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1 Introduction

Differential equations remain a fundamental part of mathematics and
continue to play a crucial role in various fields with a multitude of ap-
plications. These equations provide insight into the behavior of systems
modeled by one or multiple dependent variables and as such play a crucial
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role in comprehending the behavior of many physical, biological, financial,
and engineering systems. The study of differential equations continues to
be an important and ever-evolving area of research, with ongoing advance-
ments that deepen our understanding of these complicated systems.

The integrability of differential equations is one of the most important
problems in the area and has a rich history, starting from the inception of
Newtonian mechanics [21]. Over the centuries, this field has evolved into a
complex and diverse area of study, incorporating a multitude of approaches
and theories, one of the key contributions being Liouville’s pioneering ex-
amination of Riccati equations in 1841 [15]. This work marked an essential
moment in the development of integrability theory, as it demonstrated the
limitations of traditional methods, such as the inability to integrate simple
Riccati equations by quadratures. This realization prompted researchers
to explore new theories and methods to determine the integrability of dy-
namical systems. The main one is the existence of first integrals, which are
(non-constant) functions that remain constant along the solution curves
of the equation.

In physics, the presence of the first integrals is often referred to as the
constant of motions, which are crucial in determining the stability of a
physical system. In the field of classical mechanics, for instance, the well-
known Hamiltonian formalism [9] provides a framework for understanding
the integrability of systems through the existence of first integrals. Ad-
ditionally, the Liouville-Arnold theorem [3, 16] states that under certain
conditions, a system is integrable if and only if it has n-independent first
integrals.

The 19th and 20th centuries saw a significant expansion of the study of
first integrals, particularly with the advent of foliation theory (for instance,
see [4, 5]). Roughly speaking, a foliation can be visualized as the pages
of a book, with each page representing a separate leaf. A first integral for
a foliation is a function f on the manifold M such that the level sets of
f coincide with the leaves of the foliation, meaning that f is constant on
each leaf of the foliation.
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Foliation theory is closely related to differential equations. For in-
stance, the integral curves of a vector field and its associated flow dynamics
can be viewed as a one-dimensional foliation. The first integral of foliations
provides a tool for understanding the dynamics of systems by dividing the
phase space into simpler connected components, referred to as fibers (or
level sets), as they coincide with the leaves of the foliation. Often, the
existence (or non-existence) of first integrals for foliations is referred to as
the integrability problem (see [26] and the references therein).

Singularities arise in mathematics in a variety of contexts. In the field
of differential equations, the examination of singularities has its roots in
the works of Poincaré [22, 23, 24], who studied the stability and bifurca-
tions of periodic orbits in the early 20th century. Since then, there has
been significant progress in the field. The examination of singularities in
dynamical systems and foliations has resulted in substantial advances, par-
ticularly in the classification of systems and the characterization of chaotic
behavior, as well as solving problems in the theory of differential equations
(see for instance [10]).

In this paper, we examine partial differential systems through the lens
of singularity theory. Our comprehensive analysis of the topological clas-
sification of the fibers of first integrals highlights the importance of con-
sidering the singularity theory for improving our understanding of the
integrability problem for differential equations. The results presented in
this work serve as a demonstration of the value that singularity theory can
bring to the field of differential equations.

Although the concept of integrability is well-defined for ordinary dif-
ferential equations (see for instance [2, 3]), a universal definition for other
structures, such as partial differential equations, has yet to be accepted.
Nevertheless, there is a special type of partial differential system, that has
a precise definition of integrability and it can be determined by analyzing
the existence of first integrals.

Consider a system of first-order quasi-linear partial differential equa-
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tions, given in local coordinates by:

n∑
i=1

aλi (x, u)
∂u

∂xi
= bλ(x, u), (1.1)

where u is one unknown function of n independent variables x = (x1, . . . , xn),
λ = 1, . . . , q, with 1 ≤ q ≤ n, and aλi and bλ are analytic functions de-
fined on an open set Ω ⊂ Rn+1 = (x1, . . . , xn, u). The system (1.1) is said
to be a completely integrable system or integrable system if it possesses
p functionally independent first integrals1 f1, f2, . . . , fp : Ω → R, where
p = n+ 1− q.

Note that the domain of each fj should be suitably adjusted, as the
domain of definition of the solutions of the system (1.1) cannot be the
entire space Rn. However, for the purposes of the current discussion, we
are only interested in the local situation, i.e., the topological classification
around a singular point. In this context, we are concerned with the germs
of functions, maps, vector fields, etc.

Our main strategy will be to consider the map germ

F(1.1) := (f1, . . . , fp) : (Rn+1, 0) → (Rp, 0),

with 1 ≤ p ≤ n which we call the first integrals map germ of system (1.1),
for short, first integrals map (see Definition 2.4). In fact, we aim to describe
the topology of the fibers of the first integrals map. For this reason, we
will make use of one of the most powerful tools of singularity theory for
the study of spaces and maps: the fibered structures are known as Milnor
fibrations. The existence of local Milnor fibrations for real and complex
singularities is fundamental in the study of the topology of singularities.

The paper is structured as follows. Section 2 introduces the concept of
a first integrals map germ and other relevant definitions. The definition of
the singular set of a map germ is also reviewed, along with some pertinent
remarks. In Section 3, we demonstrate the presence of obstructions for

1The precise notion of first integrals of a system of first-order quasi-linear partial
differential equations is provided in Definition 2.1 in Section 2.
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a system of first-order quasi-linear partial differential equations to admit
first integrals map germs, along with several informative examples. Fi-
nally, in the last section, the topology of Milnor’s fibers is leveraged to
provide a topological characterization of F(1.1). As a result, the relation-
ship between the topology of the Milnor’s fibers of the first integrals map
and the topology of the phase space of system (1.1).

2 The first integrals map germ for quasi-linear
system

Consider a system of quasi-linear partial differential equations of first-
order given by

n∑
i=1

aλi (x, u)
∂u

∂xi
= bλ(x, u), (∗)

in n independent variables x = (x1, . . . , xn) in Rn, where the dependent
variable u(x1, x2, . . . , xn) is a function which is a solution of (∗), and aλi , b

λ

are not all zero analytic coefficients.
In the case of studying the relationship between a partial differential

equation and its first integrals, it is often convenient to consider u as a
coordinate along with the independent variables x1, x2, . . . , xn in Rn+1. In
this context, u is treated as a coordinate in the (n+1)-dimensional space.
(see for instance Chapter 1 in [18] or [11, 12]).

Having said that, consider aλi and bλ analytic functions defined on an
open set Ω ⊂ Rn+1 = {(x1, . . . , xn, u)} for i = 1 . . . , n and λ = 1, . . . , q,
with 1 ≤ q ≤ n.

Now, consider the characteristic vector fields

Xλ :=

n∑
i=1

aλi (x, u)
∂

∂xi
+ bλ(x, u)

∂

∂u
,

for each λ = 1, . . . , q.

Definition 2.1. A function f : Ω → R is a first integral of system (∗)
if f is constant along the integral curves of each Xλ, for all λ. That is,
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f is a first integral of (∗) if df(Xλ) ≡ 0, ∀λ, where d denote the exterior
derivative.

It follows from the classical method of characteristics due to Monge
[20], that the graph of a solution u of (∗) is the union of the integral curves
of the characteristic vector fields as detailed in [11, 12]. By Definition 2.1,
a first integral f is a function that is constant along the integral curves
of each Xλ. As a result, the graph of u is contained in the fibers f−1(δ),
where δ is a real constant. Therefore, if we have a sufficient number of
first integrals f1, f2 . . . , fp, we can completely describe the graph of the
solutions of the system.

Let us remind that a set of functions f1, . . . , fk are functionally inde-
pendent if df1 ∧ · · · ∧ dfk ̸≡ 0.

Definition 2.2. We say that f1, . . . , fp is a complete system of first in-
tegrals for the system (∗), if f1, . . . , fp are functionally independent first
integrals and p = n + 1 − q. In this case, we say that (∗) is a completely
integrable system or a integrable system.

Example 2.3. Consider the system of first-order quasi-linear pde’s2x3u
∂u
∂x2

− 3u(x21 + x22)
∂u
∂x3

= −3x3(x
2
1 + x22)

u ∂u
∂x2

+ u3 ∂u
∂x3

= −3
2(x

2
1 + x22)− ux3.

(2.1)

This quasi-linear system has two first integrals given by f1(x1, x2, x3, u) =

x1 and f2(x1, x2, x3, u) = 3x21x2 + x32 + x23 + u2, which are functionally
independent. Indeed, consider the characteristic vector fields

X1 = 2x3u
∂

∂x2
− 3u(x21 + x22)

∂

∂x3
− 3x3(x

2
1 + x22)

∂

∂u

and
X2 = u

∂

∂x2
+ u3

∂

∂x3
−
(
3

2
(x21 + x22) + ux3

)
∂

∂u
.

Through a straightforward computation we can obtain dfi(X
λ) = 0 for

every i, λ ∈ {1, 2} and df1 ∧ df2 ̸= 0. Since p = 2, q = 2, n = 3 then
p = n+ 1− q and (2.1) is a completely integrable system.
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Definition 2.4. Let f1, . . . , fp be first integrals functionally independent2

for the system (∗) for some p ≥ 1. The map germ

F(∗) := (f1, f2 . . . , fp) : (Rn+1, 0) → (Rp, 0),

is called the first integrals map germ of system (∗), for short, first integrals
map.

In this work, we will only consider the first integrals map F(∗) which
are analytic and their representatives carry the origin of the coordinate
system into the origin.

Definition 2.5. Consider a first integrals map of system (∗), F(∗) :=

(f1, f2 . . . , fp) : (Rn+1, 0) → (Rp, 0). The singular set of F(∗), is given by

Sing F(∗) := {x ∈ U : rank (dF(∗)(x)) < p},

where dF(∗)(x) denotes the Jacobian matrix of F(∗) at x, and U ⊂ Rm is
an open set with 0 ∈ U .

Example 2.6. The quasilinear equation

(3x2u
2 + u)

∂u

∂x1
+ ux1(3u− 2)

∂u

∂x2
= −(2x2 + 1)x1 (2.2)

admits a first integrals map F(2.2) = (f1, f2) where f1 = x21 − x22 + u2 and
f2 = x21 + x2 + u3. Moreover, dimSing F(2.2) > 0.

When the singular set Sing F(∗) = {0} as a set germ, we say that
F(∗) has an isolated singularity at the origin. This condition means that
there exists a neighborhood U of the origin in Rn+1 such that the jacobian
matrix dF(∗)(x) has rank p at all points x ∈ U other than the point x = 0.

Example 2.7. In Example 2.3 we have that F(2.2) = (f1, f2) is a first
integrals map with Sing F = {0}.

2Not necessarily a complete system of first integrals for the system (∗).
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3 Singular set and obstructions of a first integrals
map germ

Definition 3.1. A map germ F := (f1, . . . , fp) : (Rn+1, 0) → (Rn, 0) is
(xjα)-separable if fj only depends on the variable xα.

Example 3.2. The equation

− 2x1u
∂u

∂x2
= x21 + 3x22 (3.1)

admits F(3.1) = (x1, x2(x
2
1 + x22) + x1u

2) as a first integrals map wich is
(x11)-separable and has singular set with positive dimension.

Lemma 3.3. A first integrals map F(∗) := (f1, f2 . . . , fp) : (Rn+1, 0) →
(Rp, 0) is (xjα)-separable then aλα ≡ 0 for any λ = 1, . . . , q and some α ∈
{1, . . . , n+ 1} fixed.

Proof. Remember that we denote xn+1 := u and aλn+1 := bλ for the sake
of simplicity. It follows from hypothesis that fj = fj(xα) for some j ∈
{1, . . . , p} and α ∈ {1, . . . , n+ 1}. Then ∂

∂xi
fj = 0 for every i ̸= α. Since

fj is a first integral of (∗), it is non-constant and

0 =
n∑

i=1

aλj (x, u)
∂fj(xα)

∂xi
+ bλ(x, u)

∂fj(xα)

∂u
= aλα(x, u)

∂fj(xα)

∂xα
.

Consequently, aλα ≡ 0.

Remark 3.4. It follows immediately from Lemma 3.3 that if a first inte-
gral fj of the system (∗) depends only on variable u, i.e., the first integrals
map F(∗) is

(
xj(n+1)

)
-separable, then (∗), becomes the homogeneous sys-

tem

n∑
i=1

aλi (x, u)
∂u

∂xi
= 0. (∗-homogeneous)
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Proposition 3.5. Let F := (f1, f2 . . . , fn) : (Rn+1, 0) → (Rn, 0), be an
analytic map germ such that f1, f2 . . . , fn are functionally independent.
If for each j there exists α(j) such that F is (xjα(i))-separable, then F

cannot be a first integrals map of a system of first-order quasi-linear partial
differential equations.

Proof. Since f1, f2 . . . , fn are functionally independent, α(l) ̸= α(k) for
any l ̸= k. Therefore, without lost of generality we can assume that F is
(xii)-separable, for any i = 1, . . . , n. It follows from Lemma 3.3 that aλi ≡ 0

for any i = 1, . . . , n and λ = 1, . . . , q. Consequently, bλ ≡ 0.

4 The Milnor fibration for first integrals maps:
isolated case

Let us consider a first integrals map F(∗) := (f1, f2 . . . , fp) : (Rn+1, 0) →
(Rp, 0) which has an isolated singularity at the origin. Let VF(∗) := F−1

(∗) (0).
Since VF(∗) = f−1

1 (0)∩f−1
2 (0)∩· · ·∩f−1

p (0), one has that it is an analytic set,

which is a smooth manifold of dimension n everywhere in
(
VF(∗) \ {0}

)
∩U .

In the famous book [19, §11], J. Milnor, proved the existence of a
smooth fiber bundle in a neighborhood of the isolated singular point x =

0. In this section, we will use Milnor’s result to study the topology of
manifolds Mj := f−1

1 (y1) ∩ f−1
2 (y2) ∩ · · · ∩ f−1

j (yj), where 1 ≤ j ≤ p

and y1, . . . , yj are arbitrary and small enough real numbers, such that
y21 + · · ·+ y2j ̸= 0.

The result about the existence of a Milnor fibration can be state for a
first integrals map of system (∗) as follows:

Theorem 4.1. [19, Theorem 11.2] Let F(∗) = (f1, f2 . . . , fp) : (Rn+1, 0) →
(Rp, 0) be a first integrals map, with p ≥ 2, which has an isolated singularity
at the origin. There exist ϵ0 > 0, such that for all 0 < ϵ ≤ ϵ0 the restricted
map.

F(∗)| : B
n+1
ϵ ∩ F−1

(∗) (S
p−1
η ) → Sp−1

η (4.1)
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is a projection of a locally trivial smooth fibration, for all 0 < η ≪ ϵ.

Moreover, the diffeomorphism type does not depend on the choice of ϵ and
η.

The projection (4.1) is known by Milnor tube fibration and its general
fiber, MF(∗) := F(∗)

−1(y), where y = (y1, . . . , yp) ∈ Sp−1
η , is known as

Milnor fiber. An immediate consequence of the proof of Theorem 4.1 is
that the Milnor fiber is diffeomorphic to the manifold Bn+1

ϵ ∩Mp, where
Mp :=

⋂p
k=1 f

−1
k (yk).

Let us point out that if F(∗) has isolated singularity at the origin then
the first integrals map F j

(∗) := (f1, f2 . . . , fj) : (Rn+1, 0) → (Rj , 0), with

2 ≤ j < p has isolated singularity at the origin as well since Sing F j
(∗) ⊂

Sing F(∗). Consequently, F j
(∗) has a Milnor tube fibration, and again, the

Milnor fiber M j
F(∗)

is diffeomorphic to the manifold Bn+1
ϵ ∩Mj .

4.1 Topology of integral manifolds

The existence of local fibration structures in the neighborhood of iso-
lated singularities of the first integral maps F(∗) and F j

(∗) allows the com-
parison of the constructed manifolds Mp and Mj , which are intersections
of integral manifolds. This is the purpose of this section, where we will
apply the results of [8] and [13] to first integrals maps.

In what follows, whenever we use the notation Mj , we are referring to
the representative Bn+1

ϵ ∩Mj of the germ (Mj , 0), for ϵ > 0 small enough
and j = 1, . . . , p.

Let us remind the next definition.

Definition 4.2. Consider a first integral f : (Rn+1, 0) → (R, 0) of the
system (∗). A manifold N in a domain Bn+1

ϵ for small enough ϵ > 0 is a
integral manifold of (∗) if N is a level set of f , in other words, a fiber of
f .

As we have seen in Section 2, if we have a sufficient number of first
integrals f1, f2 . . . , fp and we know the integral manifolds Nj := f−1

j (yj),
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for any j = 1, . . . , p, and yj arbitrary small enough real numbers, not all
equal to zero, one can describe the graph of the solutions of the system,
provided we are able to describe locally, the topology of the intersection⋂j

k=1Nk, for any j = 1, . . . , p, that means, the topology of manifolds Mj′s.
Therefore, from the above discussion, it is enough to consider the Milnor
fibers associated with a first integrals map with an isolated singularity at
the origin.

Let F(∗) = (f1, f2 . . . , fp) : (Rn+1, 0) → (Rp, 0) be a first integrals map,
which has an isolated singularity at the origin. Then, each first integral
fj , for j = 1, . . . , p, also has an isolated critical point at the origin. Let
∇fj the gradient vector field of fj and deg0∇fj the topological degree of
the mapping

ε
∇fj
∥∇fj∥

: Sn
ε → Sn

ε ,

for j = 1, . . . , p.
Using these notations, in [8] the authors extended the PoincarÃ©-

Hopf formula for a real analytic function given in [14] by Khimshiashvili,
which for first integrals map, reads:

Theorem 4.3. [8, Corollary 3.4] Let F(∗) = (f1, f2 . . . , fp) : (Rn+1, 0) →
(Rp, 0) be a first integrals map, which has an isolated singularity at the
origin. The following holds true:

(i) If n + 1 is even, then χ(Mp) = 1 − deg0∇f1. Moreover, one has
deg0∇f1 = deg0∇f2 = . . . = deg0∇fp.

(ii) If n + 1 is odd, then χ(Mp) = 1. Moreover, one has deg0∇fi = 0

for i = 1, 2, . . . , p.

Example 4.4. Consider the first integrals map F(2.1) = (f1, f2) given in
Example 2.3, where f1(x1, x2, x3, u) = x1 and f2(x1, x2, x3, u) = 3x21x2 +

x32 + x23 + u2. Since F(2.1) has isolated singularity at the origin, it follows
from item (i) of the Theorem 4.3 that deg0∇f2 = deg0∇f1 = 0 and
χ(M2) = 1. In other words, the graph of a solution u of the system (2.1)
are contained in a manifold with Euler characteristic one.
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Next, we present the main result of [13], which in our setting, helps to
compare the intersections of integral manifolds.

Theorem 4.5. [13, Corollary 7] The manifold Mj is homeomorphic to
Mp ×Bp−j, for any j = 1, . . . , p.

The next result shows that under the hypothesis of singularity isolated
at the origin, the Euler characteristic of each integral manifold is equal
to the Euler characteristic of the Milnor fiber associated with the first
integrals map.

Corollary 4.6. [7, Corollary 6.3] Let F(∗) = (f1, f2 . . . , fp) : (Rn+1, 0) →
(Rp, 0) be a first integrals map, with p ≥ 2, which has an isolated singularity
at the origin. Then χ(Mp) = χ(Mj), for any j = 1, . . . , p. In particular,
χ(Nj) = χ(Mp), for any j = 1, . . . , p.

Remark 4.7. Let us point out that for any j = 1, . . . , p, the first integral
fj : (Rn+1, 0) → (R, 0) of the system (∗) admits two Milnor fibers, namely:
Nj = f−1(δ) ∩ Bn+1

ϵ and N−
j := f−1(−δ) ∩ Bn+1

ϵ , where 0 < δ ≪ ϵ.
Therefore, one has χ(N−

j ) = χ(Nj) = χ(Mp). For more details, see [7,
Corollary 6.4]

Example 4.8. Consider the quasi-linear equation

2x1u
∂u

∂x1
+ 3x21 + x22 + u2 = 0, (4.2)

and the first integrals map F(4.2) := (f1, f2) : (R3, 0) → (R2, 0) given by
f1(x1, x2, u) = x2 and f2(x1, x2, u) = x22 + x1(x

2
1 + x22 + u2). It follows

from item (ii) of Theorem 4.3 that χ(M2) = 1. Consequently, the Euler
characteristic of the integral manifold N2 is equal to one.

Let F : (Rn+1, 0) → (Rp, 0) be an analytic map germ with an isolated
singularity at the origin. In [19, §11], Milnor proposed to call F trivial
if the closure of the Milnor fiber MF is diffeomorphic to an (n − p + 1)-
dimensional closed disk. Therefore, we have the immediate result:
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Lemma 4.9. Let F(∗) = (f1, f2 . . . , fp) : (Rn+1, 0) → (Rp, 0) be a first
integrals map, which has an isolated singularity at the origin. If F(∗) is
trivial, then for any j = 1, . . . , p, the integral manifold Nj is homeomor-
phic to Bn−p+1 × Bp−1. Moreover, the manifold Mj is homeomorphic to
Bn−p+1 ×Bp−j for any j = 1, . . . , p.

In [6], P. Church and K. Lamotke used a construction of E. Looijenga
(for more details, see [17]) and classified the pairs (n+1, p) for which non-
trivial examples exist. Their main result states that for 0 ≤ n− p+ 1 ≤ 2

non-trivial examples occur precisely for the pairs (2, 2), (4, 3) and (4, 2).
For n− p+ 1 = 3, all examples are trivial except for the pairs (5, 2), (8, 5)

and the case (6, 3) was proved in [1]. Moreover, since the PoincarÃ©
Conjecture was shown to be true, for n− p+ 1 ≥ 4, non-trivial examples
occur for all pairs (n+ 1, p).

Theorem 4.10. Let F(∗) = (f1, f2 . . . , fp) : (Rn+1, 0) → (Rp, 0) be a
first integrals map, which has an isolated singularity at the origin. If any
of the following conditions bellow occur, then the integral manifold Nj is
homeomorphic to Bn−p+1 × Bp−1, for any fixed j = 1, . . . , p. Moreover,
the manifold Mj is homeomorphic to Bn−p+1 ×Bp−j for any j = 1, . . . , p:

1. (n+ 1, p) = (4, 2) and deg0∇f1 = 0;

2. (n+ 1, p) = (5, 2) and π1(Mp) = 0, i.e., Mp is simply connected;

3. (n+1, p) = (6, 3) and the manifold V
F (∗) ∩Sn

ε is connected for small
enough ε > 0 or deg0∇f1 = 0;

4. (n+1, p) = (8, 5) and the manifold V
F (∗)∩Sn

ε is not empty for small
enough ε > 0 or deg0∇f1 = 0;

5. p = n and (n+ 1, p) ̸= (4, 3);

6. n− p = 1 and (n+ 1, p) ̸= (4, 2);

7. n− p+ 1 = 3 and (n+ 1, p) ̸= (5, 2), (n+ 1, p) ̸= (6, 3) (n+ 1, p) ̸=
(8, 5).
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Proof. It follows immediately from Lemma 4.9 combined with the following
arguments, in each case:

Case (4, 2): Let CMF(∗) be the closed surface obtained from the Milnor
fiber MF(∗) by gluing open disks to the boundary and k ≥ 1 the number of
closed curves components of the boundaries. If we assume that deg0∇f1 =

0, it follows from [8, Lemma 4.4] that χ(CMF(∗)) = k + 1, with k = 1.
Consequently, MF(∗) is a closed disk and F(∗) is trivial. See [8, Corollary
4.5 ].

Case (5, 2): If we assume that Mp is simply connected, then the Milnor
fiber MF(∗) is simply connected and the [25, Lemma 2.3] combined with
the Theorem 4.3 (b) ensure that ∂MF(∗) is a 2-sphere, then by [25, Lemma
2.4], we have that F(∗) is trivial. See [25, Theorem 1.6 (3) ].

Case (6, 3) Since p = 3, the Milnor fiber MF(∗) is simply connected and
the [25, Lemma 2.3] ensure that ∂MF(∗) is a disjoint union of 2-spheres.
If we assume that deg0∇f1 = 0, it follows from Theorem 4.3 (a) that
χ
(
MF(∗)

)
= 1. Consequently,

χ
(
∂MF(∗)

)
= 2χ

(
MF(∗)

)
= 2.

Therefore, ∂MF(∗) is a 2-sphere, then by [25, Lemma 2.4], we have that
F(∗) is trivial.

Now, since that ∂MF(∗) is diffeomorphic to manifold V
F (∗) ∩ Sn

ε , if
we assume that it is connected, then ∂MF(∗) must be diffeomorphic to one
single copy of a 2-sphere and again by [25, Lemma 2.4], we have that MF(∗)

is diffeomorphic to a 3-disk. See [25, Theorem 1.6 (1) and Proposition 3.1].

Case (8, 5) Assume that the manifold V
F (∗)∩Sn

ε is not empty for small
enough ε > 0. Since p = 5, that Milnor Fiber MF(∗) is simply connected,
compact 3-manifold with boundary. Now, it follows from Hurewicz Theo-
rem combined with [25, Lemma 2.4 (ii)] that MF(∗) is diffeomorphic to a
3-disk. If we assume that deg0∇f1 = 0, we can use the same arguments
as in Case (6, 3). See [25, Theorem 1.6 (2) and Corollary 3.4].
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The remaining cases follow from the above discussion. For more details,
see for example [6, p.149-150].

The next examples are based on the geometrical/topological descrip-
tion given in section 4.2 of [8].

Example 4.11. Consider the equation

2x3u
∂u

∂x2
− 3u(x21 + x22)

∂u

∂x3
= −3x3(x

2
1 + x22). (4.3)

The graph of the solutions u of (4.3) is included in 2-disk. In fact, the sys-
tem (4.3) admits the first integrals map F(4.3)(x1, x2, x3, u) = (x1, 3x

2
1x2+

x32 + x23 + u2) which has an isolated singularity at the origin. Since
f1 : (R4, 0) → (R, 0) given by f1(x1, x2, x3, u) = x1 satisfies deg0∇f1 = 0,
it follows from the item (1) of Theorem 4.10 that M2 is homeomorphic to
B2.

Example 4.12. Consider the systemx3
∂u
∂x1

+ u ∂u
∂x2

− x1
∂u
∂x3

= −x2

u ∂u
∂x1

− x3
∂u
∂x2

− x2
∂u
∂x3

= x1.
(4.4)

The graph of the solutions u of (4.4) is included in a cylinder. Indeed,
the first integrals map F(4.4) = (f1, f2) : (R4, 0) → (R2, 0) with f1 =

x21 − x22 + x23 − u2 and f2 = 2(x1x2 + x3u) has an isolated singularity
at the origin. It follows from the geometrical/topological description of
the Milnor fibers MF(4.4) , (see [8, Section §4.2]), that M2 is topologically
equivalent to the two-sphere minus two open disks removed.

Example 4.13. Consider the system−3
2

(
x23 − u2

)
∂u
∂x1

− 3x3u
∂u
∂x2

+ x1
∂u
∂x3

− x2 = 0

−3x3u
∂u
∂x1

+ 3
2

(
x23 − u2

)
∂u
∂x2

+ x2
∂u
∂x3

+ x1 = 0.
(4.5)

This system admits a first integrals map F(4.5) = (f1, f2) : (R4, 0) →
(R2, 0) with f1 = x21 − x22 + x33 − 3x3u

2 and f2 = 2x1x2 + 3x23u− u3. The
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graph of the solutions u of (4.5) is included in a manifold topologically
equivalent to a torus minus a disk removed, (see [8, Section §4.2]).
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