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Abstract.
We classify submersions from (R3, 0) to (R, 0) up to diffeomor-

phisms which preserve the swallowtail and use this classification to
study its flat geometry. The flat geometry is derived from the contact
of the swallowtail with planes, which is measured by the singularities
of the height function.
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1 Introduction

A swallowtail is the image of a germ g : (R2, 0) → (R3, 0) that is A-
equivalent to f(x, y) = (x,−4y3−2xy, 3y4+xy2), that is, there exist germs
of diffeomorphisms ϕ and ψ such that g = ψ ◦ f ◦ ϕ−1. We refer to the
swallowtail parametrised by f as the standard swallowtail (see Figure 1.1)
and to the swallowtail parametrised by any g as the geometric swallowtail.
In [38] a normal form of a geometric swallowtail obtained using changes of
coordinates in the source and isometries in the target is given.
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Figure 1.1: The swallowtail, its singular curve Σ and its double point curve Υ.

Swallowtail singularities arise in a natural way. For instance, the focal
sets, duals and discriminants of curves and surfaces in the Euclidean space
R3 can have swallowtail singularities (see for example [3], [6], [11], [39]).
Hence it is important to study their differential geometry.

In this paper, we classify germs of submersions f : (R3, 0) → (R, 0)
up to diffeomorphisms in the source which preserve the swallowtail. We
note that this classification in a more general context was stated in [8], but
without the proof in details, this is done here. Part of this classification
can be seen as a consequence of the results in [1] for the swallowtail in
C3. We also study the flat geometry of a swallowtail which is derived from
its contact with planes (flat objects). This contact is measured by the
singularities of the height functions on the swallowtail.

This work is part of an ongoing study of the geometry of singular
surfaces from Singularity Theory viewpoint (see for example [10], [14],
[18], [20], [19], [21], [31], [32], [35], [41], [44] for cross-cap, [11], [23], [26],
[27], [30], [36], [39], [42], [45] for cuspidal edge, [38] for swallowtail, [34] for
cuspidal cross-cap and [25], [37] for corank 1 singularity).

We follow the approach in [10] : we fix the standard swallowtail X =

f(R2, 0) and consider its contact with fibres of submersions. (See §3.3 for
details)

The paper is organized as follows. In §2 we give some concepts and
results on classification of germs of functions on an analytic variety. In
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§3 we give some properties of the standard swallowtail and classify sub-
mersions from (R3, 0) to (R, 0) up to changes of coordinates in the source
that preserves the standard swallowtail, in §4 we obtain the discriminants
of versal unfoldings of each normal form obtained in the classification and
analyze the contact between the zero fiber and the standard swallowtail in
each case. We use in §5 the classification in §3 to study the flat geometry
of a geometric swallowtail.

For background material on singularity theory we refer the reader to
[24], [29], [43] and on its application in the differential geometry to [7],
[22].

This paper is part of the PhD Thesis work of the author under super-
vision of Farid Tari. For more details see [16], [15].

2 Functions on analytic varieties

In this section we review some concepts and results from [8], [9], [10],
[12] and [36] which are useful tools for classifying functions on analytic
varieties.

Let En be the local ring of germs of smooth functions (Rn, 0) → R and
Mn its unique maximal ideal.

Let (X, 0) ⊂ (Rn, 0) be a germ of a reduced analytic subvariety of Rn at
0. We say that a germ of diffeomorphism φ : (Rn, 0) → (Rn, 0) preserves
X if φ(X) and X are equal as germs at 0, that is, (φ(X), 0) = (X, 0).
The set of such diffeomorphisms forms a subgroup of the group of all
diffeomorphisms in (Rn, 0) (the group R) and is denoted by R(X).

Given two germs f, g ∈ En, we say that they are R(X)-equivalents if
there exists a germ of diffeomorphism φ ∈ R(X) such that g ◦ φ−1 = f .

We denote by Θ(X) the En-module of germs of vector fields tangent to
X at 0. We define Θ(X) · f = {ξ · f ∈ En | ξ ∈ Θ(X) , ξ(0) = 0}, which is
an En-module.

Let Θ1(X) = {ξ ∈ Θ(X) | j1ξ = 0} which is an En-module. If we in-
tegrate the vector fields in Θ1(X) we obtain a group denoted by R1(X),
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which is the set of germs of diffeomorphisms in R(X) with 1-jets is the
identity. We also can define the subgroup Rk(X) of germ of diffeomor-
phism at R(X) with k-jets is the identity. It is a normal subgroup of

R(X) and, consequentially, we can define the group R(k)(X) =
R(X)

Rk(X)
.

The elements of R(k)(X) are k-jets of elements of R(X). The action of
R(X) on Mn induces an smooth action of the group R(k)(X) on the k-jet
space of function germs Jk(n, 1).

For f ∈ En the tangent spaces to the R(X) and R1(X)-orbits of f are,
respectively

LR(X) · f = Θ(X) · f and LR1(X) · f = Θ1(X) · f.

The tools for classifying germs of functions (Rn, 0) → R, up to the
R(X)-equivalence, are generalizations of the classical results about the
action of R over En. The group R(X) is a Damon’s geometric subgroup
(for more details, see [12] and [13]), so the theorems on versal deformations
and finite determinacy apply to this setting.

Definition 2.1. A germ f : (Rn, 0) → (R, 0) is k-R(X)-determined if
every germ of a function with the same k-jet as f is R(X)-equivalent to
f . We say that f is R(X)-finitely determined if f is k-R(X)-determined
for same k ∈ N∗.

Theorem 2.2. ([12]) Consider a germ f : (Rn, 0) → (R, 0). If there exists
k ∈ N∗, such that

Mk
n ⊂ LR(X) · f,

then f is (k + 1)-R(X)-determined.

We define the extended pseudo-group of diffeomorphisms preserving X,
denoted by Re(X), as being the pseudo-group obtained by integrating the
vector fields ξ ∈ Θ(X), but excluding the condition ξ(0) = 0. Hence, for
f ∈ En the extended tangent space to the Re(X)-orbit of f is LRe(X)·f =

{ξ · f ∈ En | ξ ∈ Θ(X)}.
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Note that when X is a swallowtail, every vector field vanishes at the
origin, that is, in this case Re(X) = R(X).

The R(X)-classification of finitely determined germs is carried out in-
ductively on the jet level. The method used here is that of the complete
transversal [8] adapted for the R(X)-action in [10].

Theorem 2.3. Complete Transversal Let f : (Rn, 0) → (R, 0) be a
smooth germ and {h1, ..., hr} a collection of homogeneous polynomials of
degree k + 1 such that

Mk+1
n ⊂ LR1(X) · f + R · {h1, ..., hr}+Mk+2

n .

Then any germ g : (Rn, 0) → (R, 0) with jkg(0) = jkf(0) is R1(X)-
equivalent to a germ of the form

f(x) +

r∑
i=1

λihi(x) + φ(x),

where φ(x) ∈ Mk+2
n and λi ∈ R. The real vector space T = R · {h1, ..., hr}

is called by a complete (k + 1)-transversal of f .

Proposition 2.4. (i) A germ f ∈ Mn is k-R1(X)-determined if and only
if

Mk+1
n ⊂ LR1(X) · f +Mk+2

n .

(ii) In particular, if every vector field in Θ(X) vanishes at the origin and

Mk+1
n ⊂ LR(X) · f +Mk+2

n ,

then f is (k + 1)-R(X)-determined.

Proof. This is a consequence of Theorem 2.3 and Theorem 2.5 in [5]
applied to our setting. 2

An s-parameter deformation of f ∈ En is a family of germs of functions
F : (Rn × Rs, (0, 0)) → (R, 0) such that F0(x) = F (x, 0) = f(x). An s-
parameter deformation F is said to be P -R+(X)-induced
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from an r-parameter deformation G if there exist a germ
ϕ : (Rn×Rs, (0, 0)) → (Rn×Rr, (0, 0)) of the form ϕ(x, u) = (φ(x, u), ψ(u))

and a germ of a function c : (Rs, 0) → R such that F (x, u) = G(ϕ(x, u))+

c(u). When ϕ is a germ of a diffeomorphism we say that F and G are
P -R+(X)-equivalent (see for example [7] for the notion of (p)-unfoldings).

We say that a deformation F of f is an R+(X)-versal deformation of
f if any other deformation of f is P -R+(X)-induced from F .

Proposition 2.5. ([10]) An s-parameter deformation F of a germ of a
function f on X is an R+(X)-versal deformation if and only if

LRe(X) · f + R · {1, Ḟ1, ..., Ḟs} = En,

where Ḟi =
∂F
∂ui

(x, 0), for i = 1, ..., s.

We define the R+
e (X)-codimension of f as cod(f,R+

e (X)) =

dimR
( Mn

LRe(X) · f
)
. It is the least number of parameters needed to have

an R+(X)-versal deformation of f .
Another important tool in the classification is Mather’s Lemma.

Lemma 2.6. ([28]) Mather’s Lemma Let α : G×M →M be a smooth
action of a Lie group G over a smooth manifold M , and let V be a con-
nected submanifold of M . Then the necessary and sufficient conditions for
V been in a single orbit are the following:

(i) TvV ⊂ Tv(G.v), for every v ∈ V .

(ii) dim(Tv(G.v)) is independent of v ∈ V .

3 Classification of functions on a swallowtail

In this section, we shall use the results in §2 to classify smooth germs
of functions from (R3, 0) → (R, 0) up to changes of coordinates in the
source which preserve the standard swallowtail. Note that when X is a
swallowtail, every vector field vanishes at the origin, that is, in this case
Re(X) = R(X).
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We consider here X been the standard swallowtail parametrised by
f(x, y) = (x,−4y3 − 2xy, 3y4 + xy2) or with equation

16u4w − 4u3v2 − 128u2w2 + 144uv2w − 27v4 + 256w3 = 0.

We called this germs functions on a swallowtail. Note that the function
f is a parametrisation of the discriminant set of the R-versal deformation
F (t, u0, u1, u2) = t4 + u2t

2 + u1t+ u0 of the A3-singularity t4.

Proposition 3.1. ([4]) The E3-module of germs at the origin of vector
fields in R3 tangents to the standard swallowtail is generated by the vector
fields θ1, θ2 and θ3 with

θ1 = 2u
∂

∂u
+ 3v

∂

∂v
+ 4w

∂

∂w
,

θ2 = 6v
∂

∂u
+ (8w − 2u2)

∂

∂v
− uv

∂

∂w
,

θ3 = (16w − 4u2)
∂

∂u
− 8uv

∂

∂v
− 3v2

∂

∂w
.

Integrating the linear parts of θ1, θ2, θ3 in Proposition 3.1, gives the
followings 1-jets of changes of coordinate in R(X)

h1(u, v, w) = (e2λu, e3λv, e4λw),

h2(u, v, w) = (u+ 3βv, v + 4γw,w),

h3(u, v, w) = (u+ αw, v, w),

with α, β, γ, λ ∈ R.
Consider the 1-jet j1f = au+ bv + cw of a submersion f , with a, b or

c non-zero.

Proposition 3.2. The R(1)(X)-orbits of submersions f : (R3, 0) → (R, 0)
are ±u, v, ±w.
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Proof. The proof immediately follows considering the 1-jets of diffeo-
morphisms in R(X). In order to get the 1-jet v we use the diffeomorphism
(u, v, w) → (u,−v, w) which also preserves the swallowtail. 2

Now we investigate each case in Proposition 3.2.

Lemma 3.3. The germ g(u, v, w) = ±u is 1-R(X)-determined and has
R+

e (X)-codimension 0.

Proof. We have

LR(X) · g = E3 · {u, v, 4w − u2} = M3

and the result follows. 2

Lemma 3.4. Any R(X)-finitely determined germ in E3 with 1-jet R(1)(X)-
equivalent to v is R(X)-equivalent to v+auk+1 for some k ≥ 1 and a ̸= 0.
The germ v+ auk+1, a ̸= 0, is (k+1)-R(X)-determined and has R+

e (X)-
codimension k.

Proof. Observe that the germ v is not R(X)-finitely determined. We
proceed by induction on the k-jets (k ≥ 1) of germs g with 1-jet v.

Firstly, we find a complete (k + 1)-transversal of g(u, v, w) = v.
Note that

LR1(X) · g = M3 · {v, 4w − u2} = E3 · {uv, v2, vw, 4uw − u3, 4w2 − u2w}.

Hence,

M(k+1)
3 ⊂ LR1(X) · g + R · {uk+1}+M(k+2)

3 ,

so T = R · {uk+1} is a complete (k + 1)-transversal of g. Then, by The-
orem 2.3, any (k + 1)-jet with k-jet equal to v is R1(X)-equivalent to
v + auk+1, a ∈ R.

For a ̸= 0, using Proposition 2.4, we can conclude that the germ
g(u, v, w) = v+auk+1 is (k+2)−R(X)-determined. However, we can use
Theorem 2.3 and Lemma 2.6 to conclude that g is, in fact, (k + 1)-R(X)-
determined.
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We have
M3

LR(X) · g
= R · {u, u2, ..., uk, uk+1} which implies that the

R+
e (X)-codimension of g is k + 1 and the codimension of the stratum of

this singularity is k. 2

Lemma 3.5. Any R(X)-finitely determined germ in E3 with 1-jet R(X)-
equivalent to ±w and R+

e (X)-codimension ≤ 2 is R(X)-equivalent to
±w + au2 + bu3, with a ̸= 0,± 1

12 ,±
1
4 and b ̸= 0. Furthermore, the germ

±w + au2 + bu3, with a and b in the previous conditions, is 3-R(X)-
determined and has R+

e (X)-codimension 2 (on the stratum).

Proof. For g(u, v, w) = ±w we have

LR(X) · g = E3 · {w, uv, v2},

so g is not R(X)-finitely determined. We proceed by induction on the
k-jets of germs with 1-jet ±w.

Note that

M2
3 ⊂ LR1(X) · g + R · {u2, uv, v2}+M3

3,

so T = R · {u2, uv, v2} is a complete 2-transversal of g. Hence, any 2-jet
with 1-jet equal to ±w is R1(X)-equivalent to g(u, v, w) = ±w + au2 +

buv + cv2, with a, b, c ∈ R.

When a ̸= 0, using the linear change of coordinates h2 with γ = 0 and
β = −b

6a , we obtain g(u, v, w) = g(h2(u, v, w)) = ±w+ au2+ c′v2. For each
a fixed, denote by V the set {±w + au2 + c′v2; c′ ∈ R}. Thus the tangent
space of V at gc′ is Tgc′V = R · {v2}.

Note that

θ1gc′ = 4au2 + 6c′vw − 4c′u2v;

θ2gc′ = (12a∓ 1)uv + 16c′vw − 4c′u2v;

θ3gc′ = 32auw − 8au3 − 16c′uv2 ∓ 3v2.
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Therefore, the tangent space of the R(2)(X)-orbit of gc′ is given by

LR(2)(X) · gc′ = J2(⟨4au2 + 6c′vw − 4c′u2v, (12a∓ 1)uv + 16c′vw,

32auw ∓ 3v2⟩)

= J2(⟨au2 ± w, uw, vw,w2, v2, (12a∓ 1)uv⟩)

which consist of the 2-jets of elements in the space generated by au2 ±
w, uw, vw,w2, v2, (12a∓ 1)uv and it is independent of c′.

Hence, Tgc′V ⊂ LR(2)(X) · gc′ . Using Mather’s Lemma, we conclude
that ±w + au2 + c′v2 is R(X)-equivalent to ±w + au2.

Consider f(u, v, w) = ±w + au2, with a ̸= 0. Then

LR(X) · f = E3 · {au2 ± w, (12a∓ 1)uv, 32auw − 8au3 ∓ 3v2}.

A complete 3-transversal is given by

T =

{
R · {u3} if a ̸= ± 1

12

R · {u3, u2v} if a = ± 1
12

.

Therefore, when a ̸= 0,± 1
12 , any 3-jet with 2-jet equal to ±w + au2 is

R1(X)-equivalent to ±w + au2 + bu3, b ∈ R.
For f(u, v, w) = ±w + au2 + bu3, with a ̸= 0,± 1

12 , we have

M4
3 ⊂ LR1(X) · f +M5

3,

if and only if a ̸= ±1
4 , that is, by Proposition 2.4, f is 3-R(X)-determined

if and only if a ̸= ±1
4 .

Furthermore,

M3

LR(X) · f
=

{
R · {u, v, u2, u3} if b ̸= 0

R · {u, v, u2, u3, v2} if b = 0

which implies that the R+
e (X)-codimension of the stratum of the singu-

larity of f is 2 if b ̸= 0 and 4 if b = 0.
When a = 0, any R(X)-finitely determined germ in E3 with 2-jet

R(X)-equivalent to ±w + buv + cv2 has R+
e (X)-codimension > 2. 2
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Theorem 3.6. Let X be the swallowtail parameterised by f(x, y) =

(x,−4y3 − 2xy, 3y4 + xy2). Denote by (u, v, w) the coordinates in the
target. Then any germ g : (R3, 0) → (R, 0) of an R(X)-finitely determined
submersion with R+

e (X)-codimension ≤ 2 of the stratum in the presence
of moduli is R(X)-equivalent to one of the germs in Table 3.1.

Table 3.1: R+
e (X)-codimension ≤ 2 germs of submersions.

Normal form cod(f,R+
e (X)) R+(X)-versal deformation

±u 0 ±u

v + au2, a ̸= 0 1 v + au2 + a1u

v + au3, a ̸= 0 2 v + au3 + a1u+ a2u2

±w + au2 + bu3, a ̸= 0,± 1
12

,± 1
4
; b ̸= 0 2 ±w + au2 + bu3 + a1u+ a2v

Proof. The proof follows from Proposition 3.2 and Lemmas 3.3, 3.4,
3.5. 2

Remark 3.7. The K(X)-classification of germs of submersions
(R3, 0) → (R, 0) of Ke(X)-codimension ≤ 2 can be obtained from The-
orem 3.6 by setting a = ±1. Furthermore, we observe that if we are
interested in the fibers of these submersions, then both classifications can
be used, since the fibers will be diffeomorphic.

In [33] they used this classification to obtain a classification of simple
bigerms from R3 to R3 where one branch is a swallowtail and the other is
a folding plane.

4 The geometry of functions on a swallowtail

The standard swallowtail has equation 16u4w − 4u3v2 − 128u2w2 +

144uv2w − 27v4 + 256w3 = 0. By Shafarevich [40], if X is an irreducible
affine variety in Rn defined by the ideal I then the equations of the tangent
cone of X are the lowest degree terms of the polynomials in I. Therefore,
the tangent cone to the standard swallowtail is the repeated plane w3 = 0.
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The tangential line of the standard swallowtail at the origin is the line
with direction (1, 0, 0) passing through the origin. The germ f(x, y) =

(x,−4y3 − 2xy, 3y4 + xy2) is singular along a curve Σ parametrised by
α(t) = f(−6t2, t) = (−6t2, 8t3,−3t4). Furthermore f has a double point
curve Υ parametrised by β(t) = f(−2t2, t) = (−2t2, 0, t4) which ends at
the swallowtail point. See Figure 1.1.

We study here the discriminants of the singularities given in Theo-
rem 3.6. Let g : (R3, 0) → (R, 0) be a germ on X = f(R2, 0) and
F : (R3 × R2, (0, 0)) → (R, 0) be a deformation of g. We consider the
families G(x, y, a1, a2) = F (f(x, y), a1, a2), H1(t, a1, a2) = F (α(t), a1, a2)

and H2(t, a1, a2) = F (β(t), a1, a2).
The discriminant of the family G is the set

D1(F ) = {(a1, a2, G(x, y, a1, a2)) ∈ R2×R;
∂G

∂x
=
∂G

∂y
= 0 at (x, y, a1, a2)},

the discriminant of the family G restricted to the singular curve Σ is given
by

D2(F ) = {(a1, a2, H1(t, a1, a2)) ∈ R2 × R;
∂H1

∂t
= 0 at (t, a1, a2)}

and the discriminant of the family G restricted to the double point curve
Υ is the set

D3(F ) = {(a1, a2, H2(t, a1, a2)) ∈ R2 × R;
∂H2

∂t
= 0 at (t, a1, a2)}.

If F1 and F2 are two P -R+(X)-equivalent deformations of a germ g,
then it is not difficult to show that the sets Di(F1) and Di(F2) are diffeo-
morphic for i = 1, 2, 3. Therefore, it is enough to compute the sets Di(F )

for the deformations given in Theorem 3.6.

• The case g(u, v, w) = ±u.
In this case, an R+(X)-versal deformation of g is F (u, v, w, a1, a2) =

±u. Then the other families are

G(x, y, a1, a2) = ±x H1(t, a1, a2) = ∓6t2 H2(t, a1, a2) = ∓2t2.
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Hence D1(F ) is the empty set and D2(F ) = D3(F ) is a plane.
Here, the fiber g = 0 is a plane transverse to both the tangential line

and the tangent cone of X.

• The case g(u, v, w) = v + au2, a ̸= 0.
In this case, an R+(X)-versal deformation is F (u, v, w, a1, a2) = v +

au2 + a1u. Then the other families are

G(x, y, a1, a2) = −4y3 − 2xy + ax2 + a1x,

H1(t, a1, a2) = 8t3 + 36at4 − 6a1t
2,

H2(t, a1, a2) = 4at4 − 2a1t
2.

Note that H2 is a versal deformation of the boundary B2-singularity in the
terminology of [2]. We have

D1(F ) = {(2y + 12ay2, a2,−4y3 − 36ay4)},

D2(F ) = {(a1, a2, 0)} ∪ {(2t+ 12at2, a2,−4t3 − 36at4)},

D3(F ) = {(a1, a2, 0)} ∪ {(4at2, a2,−4at4)}.

These discriminants are illustrated in the Figure 4.1.

Figure 4.1: The discriminants D2(F ) and its subset D1(F ) in bold (left) and
the discriminant D3(F ) (right) of F = v + au2 + a1u.

The tangent plane to the fiber g = 0 contains the tangential line and
is transverse to the tangent cone of X. The contact of the tangential line
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with the fiber g = 0 is measured by the singularities of g(f(x, 0)) = ax2

and is of type A1.

• The case g(u, v, w) = v + au3, a ̸= 0.
In this case, an R+(X)-versal deformation is F (u, v, w, a1, a2) = v +

au3 + a1u+ a2u
2 and the other families are

G(x, y, a1, a2) = −4y3 − 2xy + ax3 + a1x+ a2x
2,

H1(t, a1, a2) = 8t3 − 216at6 − 6a1t
2 + 36a2t

4,

H2(t, a1, a2) = −8at6 − 2a1t
2 + 4a2t

4.

Note that H2 is a versal deformation of the boundary B3-singularity in the
terminology of [2]. Hence

D1(F ) = {(2y − 108ay4 + 12a2y
2, a2,−4y3 + 432ay6 − 36a2y

4)},

D2(F ) = {(a1, a2, 0)} ∪ {(2t − 108at4 + 12a2t
2, a2,−4t3 + 432at6 −

36a2t
4)},

D3(F ) = {(a1, a2, 0)} ∪ {(−12at4 + 4a2t
2, a2, 16at

6 − 4a2t
4)}.

See Figure 4.2.
The second component of the discriminant D3(F ) is a surface which is

singular along the set {(0, a2, 0)}∪ {(12at4, 6at2,−8at6)}. The singularity
along (12at4, 6at2,−8at6) is a cuspidal edge when t ̸= 0.

Here, as in the previous case, the tangent plane to the fiber g = 0

contains the tangential line and is transverse to the tangent cone of X.
However the contact of the tangential line with the fiber g = 0 is mea-
sured by the singularities of g(f(x, 0)) = ax3 and is of type A2.

• The case g(u, v, w) = ±w + au2 + bu3, a ̸= 0,± 1
12 ,±

1
4 , b ̸= 0.

In this case, an R+(X)-versal deformation is F (u, v, w, a1, a2) = ±w+

au2 + bu3 + a1u+ a2v, and the other families are

G(x, y, a1, a2) = ±3y4 ± xy2 + ax2 + bx3 + a1x− 4a2y
3 − 2a2xy,
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Figure 4.2: The discriminants D2(F ) and its subset D1(F ) in bold (left) and
the discriminant D3(F ) (right) of F = v + au3 + a1u+ a2u

2.

H1(t, a1, a2) = ∓3t4 + 36at4 − 216bt6 − 6a1t
2 + 8a2t

3,

H2(t, a1, a2) = ±t4 + 4at4 − 8bt6 − 2a1t
2.

Therefore, the discriminant D1(F ) is the union of two surfaces S1, S2,
with S1 parametrised by

(x, y) 7→ (±y2 − 2ax− 3bx2,±y,∓y4 − ax2 − 2bx3)

and S2 parametrised by

(a2, t) 7→ (∓t2 + 12at2 − 108bt4 + 2a2t, a2,±3t4 − 36at4 + 432bt6 − 4a2t
3).

The first surface S1 is regular and its tangent plane at the origin is w =

0. The second surface S2 is singular along the curve parametrised by
(±t2 − 12at2 + 324bt4,±t − 12at + 216bt3,∓t4 + 12at4 − 432bt6). Using
Corollary 1.5 in [17] we prove that S2 is a cuspidal cross cap (that is, it is
A-equivalent to the surface parametrised by (x, y2, xy3)).

The intersection between these two components S1 and S2 is a plane
curve with a Z17-singularity if a = ∓ 1

18 (that is, it is R-equivalent to
x3y + y8 + λxy6 for some λ ∈ R) and a Z13-singularity otherwise (that is,
it is R-equivalent to x3y + y6 + λxy5 for some λ ∈ R) . Therefore, this
intersection is the image by the parametrisation of the first component
of two curves, which are, up to diffeomorphisms, a line (y = 0) and the
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zero-fiber of an E12 singularity (x3 + y7 + δxy5 = 0) if a = ∓ 1
18 and a line

(y = 0) and the zero-fiber of an E8 singularity (x3 + y5 = 0) otherwise.
The discriminant D2(F ) is the union of the plane {(a1, a2, 0)} and the

surface S2 of D1(F ).
Finally, D3(F ) = {(a1, a2, 0)} ∪ {(±t2 + 4at2 − 12bt4, a2,∓t4 − 4at4 +

16bt6)}.
The discriminants D2(F ) and D3(F ) are illustrated in the Figure 4.3.

Figure 4.3: The discriminant D2(F ) (left) and the discriminant D3(F ) (right)
of F = ±w + au2 + bu3 + a1u+ a2v.

The tangent plane to the fiber g = 0 coincides with the tangent cone
of the swallowtail at the origin. The contact of the tangential line with
the fiber g = 0 is measured by the singularities of g(f(x, 0)) = ax2 + bx3

and is of type A1.

5 The flat geometry of a swallowtail

We use here the classification in §3 to study the flat geometry of a
geometric swallowtail M . The flat geometry is captured by the contact of
the geometric swallowtail M with planes and is measured by the singular-
ities of the height function hν(p) = p · ν, with ν ∈ S2 orthogonal to the
given plane. Varying ν locally in S2 gives the family of height functions
H :M × S2 → R, given by H(p, ν) = hν(p).

Let g be a parametrisation of a geometric swallowtail. Then g is A-
equivalent to f (the parametrisation of the standard swallowtail). That
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is, there exist germs of diffeomorphisms ϕ : (R2, 0) → (R2, 0) and ψ :

(R3, 0) → (R3, 0) such that g ◦ ϕ = ψ ◦ f .
We want to study the contact between the geometric swallowtail ψ(X)

and the plane h−1
ν (0) for some ν ∈ S2. This contact is measured by the

singularities of the function hν ◦g : (R2, 0) → (R, 0), but these singularities
are the same as those of the function hν ◦ g ◦ ϕ = hν ◦ψ ◦ f , which in turn
measure the contact between the standard swallowtail X = f(R2, 0) and
the surface (hν ◦ ψ)−1(0).

Note that if there exist another germs of diffeomorphisms ϕ1 and ψ1

such that g◦ϕ1 = ψ1◦f , then hν◦ψ1 = hν◦ψ◦(ψ−1◦ψ1) and ψ−1◦ψ1(X) =

ψ−1 ◦ ψ1 ◦ f(R2, 0) = ψ−1 ◦ g ◦ ϕ1(R2, 0) = f ◦ ϕ−1 ◦ ϕ1(R2, 0) = X. The
germ ψ−1 ◦ ψ1 is a germ of diffeomorphism which preserves the standard
swallowtail X, that is, ψ−1 ◦ψ1 ∈ R(X). Therefore, the function hν ◦ψ is
well defined up to elements in R(X) (see [10]).

Following the transversality theorem in the Appendix of [10], for a
generic swallowtail, the height functions hν , for any ν ∈ S2, can only have
singularities of R+

e (X)-codimension ≤ 2 at the origin. Furthermore, as the
height function hν : (R3, 0) → (R, 0) is a submersion, the function hv ◦ψ is
also a submersion. Therefore hν◦ψ is R(X)-equivalent to one of the normal
forms given in Theorem 3.6, that is, there exist a germ of diffeomorphism
φ : (R3, 0) → (R3, 0) which preserves the standard swallowtail X such that
hν ◦ ψ = ĝ ◦ φ, where ĝ is one of the normal forms given in Theorem 3.6.
Hence the contact between a geometric swallowtail ψ(X) and the plane
h−1
ν (0) coincide with the contact of the standard swallowtail X and the

fiber ĝ−1(0) ( which is measured by the singularities of the function ĝ ◦ f).
We have the following consequences about the flat geometry of a generic

swallowtail, where tangent/transverse to the swallowtail (resp. singular
curve and double point curve) means tangent/transverse to its tangent
cone (resp. the tangential line).

Proposition 5.1. The possible singularities of ĝ ◦ f have the following
geometric interpretations:

(i) ±u : the corresponding plane is transverse to both the swallowtail,
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its singular curve and its double point curve. In this case the height
function is regular;

(ii) v+au2 : the plane is transverse to the swallowtail and is in the pen-
cil of planes obtained as limiting tangents to the double point curve
(which coincide with that of the singular curve). This submersion
yields an A1-singularity of the height function;

(iii) v + au3 : the plane is transverse to the swallowtail and is in the
pencil of planes obtained as limiting tangents to the singular curve
and is the limiting osculating plane to the double point curve. This
submersion yields an A1-singularity of the height function;

(iv) ±w + au2 + bu3: the plane is the tangent cone of the swallowtail.
This submersion yields an A3-singularity of the height function.

Proof. The proof follows form the analysis made in §4 for each case.
2

We can compare these results with Theorem 2.11 in [25]. For example,
in the (iv) case, the singularity of the height function is degenerate, ν is
binormal but the curvature parabola is given by (0, y, 1) (a line) and the
umbilic curvature is 1 (non zero), so the singularity is not of corank 2.

Consider a generic swallowtail with a parametrisation g and let λ and
γ be parametrisations of its singular curve and its double point curve,
respectively. For the family of height functions H we define

D1(H) = {(ν, hν◦g(x, y)) ∈ S2×R ;
∂hν ◦ g
∂x

=
∂hν ◦ g
∂y

= 0 at (x, y, ν)};

D2(H) = {(ν, hν ◦ λ(t)) ∈ S2 × R ;
∂hν ◦ λ
∂t

= 0 at (t, ν)};

D3(H) = {(ν, hν ◦ γ(t)) ∈ S2 × R ;
∂hν ◦ γ
∂t

= 0 at (t, ν)}.

The sets D1(H),D2(H) and D3(H) corresponds to the duals of the swal-
lowtail, the singular curve and the double point curve, respectively.
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As discussed in the beginning of §5, the contact between a swallowtail
and a plane h−1

ν (0) is described by that of the fiber ĝ = 0 with the standard
swallowtail, with ĝ as in Theorem 3.6. Using this fact we can show that
Di(H) is diffeomorphic to Di(F ), for i = 1, 2, 3, where F is an R+(X)-
versal deformation of ĝ with 2-parameters. Therefore, the calculations and
figures in §4 give models, up to diffeomorphisms, of Di(H) for i = 1, 2, 3.
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