F •) denotes the hypercohomology groups of X with coeffi-
cients in F •.

When F • ∈ Db
c(X) is S-constructible, where S is a Whitney stratifica-

tion of X, we denote it by F • ∈ Db
S(X). We would like to point out the

following result which appears in [3, Theorem 4.1.22]:

χ (X,F •) =
∑
S∈S

χ (F •
S)χ(S),

where χ (F •
S) = χ (F •)p for an arbitrary point p ∈ S.

Let M be a complex manifold. For a complex analytic subspace V of
M , we denote its conormal space by T ∗

V M. That is

T ∗
V M := closure

{
(x, θ) ∈ T ∗M | x ∈ Vreg and θ |TxVreg

≡ 0
}
,

where T ∗M is the cotangent bundle of M and Vreg is the regular part of
V . The following definition is standard in the literature:

Definition 2.4. Let X be an analytic subspace of a complex manifold M ,
{Sα} a Whitney stratification of M adapted to X and x ∈ Sα a point in X.
Consider g : (M,x) → (C, 0) a germ of holomorphic function such that dxg
is a non-degenerate covector at x with respect to the fixed stratification,
that is, dxg ∈ T ∗

Sα
M and dxg /∈ T ∗

S′M , for all stratum S′ ̸= Sα. And let N
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be a germ of a closed complex submanifold of M which is transversal to
Sα, with N ∩ Sα = {x}. Define the complex link lSα of Sα by:

lSα := X ∩N ∩Bδ(x) ∩ {g = w} for 0 < |w| ≪ δ ≪ 1.

The normal Morse datum of Sα is defined by:

NMD (Sα) := (X ∩N ∩Bδ(x), lSα) ,

and the normal Morse index η (Sα, F
•) of the stratum is:

η (Sα, F
•) := χ (NMD (Sα) , F

•) ,

where the right-hand-side means the Euler characteristic of the relative
hypercohomology.

By the result of M. Goresky and R. MacPherson in [4, Theorem 2.3] we
get that the number η (Sα, F

•) does not depend on the choices of x ∈ Sα, g

and N . Notice that by [3, Remark 2.4.5(ii)], it follows that

η (Sα, F
•) = χ (X ∩N ∩Bδ(x), F

•)− χ (lSα , F
•) .

Lemma 2.5. Let F • ∈ Db
S(X) with S = {Sα} a Whitney stratification

of X. Let p ∈ Sα and g : (M,p) → (C, 0) be a holomorphic func-
tion germ such that dpg is a non-degenerate covector at p ∈ Sα with re-
spect to the fixed stratification. Set d = dimX, dα = dimSα and mα :=

(−1)d−dα−1χ
(
ϕg |N

F •
|N

)
p
, where ϕg |N

F •
|N

is the sheaf of vanishing cycles

of F •
|N

with respect to g |N , p ∈ Sα and N is a germ of a closed complex
submanifold which is transversal to Sα with N ∩ Sα = {p}. Then

mα = (−1)d−dαη (Sα, F
•) .

Proof. By [3, Equation (4.1), p. 106] we have that
Hi (ϕgF

•)p ≃ Hi+1
(
Bϵ(p) ∩X,Bϵ(p) ∩X ∩ g−1(ς), F •), for 0 < |ς| ≪

ϵ ≪ 1. Hence

χ
(
ϕg |N

F •
|N

)
p
= −χ

(
Bϵ(p) ∩X ∩N,Bϵ(p) ∩X ∩N ∩ g−1(ς), F •) ,

and therefore mα = (−1)d−dαη (Sα, F
•).
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Remark 2.6. Everything we have defined so far for a constructible com-
plex of sheaves is defined by J. Schürmann and M. Tibăr in [12] for con-
structible functions, and the two equivalent constructions. In fact, given
F • ∈ Db

c(X), we have naturally associated the constructible function on
X given by

β(p) = χ (F •)p .

Moreover, the converse also holds (see [11]), i.e., given any constructible
function β on X there is F • ∈ Db

c(X) such that

β(p) = χ (F •)p .

In particular, for any constructible function β on X we have that

η (Sα, β) = χ (X ∩N ∩Bδ(x), β)− χ (lSα , β) . (2.1)

Let X be an analytic germ of an s-dimensional space which is embedded
in some affine space, M := Cn+1, so that the origin is a point of X.
Consider a bounded, constructible sheaf F • on X or M .

For a generic choice of linear coordinates z = (z0, . . . , zn) for Cn+1,
Massey in [9, Proposition 0.1] proves that there exists analytic cycles Λi

F •,z

in X which are purely i-dimensional, such that Λi
F •,z and

V (z0 − p0, . . . , zi−1 − pi−1) intersect properly at each point p = (p0, · · · , pn)
∈ X near the origin, and such that

χ (F •)p =

s∑
i=0

(−1)s−i
(
Λi
F •,z · V (z0 − p0, . . . , zi−1 − pi−1)

)
p
.

Moreover, whenever such analytic cycles Λi
F •,z exist, they are unique.

He also sets λi
F •,z(p) =

(
Λi
F •,z · V (z0 − p0, . . . , zi−1 − pi−1)

)
p

and calls it

the i-th characteristic polar multiplicity F •. When β(p) = χ (F •)p we also
deno Λi

F •,z by Λi
β,z.

In [8, Corollary 10.15] was proved that, for a generic choice of linear co-
ordinates z = (z0, . . . , zn), if we let Li be the i-dimensional linear subspace
V (z0, . . . , zn−i) then,

Λk
F •,z =

∑
α

mαPk

(
Sα

)
=
∑
α

(−1)s−dαη (Sα, F
•)Pk

(
Sα

)
. (2.2)
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where Pk

(
Sα

)
is the absolute affine k-dimensional polar variety, with re-

spect to the flag given by the Li above, as defined by Lê and Teissier in
[5]. We are going to define these affine polar varieties later on.

Remark 2.7. By [8, Remark 10.5, Remark 10.7] it follows that if we
have h : (U, 0) → (C, 0) with U an open neighborhood of the origin in
Cn+1, X = Σ(h) the critical set of h, s = dim0X and we let

P • = (ϕhC•
U ) |Σ(h)

[n− s],

then for generic linear coordinates z, for all i and for all p ∈ X near the
origin, we have Λi

P •,z = Λi
h,z and λi

P •,z = λi
h,z(p). Also

mα = (−1)s−dαη (Sα, P
•) = (−1)s−dαη (Sα, w) ,

where w is the constructible function defined by w(p) = χ (P •)p = χ (Fh,p)−
1 with Fh,p being the Milnor fiber of h at p. Hence, by equation (2.2) we
have that

Λi
h,z =

∑
α

(−1)s−dαη (Sα, w)Pi

(
Sα

)
.

This is the description of the local Lê cycles in terms of local polar varieties
we need in order to define the global Lê cycles for compact projective
varieties.

3 Affine Lê cycles

In the affine context, Schürmann and Tibăr in [12] describe the
Schwartz-MacPherson classes of a complex algebraic proper subset X ⊂
CN using algebraic cycles, which were called MacPherson cycles. In this
construction a key role is played by the affine polar varieties, which we
now describe (see [5]).

Definition 3.1. For each 0 ≤ i ≤ N , let Li be a linear subvariety of CN

of codimension i. If X is of pure dimension d < N , the k-th affine polar
variety of X, with 0 ≤ k ≤ d, is the following algebraic set

Pk (X,Lk+1) := {x ∈ Xreg | dim (TxXreg ∩ Lk+1) ≥ d− k}.
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For Lk+1 sufficiently generic, the polar variety Pk (X,Lk+1) has pure di-
mension k. We have Pd(X) := X and we set Pk(X) := ∅ for k > d.

We fix an algebraic Whitney stratification {Sα} of X with connected
strata. In this context X does not need to be pure dimensional and we
only assume d = dimX < N . Let β be a constructible function on X with
respect to this Whitney stratification.

Schürmann and Tibăr make the following definition.

Definition 3.2. The k-th MacPherson cycle of β (0 ≤ k ≤ d) by:

MPk (β, Lk+1) :=
∑
α

(−1)dαη (Sα, β)Pk

(
Sα, Lk+1

)
,

where dα = dimSα and Pk

(
Sα, Lk+1

)
is the k-th global affine polar variety

of the algebraic closure Sα ⊂ CN of the stratum Sα.

The most important result of [12] is that, for generic Lk+1, the cycle
MPk (β, Lk+1) represents the k-th dual Schwartz-MacPherson class c̆SMk (β)

in the Chow group Ak(X), where čSMk (β) = (−1)kcSMk (β). That is,

cSMk (β) = (−1)k [MPk(β)] = (−1)k
∑
α

(−1)dαη (Sα, β)
[
Pk

(
Sα

)]
. (3.1)

Hence, this way, Schürmann and Tibăr describe the
Schwartz-MacPherson classes via affine polar varieties.

Definition 3.3. We define the k-th affine Lê cycle of β by

ΛA
k (β, Lk+1) :=

∑
α

(−1)d−dαη (Sα, β)Pk

(
Sα, Lk+1

)
.

Notice that ΛA
k (β, Lk+1) = (−1)dMPk (β, Lk+1). Hence, by equation

(3.1) we have that

cSMk (β) = (−1)k+d
[
ΛA
k (β)

]
= (−1)k+d

∑
α

(−1)d−dαη (Sα, β)
[
Pk

(
Sα

)]
.

(3.2)
An interesting feature of these affine Lê cycles of X is that they are a

global extension of the Lê cycles defined by Massey:
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Proposition 3.4. ([2, Proposition 7.5.3]) Let X be a closed subvariety of
CN and let β be a constructible function on X with respect to a Whitney
stratification {Sα} of X. Let x ∈ X and let U ⊆ CN be an open neighbor-
hood of x. Let {x} = LN ⊂ LN−1 ⊂ · · · ⊂ L1 ⊂ L0 = CN be a generic
flag of linear subvarieties of CN with Li being of codimension i and such
that Li ∩U = V (z0, . . . , zi−1) where z = (z0, . . . , zN−1) is a generic linear
coordinates around x. Let ι : U ∩X −→ CN be the inclusion. Then, the
flat pull-back of the affine Lê cycles satisfies the following property

ι∗ΛA
k (β, Lk+1) = Λk

ι∗(β),z.

Proof. In fact,

ι∗ΛA
k (β, Lk+1) = ι∗

(∑
α

(−1)d−dαη (Sα, β)Pk

(
Sα, Lk+1

))
=

∑
α

(−1)d−dαη (Sα, β) ι
∗ (Pk

(
Sα, Lk+1

))
=

∑
α

(−1)d−dαη (Sα ∩ U, ι∗(β))Pk

(
Sα ∩ U

)
= Λk

ι∗(β),z.

4 Projective Lê cycles

Let X be a complex analytic space in CPN of pure dimension d.
For each 0 ≤ k ≤ N , let Lk be a linear subspace of CPN codimension k.

Definition 4.1. The k-th projective polar variety of X, with respect
to Lk+2, is defined by

Pk (X,Lk+2) := {x ∈ Xreg | dim (TxXreg ∩ Lk+2) ≥ d− k − 1},

where TxXreg is the projective tangent space of X at a regular point x.

We observe that for Lk+2 sufficiently general, the dimension of
Pk (X,Lk+2) is equals to k. Thus, we are indexing the polar varieties
by their dimension and not by their codimension, as it is usually done.
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Also observe that the class [Pk (X,Lk+2)] of Pk (X,Lk+2) modulo rational
equivalence in the Chow group Ak(X) does not depend on Lk+2 provided
this is sufficiently general. This class is denoted by [Pk(X)] and it is called
the k-th projective polar class of X.

Remark 4.2. For any subvariety Z of CPN we denote by Cone(Z) the
cone in CN+1 induced by Z. Analogously, for any conical subvariety
through the origin V of CN+1 we denote by P(V ) the induced projec-
tive variety in CPN . Let X be a subvariety of CPN and let Lk+2 be a
linear subvariety of CPN of codimension k + 2. In this case, Cone (Lk+2)

is a linear subspace of codimension k + 2 in CN+1 and Pk+1 (Cone(X) ,
Cone (Lk+2)) is a conical subvariety of CN+1 of dimension k + 1. The
relationship between the projective and the affine polar varieties is given
by

Pk (X,Lk+2) = P (Pk+1 (Cone(X),Cone (Lk+2))) .

Definition 4.3. For any given F • ∈ Db
S(X), where S = {Sα} is a Whitney

stratification of X, define the k-th projective Lê cycle, with respect to
Lk+2, by

ΛP
k (F

•, Lk+2) :=
∑
α

(−1)d−dαη (Sα, F
•)Pk

(
S̄α, Lk+2

)
,

where dα = dimSα.

Hence, the class of this cycle in the Chow group Ak(X) does not depend
on Lk+2 provided this is sufficiently general. This class is denoted by[
ΛP
k (F

•)
]
.

If β is the constructible function associated to F • as in Remark 2.6
we also denote this cycle ΛP

k (F
•, Lk+2) by ΛP

k (β, Lk+2) and the class[
ΛP
k (F

•)
]

by
[
ΛP
k(β)

]
. That is,

ΛP
k (β, Lk+2) :=

∑
α

(−1)d−dαη (Sα, β)Pk

(
S̄α, Lk+2

)
.

The next result is going to relate the affine and projective Lê cycles, the
main result of this paper. This is only mentioned in [2, Proposition 7.5.5].



Affine and projective Lê cycles 131

Theorem 4.4. Let X ⊆ CPN be a d-dimensional projective variety en-
dowed with a Whitney stratification S = {Sα} with connected strata. Let
Lk+2 be a linear subvariety of CPN of codimension k + 2. Let
π : CN+1\{0} −→ CPN be the natural projection. Let β be a constructible
function on X, with respect to this stratification. Then

1. S ′ :=
{
π−1 (Sα)

}
∪ {{0}} is a Whitney stratification of Cone(X).

2. β induces a constructible function β̃ on Cone(X) with respect to the
Whitney stratification S ′.

3. ΛP
k (β, Lk+2) = P

(
ΛA
k+1

(
β̃,Cone (Lk+2)

))
.

Proof. Item (1) is easily verified. For (2), define β̃(x) = β(π(x)) if x ̸= 0

and β̃(0) = 0. Then clearly β̃ is a constructible function on Cone(X)

with respect to the Whitney stratification S ′. We prove now (3). Since
Pk+1({0}) = ∅ we have that

ΛA
k+1

(
β̃,Cone (Lk+2)

)
=

∑
α

(−1)d−dαη
(
π−1 (Sα) , β̃

)
Pk+1

(
π−1 (Sα),Cone (Lk+2)

)
.

But, by Remark 4.2, we have that

P
(
Pk+1

(
π−1 (Sα),Cone (Lk+2)

))
= Pk

(
S̄α, Lk+2

)
.

Thus

P
(
ΛA
k+1

(
β̃,Cone (Lk+2)

))
=
∑
α

(−1)d−dαη
(
π−1 (Sα) , β̃

)
Pk

(
S̄α, Lk+2

)
.

Since
ΛP
k (β, Lk+2) =

∑
α

(−1)d−dαη (Sα, β)Pk

(
S̄α, Lk+2

)
it remains to prove that η

(
π−1 (Sα) , β̃

)
= η (Sα, β). Let x ∈ π−1 (Sα).

We can choose a normal slice N to π−1 (Sα) at x such that π|N : N −→
π(N) is an isomorphism and π(N) is a normal slice to Sα at π(x). Let
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g :
(
CPN , π(x)

)
−→ (C, 0) be a non-degenerate covector at π(x) with

respect to the stratification S. Clearly π ◦ g :
(
CN+1, x

)
−→ (C, 0) is a

non-degenerate covector at x with respect to the stratification S ′.
Let {Tγ} be a Whitney stratification of X ∩ Bδ(π(x)) ∩ π(N). Then,{

π−1 (Tγ)∩ Bϵ(x)}, with ϵ ≪ δ, is a Whitney stratification of Cone(X)∩
Bϵ(x) ∩N . Hence

χ
(
Cone(X) ∩Bϵ(x) ∩N, β̃

)
=
∑
γ

β̃
(
π−1 (Tγ) ∩Bϵ(x)

)
χ
(
π−1 (Tγ) ∩Bϵ(x)

)
=
∑
γ

β (Tγ)χ (Tγ)

= χ (X ∩Bδ(π(x)) ∩ π(N)) .

Analogously we can prove that χ
(
Cone(X) ∩Bϵ(x) ∩N ∩ {π ◦ g = w}, β̃

)
= χ (X ∩Bδ(π(x)) ∩ π(N) ∩ {g = w}, β), which ends the proof.

The following result could be seen as a projective version of equation
(3.2).

Proposition 4.5. Let X be a projective variety endowed with a Whitney
stratification with connected strata Sα. Consider φ : X → CPN a closed
immersion and L = OCPN (1). If β : X → Z is a constructible function
with respect to this stratification, then

cSMk (β) =
∑
i≥k

(−1)d−i

(
i+ 1

k + 1

)
c1 (φ

∗L)i−k ∩
[
ΛP
i (β)

]
.

Proof. For any purely dimensional projective variety V of dimension d we
have, by R. Piene’s work [10], the following characterization of the Mather
classes via polar varieties:

cMa
k (V ) =

d∑
i=k

(−1)d−i

(
i+ 1

k + 1

)
c1 (φ

∗L)i−k ∩ [Pi(V )] . (4.1)

Since β =
∑

α η (Sα, β)EuS̄α
, where EuS̄α

is the local Euler obstruc-
tion function of S̄α as defined by MacPherson [6], we have that

cSMk (β) =
∑
α

η (Sα, β) c
Ma
k

(
S̄α

)
. (4.2)
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Hence, by equations (4.1) and (4.2) we have

cSMk (β) =
∑
α

η (Sα, β)

dα∑
i=k

(−1)dα−i

(
i+ 1

k + 1

)
c1 (φ

∗L)i−k ∩
[
Pi

(
S̄α

)]
=
∑
i≥k

(−1)d−i

(
i+ 1

k + 1

)
c1 (φ

∗L)i−k ∩
[
ΛP
i (β)

]
.
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