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A short overview of Besse’s conjecture
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Abstract. We call CPE metrics the critical points of the total scalar
curvature functional restricted to the space of metrics with constant
scalar curvature of unitary volume. In the 1980’s Arthur L. Besse
conjectureda that every CPE metrics must be Einstein. This paper
briefly describes some recent advances on the Besse’s Conjecture.

Keywords: Einstein metric, total scalar curvature, critical point
equation, σ2-curvature, vacuum static space.

2020 Mathematics Subject Classification: 53C24, 53C25.

aWe thank the anonymous reviewer for reporting that this conjecture
appeared naturally during some seminars 75-80’s in France.

1 Introduction

This expository paper is based on a lecture given at XIV - ENAMA
- Encontro Nacional de Análise Matemática e Aplicações, held in on-line
format in Brazil in November 2021 and the main results was published in
[2].

Scalar curvature functional appears in the study of Einstein metrics,
since this is a type of curvature closely related with the Ricci tensor. Recall
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that a Riemannian manifold is said to be Einstein if the Ricci tensor is a
multiple of the metric g, i.e., Ricg = λg, where λ : M → R, in particular if
(Mn, g), n ≥ 3, is connected, then λ is constant. In other words, (Mn, g)

is Einstein if its traceless tensor

R̊icg = Ricg −
Rg

n
g

is identically zero, where Ricg and Rg are Ricci and scalar curvatures,
respectively.

Let (Mn, g) be an n-dimensional, connected, closed (compact without
boundary) manifold with n ≥ 3, M be the Riemannian metric space and
S2(M) be the space of symmetric 2-tensors on M. Fischer and Marsden
[16] consider the scalar curvature map R : M → C∞ which associates to
each metric g ∈ M its scalar curvature. If γg is the linearization of the
map R and γ∗g is its L2-formal adjoint, then they stated that

γgh = −∆gtrgh+ δ2gh− ⟨Ricg, h⟩

and

γ∗gf = ∇2
gf − (∆gf)g − fRicg,

where δg = −divg, h ∈ S2(M), f ∈ C∞(M) and ∇2
g is the Hessian form

on Mn, respectively.
In 80’s, in the classical book “Einstein Manifolds”, A. Besse pointed out

that a natural way to prove the existence of Einstein metrics is to search
for critical points of the total scalar curvature S : M → R defined by

S(g) =
∫
M

Rgdvg,

also known as the Einstein-Hilbert functional.
It is well known that the solution of the Yamabe problem shows that

any compact manifold Mn admits a Riemannian metric with constant
scalar curvature. In particular, the set C = {g ∈ M;Rg is constant} ≠ ∅.
Thus, we may consider the set M1 = {g ∈ C;V olg(M) = 1} ≠ ∅ and then,
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investigate the critical points of the scalar curvature functional S restricted
to M1. Here, it is important to observe that N. Koiso [20] proved that,
under a generic condition, M1 is an infinite dimensional manifold, such a
smoothness is essential to seek critical points.

In Remark 4.48 of [9], p.128, it was conjectured that critical points of
the total scalar curvature functional S restricted to M1 must be Einstein.
More precisely, the Euler-Lagrange equation of Hilbert-Einstein action re-
stricted to M1 may be written as the following critical point equation
(CPE)

γ∗gf = ∇2
gf − (∆gf)g − fRicg = R̊icg. (1.1)

Following the notation adopted in [8, 23], we consider the following
definition.

Definition 1.1. A CPE metric is a triple (Mn, g, f), where (Mn, g) is a
closed oriented Riemannian manifold of dimension n ≥ 3 with constant
scalar curvature, volume 1 and f is a smooth potential satisfying (1.1).

The Besse conjecture (or CPE conjeture) can be rewritten as:

Conjecture 1.2 ([9]). A CPE metric is always Einstein.

In their study of the surjectivity of the scalar curvature map R, Fischer
and Marsden considered the so-called vacuum static equation γ∗g (f) = 0.
Due to the similarity between this equation and (1.1), it is natural to
consider the following definition.

Definition 1.3. Let (Mn, g) be a complete Riemannian manifold. We say
that (Mn, g) is a vacuum static space if there is a (not identically zero)
smooth function f solving the following vacuum static equation on M :

γ∗gf = ∇2f −∆gfg −Ricgf = 0. (1.2)

We also refer (Mn, g, f) as a vacuum static space.
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In the last few decades, numerous investigations have been made on
these spaces. The classification problem is a fundamental question as well
as rigidity results. For more details, see, e.g., [1, 28] and references therein.

Proceeding, observe that (1.1) is equivalent to

R̊icg = ∇2
gf −

(
Ricg −

Rg

n− 1
g

)
f (1.3)

which can be re-written in the form

(1 + f)R̊icg = ∇2
gf +

Rgf

n(n− 1)
g. (1.4)

Since our interest is in the context of the variational problem related to
the Einstein-Hilbert functional, it is natural to assume that (Mn, g) is
not scalar-flat (Rg ̸≡ 0). Hence, if (Mn, g, f) is a CPE metric and f is a
constant function, then f = 0 and this implies that (Mn, g) is Einstein.
Moreover, if (Mn, g, f) is a CPE metric with non-constant function f , then
the set, sometimes called critical level set,

B = {x ∈ Mn; f(x) = −1}

has zero n-dimensional measure (see [23]). Thus, to prove that a CPE
metric is Einstein, it is equivalent to show that (g, f) satisfies the equation

∇2
gf +

Rgf

n(n− 1)
g = 0, (1.5)

where f is not a constant function. Taking the trace of (1.5) one sees that

∆gf = − Rg

n− 1
f. (1.6)

Note that (1.6) follows directly from (1.2) and (1.1) as well. Now, multi-
plying the equation (1.6) by f and integrating over M, we obtain

Rg

n− 1

∫
M

f2dvg = −
∫
M

f∆gfdvg =

∫
M

|∇gf |2dvg > 0. (1.7)

Since f is a non constant function, one concludes that Rg > 0.
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If f satisfies the equation (1.5), then (Mn, g) is isometric to Sn(r) where

r =
(

Rg

n(n−1)

)1/2
(see [24, 27]). In this way, considering f non constant,

Conjecture 1.2 can be restated changing the Einstein property by the fact
that the manifold is the round sphere.

In the next section we present a collection of partial answers for the
Besse’s conjecture.

2 Advances in Besse’s conjecture

In this section we present some partial results for Conjecture 1.2. In
fact, even before the publication of Besse’s book, Lafontaine [21] proved
that if the CPE metric is conformally flat, then the manifold is Einstein.

To more accurately present the latest advances in understanding the
relationship between CPE and Einstein metrics, let us recall some impor-
tant tensors. Let (Mn, g) be an n-dimensional Riemannian manifold with
n ≥ 3. It is well known that there exists an orthogonal decomposition of
the curvature tensor Rmg which is given by

Rmg = W +Ag ⊙ g,

here ⊙ is the Kulkarni-Nomizu product, W is the Weyl curvature tensor
and Ag is the Schouten tensor defined as

Ag =
1

n− 2

(
Ricg −

1

2(n− 1)
Rgg

)
.

The Weyl tensor has the same symmetries of the curvature tensor. It is
well known that if n = 3, then W = 0, and for n > 3 M to be conformally
flat is equivalent to W = 0.

Also, in coordinates, the Cotton tensor is defined as

Cijk = ∇iRjk −∇jRik −
1

2(n− 1)
(∇iRgjk −∇jRgik)

and the Bach tensor, n ≥ 4, is

Bij =
1

n− 3
∇k∇lWikjl +

1

n− 2
RklWikjl.
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Moreover, the Weyl, the Cotton and the Bach tensors are totally trace-free.
For more details about these tensors see [11].

The literature has presented some improvements of Lafontaine’s result.
In the work [3], Baltazar proved Besse’s conjecture for compact manifolds
with pinched Weyl curvature and satisfying the zero radial Weyl curvature
condition. We remember that (Mn, g) has zero radial Weyl curvature
when, for a suitable potential function f on Mn, the Weyl tensor satisfies
i∇fW = W (·, ·, ·,∇f) = 0. It is clear that every locally conformally flat
manifold is contained in this class.

Theorem 2.1 ([3], Theorem 1). The CPE conjecture is true for n−dimen-
sional (n ≥ 3) manifolds with nonnegative sectional curvature satisfying
the zero radial Weyl curvature condition.

In the same work was proved that the condition on sectional curvature
can be replaced by a control on the norm of the traceless Ricci tensor.

Theorem 2.2 ([3], Theorem 2). Let (Mn, g, f), n ≥ 3, be a CPE metric
with zero radial Weyl curvature satisfying

|R̊icg| ≤
R2

g

n(n− 1)
.

Then (Mn, g) is isometric to a round sphere.

Baltazar in 2020 [4] used a pointwise pinching condition on the Weyl
tensor to provide one more positive answer to Conjecture 1.2.

Theorem 2.3 ([4], Theorem 1). The Besse conjecture is true for any CPE
metrics satisfying

|W | ≤
√

n

2(n− 2)

(
Rg√

n(n− 1)
− 2|R̊icg|

)
.

Since Einstein manifolds have parallel Ricci tensor, but the converse is
not necessarily true, the following question arises: Is it possible to prove
the Besse’s conjecture under the Ricci parallel condition? In fact, this was
answered by Chang, Hwang and Yun in [12] and posteriorly generalized
by the same authors in [29] with the following result.



A short overview of Besse’s conjecture 385

Theorem 2.4 ([29], Theorem 1.2). Let (g, f) be a non-trivial solution of
the CPE on an n-dimensional compact Riemannian manifold M . If (M, g)

has harmonic curvature, then M is isometric to a round sphere.

There are particularities on different dimensions. Recently, Hwang
and Yun has proved that the Conjecture 1.2 is true under the condition of
positive isotropic curvature on (Mn, g) considering n ≥ 4, see [19].

Theorem 2.5 ([19], Theorem 1.2). Let (Mn, g, f) CPE metric, with n ≥
4. If (Mn, g) has positive isotropic curvature, then (Mn, g) is isometric to
a round sphere.

For dimensions greater than 4, Baltazar et al. [5] proved that Besse’s
Conjecture is true if (Mn, g) has zero radial Weyl curvature.

Theorem 2.6 ([5], Theorem 4). Conjecture 1.2 is true for compact n-
dimensional manifolds, n ≥ 5 satisfying i∇fW = 0.

On the other hand, in dimension n = 4 there is a decomposition

W = W+ ⊕W−,

where W± : Λ2
± → Λ2

± are called the self-dual and anti-self-dual parts of
W. Here W is understood as an endomorphism of the bundle of 2-forms
Λ2 = Λ2

− ⊕ Λ2
+. A metric is called half conformally flat if it is selfdual or

antiselfdual, namely if W− = 0 or W+ = 0.
In 2014, Barros and Ribeiro Jr. [8] motivated by ideas on the study

of Ricci solitons, proved that the conjecture is true for 4-dimensional half
conformally flat manifolds.

Theorem 2.7 ([8], Theorem 1.3). Conjecture 1.2 is true for 4-dimensional
half conformally flat manifolds.

We note that CP 2 endowed with the Fubini-Study metric shows that
the half conformally flat condition is weaker than locally conformally flat
condition in dimension 4. Which in turn can be further weakened by
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considering that M4 has harmonic tensor W+, i.e., δW+ = 0 where δ is
the formal divergence defined for any (0, 4)-tensor T by

δT (X1, X2, X3) = traceg{(Y, Z) 7→ ∇Y T (Z,X1, X2, X3)},

as proved by Barros, Leandro and Ribeiro in [7].

Theorem 2.8 ([7], Theorem 1.3). Conjecture 1.2 is true for 4-dimensional
with harmonic tensor W+.

In dimension n = 3, we will present four conditions that guarantee that
a CPE metric is necessarily Einstein. First, since for n = 3 the condition
i∇fW = 0 is obviously satisfied, Theorem 2.1 implies the following.

Corollary 2.9 ([3], Corollary 1). The CPE conjecture is true for 3-
dimensional manifolds with nonnegative sectional curvature.

In 2013, Hwang [18] proved Besse’s conjecture in dimension 3 under
the condition ker(γ∗g) ̸= 0, as shown below.

Theorem 2.10 ([18], Theorem 1.1). Let (M3, g, f) be an 3-dimensional
CPE metric. If ker(γ∗g ) ̸= 0, then (M3, g) is isometric to a round sphere
S3.

More recently, Baltazar e Da Silva [6] obtained an affirmative answer
to the CPE conjecture under the cyclic parallel Ricci tensor condition, i.e.,
∇iRjk +∇jRki +∇kRij = 0.

Theorem 2.11 ([6], Theorem 2). The Conjecture 1.2 is true for 3-dimen-
sional manifolds with cyclic parallel Ricci tensor.

Availing the similarity between CPE metrics and vacuum static spaces,
Qing and Yuan [25] made progress about Besse’s conjecture and the clas-
sification vacuum static spaces. Specifically, for n = 3 they showed:

Theorem 2.12 ([25], Theorem 1.3). Conjecture 1.2 holds for a compact
Riemannian 3-manifold with no boundary with nonnegative complete di-
vergence C = Cijk,

ijk of the Cotton tensor.
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In general dimensions they proved that the Conjecture 1.2 is true for
Bach flat manifolds.

Theorem 2.13 ([25], Theorem 3.10). Suppose that (Mn, g), n ≥ 3, is a
Bach flat CPE manifold. Then (Mn, g) is isometric to a round sphere.

In Silva Filho [14], it was proved that a CPE metric admitting a non-
trivial closed conformal vector field must be isometric to a round sphere
metric, which provides another partial answer to the CPE conjecture.
More precisely, he proved the following result.

Theorem 2.14 ([14], Theorem 1.5). Let (Mn, g, f) be a CPE metric which
admits a non-trivial closed conformal vector field. Then (Mn, g) is isome-
tric to a round sphere Sn.

Regarding conditions on the potential function f of the CPE metric
(Mn, g, f) we highlight three results. The first one by Hwang [17].

Theorem 2.15 ([17], Lemma 1). A CPE metric (Mn, g, f) with f > −1

is Einstein.

Then, in 2015, Neto [23] provided a necessary and sufficient condition
on the norm of the gradient of the potential for a CPE metric to be Einstein
as follows.

Theorem 2.16 ([23], Theorem 1). Let (Mn, g, f) be an n-dimensional
CPE metric. Then (Mn, g) is Einstein if and only if

|∇f |2 + Rf2

n(n− 1)
= α,

where α is a constant.

In the same year, Filho [15] gave sufficient integral conditions on f for
a CPE metric to be isometric to the round sphere.

Theorem 2.17 ([15], Theorem 1). Let (Mn, g, f) be CPE metric. Then
(Mn, g) is isometric to round sphere and f is a first eigenfunction of the
Laplacian, provided that
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1.
∫
M |∇f |4dMg =

(n+2)R2
g

3n(n−1)2

∫
M f4dMg, and

2.
∫
M f3dMg ≥ 0.

The list of results presented above is not intended to be an exhaustive
one. Indeed, this research area is very fruitful. Finally, it is worth men-
tioning the recent work by Colombo, Mari and Rigoli [13] in which they
studied an extension of the CPE conjecture to manifolds which support a
structure relating curvature to the geometry of a smooth function φ into
a target Riemannian space.

For proofs of mentioned results and more details we refer the reader
to the original sources. Next section we mention a new approach on this
matter made by the first author.

3 Besse’s Conjecture with a new geometric point
of view

Motivated by these works and others, in [2] the first author provided a
necessary and sufficient condition for a CPE metric to be Einstein for n ≥
3, improving the understanding about CPE metrics and Besse’s conjecture
with a new geometric point of view that involves the potential function f

inherited by the CPE condition. We recall some definitions and results.
Let (Mn, g) be an n-dimensional Riemanian manifold, n ≥ 3. The

σ2-curvature, which will be denoted by σ2(g), is as a nonlinear map σ2 :

M → C∞(M), defined as the second elementary symmetric function of
the eigenvalue of the Schouten tensor. In this case, we obtain that

σ2(g) = −1

2
|Ricg|2 +

n

8(n− 1)
R2

g. (3.1)

Motivated by works of Fischer and Marsden [16] and Lin and Yuan
[22], in [26] was proved that the linearization of the σ2-curvature at the
metric g,

Λg : S2(M) → C∞(M),
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is given by

Λg(h) =
1

2

〈
Ricg,∆gh+∇2trgh+ 2δ∗δh+ 2R̊(h)

〉
− n

4(n− 1)
Rg

(
∆gtrgh− δ2h+ ⟨Ric, h⟩

)
,

where δ∗ is the L2-formal adjoint of δ and R̊(h)ij = gklgstRkijshlt.

Thus, its L2-formal adjoint, Λ∗
g : C∞(M) → S2(M), is

Λ∗
g(f) =

1

2
∆g(fRicg) +

1

2
δ2(fRicg)g + δ∗δ(fRicg) + fR̊(Ricg)

− n

4(n− 1)

(
∆g(fRg)g −∇2(fRg) + fRgRicg

)
.

This implies that

trgΛ
∗
g(f) =

2− n

4
Rg∆gf +

n− 2

2
⟨∇2f,Ricg⟩ − 2σ2(g)f. (3.2)

Note that,

Λ∗
g(1) =

1

2
∆gRicg −

1

4(n− 1)
(∆gRg)g +

2− n

4(n− 1)
∇2Rg

+ R̊(Ricg)−
n

4(n− 1)
RgRicg. (3.3)

Then, by (3.2) and (3.3) we obtain

trgΛ
∗
g(1) = −2σ2(g) (3.4)

and
divgΛ

∗
g(1) = −1

2
dσ2(g). (3.5)

The relations (3.4) and (3.5) are similar to the relations between the
Ricci tensor and the scalar curvature, namely Rg = trgRicg and divgRicg =
1
2dRg.

In [26] was introduced the notion of σ2-singular space, which has the
L2-formal adjoint of the linearization of the σ2-curvature map with non-
trivial kernel, and under certain hypotheses it was proved rigidity and
other results.
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Definition 3.1. A complete Riemannian manifold (M, g) is σ2-singular if

kerΛ∗
g ̸= {0},

where Λ∗
g : C∞(M) → S2(M) is the L2-formal adjoint of Λg. We will call

the triple (Mn, g, f) as a σ2-singular space if f is a nontrivial function in
kerΛ∗

g.

On the other hand, the first author together with Silva Santos obtained
the following rigidity result for σ2-singular Einstein manifolds with positive
σ2-curvature.

Theorem 3.2 ([26], Theorem 3). Let (Mn, g, f) be a closed σ2-singular
Einstein manifold with positive σ2-curvature. Then (Mn, g) is isometric

to the round sphere with radius r =
(
n(n−1)

Rg

) 1
2 and f is an eigenfunction

of the Laplacian associated to the first eigenvalue Rg

n−1 on Sn(r). Hence

dim kerΛ∗
g = n+ 1 and

∫
M

fdvg = 0.

The next lemma is crucial for the result in [2].

Lemma 3.3. Let (Mn, g, f) be an n-dimensional CPE metric, then

trgΛ
∗
g(f) =

(
n− 2 + nf

2

)
|R̊ic|2.

Proof. Since (Mn, g, f) is an n-dimensional CPE metric, then f satisfies
the equation (1.3)

∇2
gf = R̊icg +

(
Ricg −

Rg

n− 1
g

)
f. (3.6)
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Thus, by equations (1.6), (3.1) and (3.6), we get

trgΛ
∗
g(f) =

2− n

4
Rg

(
−Rg

(n− 1)

)
f

+
n− 2

2

〈
R̊icg +

(
Ricg −

Rg

n− 1
g

)
f,Ricg

〉
+

(
|Ricg|2 −

n

4(n− 1)
R2

g

)
f

=
n− 2

2
|R̊icg|2 +

n

2

(
|Ricg|2 −

R2
g

n

)
f

=

(
n− 2 + nf

2

)
|R̊icg|2.

This proves the result.

We recall Lemma 2 in [26]: if (Mn, g) is Einstein, then

Λ∗
g(f) =

Rg(n− 2)2

4n(n− 1)

(
∇2f − (∆gf)g −

Rg

n
fg

)
. (3.7)

Now, we can announced the first result in this section.

Theorem 3.4. Let (Mn, g, f) be an n-dimensional CPE metric with non-
constant potential function f and n ≥ 3. Then (Mn, g) is Einstein if and
only if f ∈ kerΛ∗

g, where Λg : S2(M) → C∞(M) is the linearization of
the σ2-curvature and Λ∗

g is the L2-formal adjoint of the operator Λg, i.e.,
(Mn, g, f) is a σ2-singular space.

As an immediate consequence, we obtain the following result.

Corollary 3.5. Let (Mn, g, f) be an n-dimensional CPE metric with non-
constant potential function f and n ≥ 3. If f ∈ kerΛ∗

g, then (Mn, g) is

isometric to the round sphere with radius r =
(
n(n−1)

Rg

) 1
2 and f is an

eigenfunction of the Laplacian associated to the first eigenvalue Rg

n−1 on

Sn(r). Hence, dimkerΛ∗
g = n+ 1 and

∫
M

fdvg = 0.
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As already mentioned, the CPE equation is related to vacuum static
space. In particular, the local scalar curvature rigidity is an interesting
problem related to the vacuum static equation (1.2). This problem is
closed related with the Conjecture of Min-Oo on Sm+ , for more details in
this sense see [10].

Moreover, we observe that if (Mn, g) is a closed Riemannian manifold
and kerΛ∗

g ∩ ker γ∗g ̸= {0}, then (Mn, g) is an Einstein manifold. Thus, it
is isometric to the standard sphere Sn.

Theorem 3.6. Let (Mn, g, f) be an n-dimensional closed static vacuum
space, n ≥ 3. Then (Mn, g) is Einstein if and only if the space (Mn, g, f)

is σ2-singular. If f is a non-constant function (Mn, g) has to be isometric
to the standard sphere Sn, in the other case (Mn, g) has to be Ricci flat.

Lin and Yuan have proved in [22] other results about deformation of
Q-curvature involving the kernel of Γ∗

g, where Γg : S2(M) → C∞(M) is
the linearization of the Q-curvature and Γ∗

g is the L2-formal adjoint of the
operator Γg. In particular, they proved rigidity and other results, including
an analogous result to our Theorem 3.6 in the context of Q-singular spaces.

We can summarize the above results in the following assertions.

Corollary 3.7. Let (Mn, g) be an n-dimensional closed oriented manifold
with n ≥ 3 and f be a non-constant function defined in M. We consider
the following statements:

i) (Mn, g, f) is a CPE metric;

ii) (Mn, g, f) is a vacuum static space;

iii) (Mn, g, f) is a σ2-singular space.

If any two of the statements hold, we have that (Mn, g) is isometric to
the standard sphere Sn. In particular, if any two statements are true, the
other one is also true.
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We can observe that if (Mn, g) is a closed Einstein manifold with neg-
ative scalar curvature, then (Mn, g) can not be a σ2-singular space. In
fact, if f ∈ ker(Λ∗

g) is a non-constant function and Rg ̸= 0, we obtain
from equations (1.5), (1.6) and (1.7), that Rg > 0. In this way the we can
rewrite Corollary 3.7 as the following.

Corollary 3.8. Let (Mn, g) be an n-dimensional closed oriented manifold
with n ≥ 3 and f be a non-constant function defined in M. We consider
the following statements:

i) (Mn, g, f) is a CPE metric.

ii) (Mn, g, f) is a vacuum static space.

iii) (Mn, g, f) is a σ2-singular space.

iv) (Mn, g) is an Einstein manifold with Rg > 0.

If any two of the statements hold, we have that (Mn, g) is isometric to
the standard sphere Sn. In particular, if any two statements are true, the
others are also true.

All proofs for these results in this section can be found in [2].
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