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On a variational inequality for a beam
equation with internal damping and

source terms
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Abstract. In this paper we investigate the unilateral problem for a
extensible beam equation with internal damping and source terms

utt +∆2u+M(|∇u|2)(−∆u) + ut = |u|r−1u

where r > 1 is a constant, M(s) is a continuous function on [0,+∞).
The global solutions are constructed by using the Faedo-Galerkin
approximations, taking into account that the initial data is in appro-
priate set of stability created from the Nehari manifold.
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1 Introduction

In [22] the authors establish existence of global solution to the problem

utt + ∆2u+M(|∇u|2)(−∆u) + ut = |u|r−1u (1.1)

u(., 0) = u0, ut(., 0) = u1 in Ω, (1.2)

u(., t) =
∂u

∂η
(., t) in ∂Ω, t ≥ 0, (1.3)
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where Ω is a bounded domain of Rn with smooth boundary ∂Ω , r > 1

is a constant and M(s) is a continuous function on [0,+∞), u = 0 is
the homogeneous Dirichlet boundary condition and the normal derivative
∂u

∂η
= 0 is the homogeneous Neumann boundary condition, where η unit

outward normal on ∂Ω. In this work they use the potential well theory
which approach is different from those in [11, 28]. In [11], the existence of
global solutions was proved by means of the Fixed point theorem and the
asymptotic behavior was obtained by using the perturbed energy method.
In [28], the global existence and the longtime dynamics of solutions were
considered by using semigroup theory.

The physical meaning of the clamped boundary conditions (1.3) is that,
with the natural boundary conditions, we imposed no a priori conditions
on the function space and it turns out that a weak solution automatically
satisfies the boundary conditions.

In 1955, Berger [8] established the equation

utt −
(
Q+

∫
Ω
|∇u|2dx

)
∆u = p(u, t, x), (1.4)

which is called the Berger plate model, where the parameter Q describes
in-plane forces applied to the plate and the function p represents transverse
loads which may depend on the displacement u and the velocity ut . If
n = 2, the equation (1.4) represents the "Berger approximation" of the
Von Kárman equations, modelling the nonlinear vibrations of a plate (see
[25], pg. 501-507). When n = 1 and p = 0, the corresponding equation had
been introduced by Woinowsky-Krieger [26] as a model for the transverse
motion of an extensible beam. It means that the equation (1.1) describes
the transverse deflection of an extensible beam of the length L whose ends
are attached at a fixed distance is the following equation

∂2u

∂t2
+ α

∂4u

∂x4
+

(
β +

∫ L

0
u2ϵ (ϵ, t)dϵ

)(
−∂

2u

∂t2

)
= f,

where α is a positive constant, β is a constant not necessarily positive and
the nonlinear term represents the change in the tension of the beam due
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to its extensibility.
The physical origin of the problem here relates to the study of the dy-

namical buckling of the hinged extensible beam which is either stretched
or compressed by an axial force. The readers could also see in Burgreen [9]
and Eisley [17] for more physical justifications and the model background.

Cavalcanti et al [11] studied the equation

utt +∆2u+M(|∇u|2)(−∆u) + g(ut) + f(u) = 0 (1.5)

with g(s) = |s|ρ−1s and f(s) = |s|γ−1s, where ρ and γ are positives con-
stants such that 1 < ρ, γ ≤ n/(n − 2) if n ≥ 3; ρ, γ > 1 if n = 1, 2. The
global existence and asymptotic stability were proved by means of the fixed
point theorem and continuity arguments.

Zhijian [28] investigated the problem (1.5) more generally as follows

utt +∆2u+M(|∇u|2)(−∆u) + g(ut) + f(u) = h(x),

where the source terms f, g ∈ C1(R), |f ′(s)| ≤ C(1+|s|p−1) andK0|s|q−1 <

g′(s) ≤ C(1 + |s|q−1),K0, C > 0 with 1 ≤ p <∞, 1 ≤ q <∞ if n ≤ 4; 1 ≤
p ≤ p∗ = (n+ 4)/(n− 4) and p ≤ q if n ≥ 5. By Galerkin approximation
combined with the monotone arguments, the author proved the existence
of global solution.

In article [2], Andrade et al. establish existence of global solution to the
problem

utt +∆2u−∆pu+

∫ t

0
g(t− s)∆u(s)ds−∆ut + f(u) = 0, (1.6)

we observe that for viscoelastic plate equation, it is usual consider a mem-

ory of the form
∫ t

0
g(t − s)∆2u(s)ds (e. g. [10, 21]). However, because

the main dissipation of the system (1.1) is given by strong damping −∆ut,
here we consider a weaker memory, acting only on ∆u. There is a large
literature about stability in viscoelasticity. We refer the reader to, for ex-
ample [13, 12].

The equation (1.1) without source terms was studied by several authors
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in different contexts. The problem without damping was considered in
Dickey [16], Ball [4], Medeiros [20], Pereira [23] among others. When the
damping term is considered, the problem was studied by, Brito [7], Biler
[6], Ball [5] see also the references therein.

A nonlinear perturbation of problem (1.1) is given by

utt +∆2u+M(|∇u|2)(−∆u) + ut − |u|r−1u ≥ 0. (1.7)

In the present work we investigated the unilateral problem associated
with this perturbation, that is, a variational inequality given for (1.7) (see
[19]). Making use of the penalty method, the potential well theory and
Galerkin’s approximations, we establish existence and uniqueness of global
solutions.

Unilateral problem is very interesting too, because in general, dynamic
contact problems are characterized by nonlinear hyperbolic variational in-
equalities. For contact problem on elasticity and finite element method
see Kikuchi-Oden [18] and reference there in. For contact problems on
viscoelastic materials see [21]. For contact problems on Klein-Gordon op-
erator see [24]. For contact problems on Oldroyd Model of Viscoelastic
fluids see [15]. For contact problems on Navier-stokes Operator with vari-
able viscosity see [14]. For contact problems on viscoelastic plate equation
(1.6) see [3].

This work is organized as follows: In the Section 2, we introduce some
notations and the stability set created from the Nehari Manifold. In the
Section 3, we present the main theorem. In Section 4 we prove the exis-
tence of strong solution through the Faedo-Galerkin method and finally in
Section 5 we prove a simple result of uniqueness.

.

2 Notations and The potential well

Let Ω be a bounded domain in Rn with the boundary Γ of class C2.
For T > 0, we denote by Q the cylinder Ω× (0, T ), with lateral boundary
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Σ = Γ × (0, T ). By ⟨., .⟩ we will represent the duality pairing between X

and X ′, X ′ being the topological dual of the space X, and by C we denote
various positive constants.

We propose the variational inequality

utt +∆2u+M(|∇u|2)(−∆u) + ut − |u|r−1u ≥ 0 in Q (2.1)

This inequality is satisfied in a certain sense, that is, we formulate the
problem as follows.

Let K = {v ∈ H1
0 (Ω); v ≥ 0 a.e. in Ω} a closed and convex subset of

H1
0 (Ω), the variational problem is to find a solution u(x, t) satisfying∫

Q
(utt+∆2u+M(|∇u|2)(−∆u)+ut − |u|r−1u)(v − ut) ≥ 0,∀v ∈ K, (2.2)

with ut(x, t) ∈ K a. e. on [0, T ] and talking the initial and boundary data

u = 0, ut = 0 on Σ,

u = ∆u = 0 on Σ, (2.3)

u(., 0) = u0, ut(., 0) = u1 in Ω.

In order to formulate problem (2.1) we need some notations about Sobolev
spaces. We use standard notation of L2(Ω), Lp(Ω), Wm,p(Ω) and Cp(Ω)

for functions that are defined on Ω and range in R. To complete this recall
on functional spaces, see for instance Lions [19]. Particularly we denote
the inner product and norm in H1

0 (Ω) and L2(Ω) , respectively, by

((u, v)) =

n∑
i=1

∫
Ω

∂u

∂xi
(x)

∂v

∂xi
(x) dx, ∥u∥2 =

n∑
i=1

∫
Ω

(
∂u

∂xi
(x)

)2

dx and

(u, v)=

∫
Ω
u(x)v(x) dx, |u|2 =

∫
Ω
|u(x)|2 dx.

It is well-known that the energy of a PDE system, in some sense, splits
into the kinetic and the potential energy. By following the idea of Y. Ye
[27], we are able to construct a set of stability. We will prove that there
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is a valley or a well of the depth d created in the potential energy. If d
is strictly positive, then we find that, for solutions with the initial data in
the good part of the potential well, the potential energy of the solution
can never escape the potential well. In general, it is possible that the
energy from the source term causes the blow-up in a finite time. However,
in the good part of the potential well, it remains bounded. As a result,
the total energy of the solution remains finite on any time interval [0, T),
providing the global existence of the solution. We started by introducing
the functional J : H1

0 (Ω) ∩H2(Ω) → R definid by

J(u) =
1

2
|∆u|2 + m0

2
|∇u|2 − 1

r + 1
|u|r+1

r+1.

For u ∈ H1
0 (Ω) ∩H2(Ω), we have

J(λu) =
λ2

2
|∆u|2 + m0λ

2

2
|∇u|2 − λr+1

r + 1
|u|r+1

r+1, λ > 0

Associated with J , we have the well-known Nehari Manifold given by

N def
=

{
u ∈ H1

0 (Ω) ∩H2(Ω) \ {0};
[
d

dλ
J(λu)

]
λ=1

= 0

}
equivalently,

N =
{
u ∈ H1

0 (Ω) ∩H2(Ω)) \ {0}; |∆u|2 +m0|∇u|2 = |u|r+1
r+1.

}
.

We define as in the Mountain Pass theorem due to Ambrosetti and Rabi-
nowitz [1]

d
def
= inf

u∈(H1
0 (Ω)∩H2(Ω)\{0}

sup J(λu)λ≥0.

It is well-known for 1 < r ≤ 5 that the depth of the well is a real constant
strictly positive ([25], theorem 4.2) and d = inf

u∈N
J(u). We now introduce

the potential well

W = {u ∈ H1
0 (Ω) ∩H2(Ω); J(u) < d} ∪ {0}

and partition it into two sets as follows

W1 =

{
u ∈ H1

0 (Ω) ∩H2(Ω);
1

2
|∆u|2 + m0

2
|∇u|2 > 1

r + 1
|u|r+1

r+1.

}
∪ {0}
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and

W2 =

{
u ∈ H1

0 (Ω) ∩H2(Ω);
1

2
|∆u|2 + m0

2
|∇u|2 < 1

r + 1
|u|r+1

r+1

}
.

We will refer to W1 as the "good" part of the potential well. Then we
define by W1 the set of stability for the problem (1.1)-(1.3).

To study the existence and uniqueness of the problem (2.2)-(2.3), let us
consider the following hypothesis

(H1) M ∈ C1([0,∞)) with M(λ) ≥ m0 > 0, ∀λ ≥ 0.

(H2) (r − 1)n ≤ rn ≤ q =
2n

n− 2
, n > 2.

Next we shall state the main results of this paper.

3 Main Results

Theorem 3.1. Consider the spaces

H4
Γ(Ω) = {u ∈ H4(Ω)|u = ∆u = 0 on Γ} and similarly

H3
Γ(Ω) = {u ∈ H3(Ω)|u = ∆u = 0 on Γ}.

If u0 ∈ W1 ∩ H4
Γ(Ω), J(u0) < d, u1 ∈ H1

0 (Ω) ∩ H2(Ω), 1 < r ≤ 5 and the
hypothesis (H1) and (H2) holds, then there exists a function u : [0, T ] →
L2(Ω) in the class

u ∈ L∞(0, T ; (H1
0 (Ω) ∩H2(Ω)) ∩H3

Γ(Ω) ∩ Lr+1(Ω)) (3.1)

ut ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω) ∩H2(Ω)) (3.2)

utt ∈ L∞(0, T ;L2(Ω)) (3.3)

ut(t) ∈ K a.e. in [0, T ], (3.4)

satisfying∫
Q
(utt +∆2u+M(|∇u|2)(−∆u) + ut − |u|r−1u)(v − ut) ≥ 0,

∀v ∈ L2(0, T ;H1
0 (Ω)), v(t) ∈ K a.e. in t

u(0) = u0, ut(0) = u1

(3.5)
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The proof of Theorem 3.1 is made in Section 4 by the penalization
method. It consists in considering a perturbation of the problem (1.1)
adding a singular term called penalty, depending on a parameter ϵ > 0.
We solve the mixed problem in Q for the penalization operator and the
estimates obtained for the local solution of the penalized equation, allow
to pass to limits, when ϵ goes to zero, in order to obtain a function u which
is the solution of our problem.

First of all, let us consider the penalization operator

β : L2(Ω) −→ L2(Ω)

associated to the closed convex set K, cf. Lions [19], p. 370. The operator
β is monotonous, hemicontinuous and takes bounded sets of H1

0 (Ω) into
bounded sets of H−1(Ω), its kernel is K and

β : L2(0, T ;L2(Ω)) −→ L2(0, T ;L2(Ω))

is equally monotone and hemicontinous. The penalized problem associated
with the variational inequality (3.5), consists in given 0 < ϵ < 1, find uϵ

satisfying

uϵtt + ∆2uϵ +M(|∇uϵ|2)(−∆uϵ) + uϵt+
1

ϵ
(β(uϵt))= |uϵ|r−1uϵ inQ (3.6)

uϵ = 0 on Σ

uϵt = 0 on Σ, (3.7)

uϵ(x, 0) = uϵ0(x), uϵt(x, 0) = uϵ1(x) in Ω.

Definition 3.2. A strong solution to the boundary value problem (3.6)-
(3.7) is a functions uϵ,

uϵ ∈ L∞(0, T ; (H1
0 (Ω) ∩H2(Ω)) ∩ Lr+1(Ω)),

uϵt ∈ L∞(0, T ;L2(Ω)),
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satisfying for all φ ∈ H1
0 (Ω) ∩H2(Ω)

(uϵtt, φ) + (∆2uϵ, φ) + (M(|∇uϵ|2)(−∆uϵ), φ) + (uϵt, φ) (3.8)

+
1

ϵ
((β(uϵt)), φ) = (|uϵ|r−1uϵ, φ) in D′(0, T )

uϵ(0) = uϵ0, u
ϵ
t(0) = uϵ1,

The solution of problem (3.6)-(3.7) is given by the following theorem:

Theorem 3.3. Assume that hypotheses (H1) and (H2) holds,

uϵ0 ∈W1, J(u
ϵ
0) < d, 1 < r ≤ 5 and (3.9)

uϵ1 ∈ L2(Ω). (3.10)

Then, for each 0 < ϵ < 1, there exists a function uϵ with

uϵ ∈ L∞(0, T ; (H1
0 (Ω) ∩H2(Ω)) ∩ Lr+1(Ω)),

uϵt ∈ L∞(0, T ;L2(Ω)),

strong solution of (3.6)-(3.7).

4 Proof of the Results

Proof of Theorem 3.3. In order to prove Theorem 3.1, we first
prove the penalized Theorem 3.3. The existence of solutions will be given
by using Faedo-Galerkin approximations.

Let {wj} be the Galerkin basis given by eigenfunctions of ∆2 and let
Vm ⊂ N be the subspace spanned by the vectors w1, w2, ..., wm. Given
initial date uϵ0 ∈W1, J(uϵ0) < d and uϵ1 ∈ L2(Ω), we a search for a function

uϵm(t) =
m∑
j=1

gjm(t)wj , j = 1, 2, ...m, ∀wj ∈ Vm
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solution of approximate problem

(uϵmtt (t), w) + (∆uϵm(t),∆w) +M(|∇uϵm(t)|2)⟨−∆uϵm(t), w⟩

+(uϵmt (t), w)+
1

ϵ
⟨β(uϵmt )(t), w⟩−⟨|uϵm(t)|r−1uϵm(t), w⟩=0,∀w ∈ Vm

(4.1)

with initial conditions

uϵm(0)=uϵm0 → uϵ0 ∈ H1
0 (Ω) ∩H2(Ω), uϵmt (0)=uϵm1 → uϵ1 ∈ L2(Ω) (4.2)

The system of ordinary differential equation (4.1) has a solution on a in-
terval [0, tm[, 0 < tm < T . The first estimate permits us to extend this
solution to the whole interval [0, T ].

Remark 4.1. In order to obtain a better notation, we omit the parameter
ϵ in the approximate solutions.

FIRST ESTIMATE. Substituting w = umt (t) in (4.1) it follows

d

dt

[
1

2

(
|umt (t)|2 + |∆um(t)|2 + M̂(|∇um(t)|2)

)
− 1

r + 1
|um(t)|r+1

r+1

]
+|umt (t)|2 ≤ 0

(4.3)

because (β(umt (t)), umt (t)) ≥ 0 and M̂(s) =

∫ s

0
M(ξ)dξ.

Integrating (4.3) from 0 to t we obtain

1

2
|umt (t)|2 +

1

2
|∆um(t)|2 + 1

2
M̂(|∇um(t)|2)− 1

r + 1
|um(t)|r+1

r+1

+

∫ t

0
|umt (t)|2ds ≤ 1

2
|um1 |2 + 1

2
|∆um0 |2 (4.4)

+
1

2
M̂(|∇um0 |2)− 1

r + 1
|um0 |r+1

r+1

Now,

M̂(|∇um0 |2) ≤ m1|∇um0 |2, (4.5)

where m1 = max
0≤s≤|∇um

0 |2≤C0

M(s), C0 is a positive constant independent of

m and t . Therefore, the approximate energy

Em(t) =
1

2
|umt (t)|2 + 1

2
|∆um(t)|2 + 1

2
M̂(|∇um(t)|2)− 1

r + 1
|um(t)|r+1

r+1
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satisfies
Em(t) ≤ Em(0) ≤ 1

2
|um1 |2 + C1J(u

m
0 ),

where C1 > 0 is a constant independent of m and t. We have that
J(um0 ) < d and by convergence (4.2)2, there exists a constant C2 > 0

independent of m and t such that
1

2
|um1 |2 ≤ C2. So, there exists a constant

C3 > 0 such that
Em(t) ≤ Em(0) < C3.

By (H1) , M̂(|∇um(t)|2) ≥ m0|∇um(t)|2, then

1

2
|umt (t)|2+1

2
|∆um(t)|2+m0

2
|∇um(t)|2− 1

r + 1
|um(t)|r+1

r+1≤Em(t)<C3 (4.6)

Returning to the notation uϵm , the first estimate (4.6) implies that

(uϵm) is bounded in L∞(0, T ; (H1
0 (Ω) ∩H2(Ω)) ∩ Lr+1(Ω))

(uϵmt ) is bounded in L∞(0, T ;L2(Ω))
(4.7)

From the estimates (4.7), there exists a subsequence of (uϵm), still denoted
by (uϵm), such that

uϵm → uϵ weakly star in L∞(0, T ;H1
0 (Ω) ∩H2

0 (Ω)) (4.8)

uϵm → uϵ weakly star in L∞(0, T ;Lr+1(Ω)) (4.9)

uϵmt → uϵt weakly star in L∞(0, T ;L2(Ω)) (4.10)

As
(β(uϵmt )) is bounded in L2(0, T ;L2(Ω))

we have

β(uϵmt ) → ψ weakly in L2(0, T ;L2(Ω)) (4.11)

Follows from (4.8), (4.10) and Aubin-Lions Theorem, for any T > 0,

uϵm → uϵ in L2(0, T ;H1
0 (Ω)), strong and a.e. in Q. (4.12)

and since M is continous, it follows

M(|∇uϵm |2) →M(|∇uϵ|2) strongly in L2(0, T ).
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Therefore,

M(|∇uϵm |2)(−∆uϵm)→M(|∇uϵ|2)(−∆uϵ)weakly inL2(0, T ;L2(Ω)).(4.13)

Now, observe that∫ T

0
(|uϵm(t)|r−1uϵm(t))

r+1
r dt ≤

∫ T

0
|uϵm(t)|r+1dt ≤ C,

so

(|uϵm |r−1uϵm) is bounded in L
r+1
r (0, T ;L

r+1
r (Ω)) (4.14)

From the convergence (4.12) and continuity of function s → |s|r−1s it
follows

|uϵm |r−1uϵm → |uϵ|r−1uϵ a.e. in Q.

Therefore, from [19] Lemma 1.3, we have

|uϵm |r−1uϵm ⇀ |uϵ|r+1uϵ weakly in L
r+1
r (0, T ;L

r+1
r (Ω)). (4.15)

To prove that ψ = β(uϵt) we can use the monotony of the operators β (see
Lions [19], chap. 2). With these convergences we can pass to limit in the
terms of the approximate problem (4.1)-(4.2). Therefore, we have proved
the Theorem 3.3.

To prove the Theorem 3.1 we will need another estimates

SECOND ESTIMATE
Let’s continue omitting the parameter ϵ. Let us consider data initial

u0 ∈ H4
Γ(Ω), u1 ∈ H1

0 (Ω) ∩H2(Ω)

um0 → u0 in H4
Γ, u

m
1 → u1 in H1

0 (Ω) ∩H2(Ω)

um = ∆um = 0 on Σ

(4.16)

Thanks to the choice of the base {wj}, we can replace w with −∆umt .

d

dt

{
1

2
|∇umt (t)|2 + 1

2
|∇∆um(t)|2

}
+M(|∇um(t)|2)1

2

d

dt
|∆um(t)|2 (4.17)

+ ∥umt (t)∥2 + 1

ϵ
(β(umt (t)),−∆umt (t)) = ⟨|um(t)|r−1um(t),−∆um(t)⟩.
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We observe that

d

dt

{
M(|∇um(t)|2)|∆um(t)|2

}
=M(|∇um(t)|2) d

dt
(|∆um(t)|2) (4.18)

+
d

dt
(M(|∇um(t)|2))|∆um(t)|2=M(|∇um(t)|2) d

dt
(|∆um(t)|2)

+ 2M ′(|∇um(t)|2)((um(t), umt (t)))|∆um(t)|2.

Substituting (4.18) in (4.17), we get

d

dt

{
1

2
|∇umt (t)|2 + 1

2
|∇∆um(t)|2 + 1

2
(M(|∇um(t)|2)|∆um(t)|2)

}
+ ∥umt (t)∥2 ≤ ⟨|um(t)|r−1um(t),−∆um(t)⟩ (4.19)

+ 2M ′(|∇um(t)|2)∥um(t)∥∥umt (t)∥|∆um(t)|2.

because

(β(umt (t)),−∆umt (t)) ≥ 0.

Since

(r − 1)n ≤ q =
2n

n− 2
, n > 2,

we have
1

2
+

1

q
+

1

n
= 1 and H1

0 (Ω) ↪→ Lq(Ω) ↪→ L(r−1)n,

this implies

∥um(t)r−1∥Ln(Ω)=

(∫
Ω
|um(x, t)|(r−1)ndx

) 1
n

=∥um(t)∥r−1
L(r−1)n(Ω)

≤C∥um(t)∥r−1≤C

also ∥∥∥∥∂um(t)

∂xi

∥∥∥∥
Lq(Ω)

≤ C

∥∥∥∥∂um(t)

∂xi

∥∥∥∥ ≤ C

because um ∈ L∞(0, T ;H2(Ω)). Therefore, using Holder inequality, we
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obtain

⟨|um(t)|r−1um(t) ,−∆um(t)⟩=
∫
Ω
|um(x, t)|r−1um(x, t)(−∆umt (x, t))dx

=

n∑
i=1

∫
Ω

∂

∂xi
(|um(x, t)|r−1um(x, t))

∂umt
∂xi

dx

=

n∑
i=1

∫
Ω
r|um(x, t)|r−1∂u

m(x, t)

∂xi

∂umt (x, t)

∂xi
dx (4.20)

≤
n∑

i=1

∫
Ω
r|um(x, t)|r−1

∣∣∣∣∂um(x, t)

∂xi

∣∣∣∣ ∣∣∣∣∂umt (x, t)

∂xi

∣∣∣∣ dx
≤

n∑
i=1

r∥um(t)r−1∥Ln(Ω)

∥∥∥∥∂um(t)

∂xi

∥∥∥∥
Lq(Ω)

∣∣∣∣∂umt (t)

∂xi

∣∣∣∣ (4.21)

≤ C +
1

4
∥umt (t)∥2

Note that (4.7) implies ∥um(t)∥ ≤ C, therefore ∥um(t)∥ ∈ [0, C], for aech
m and t ∈ [0, tm[. Since M ∈ C1([0,∞);R, this implies that

|M ′(∥um(t)∥2) ≤ C, ∀m, t ∈ [0, tm[. (4.22)

Therefore, using (4.22) and (4.7) we can write

2M ′ (|∇um(t)|2)∥um(t)∥∥umt (t)∥|∆um(t)|2 ≤ C +
1

4
∥umt (t)∥2.(4.23)

We observe that

1

2
|∇umt (0)|2 + 1

2
|∇∆um(0)|2 + 1

2
(M(|∇um(0)|2)|∆um(0)|2) ≤ C (4.24)

Integrating (4.19) on (0, t), follows from (4.20), (4.23), (4.24) and (H1)

1

2
∥umt (t)∥2 + 1

2
|∇∆um(t)|2 + 1

2

∫ t

0
∥umt (t)∥2 ≤ C. (4.25)

Returning to the notation uϵm , this implies that

uϵm → uϵ in L∞(0, T ;H3
Γ(Ω)), weakly star. (4.26)

uϵmt → uϵt in L∞(0, T ;H1
0 (Ω)), weakly star (4.27)
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Taking into account (H2) we have

H1
0 (Ω) ↪→ Lq(Ω) ↪→ Lrn,

this implies that

|uϵm(t)|r−1uϵm(t)| ≤ C∥uϵm(t)|r−1uϵm(t)∥Ln(Ω) =

(∫
Ω
(|uϵm(t)|r)n

) 1
n

=

((∫
Ω
(|uϵm(t)|rn

) 1
rn

)r

= ∥uϵm(t)∥rLrn(Ω) (4.28)

≤ C∥uϵm(t)∥rLq(Ω) ≤ C∥uϵm(t)∥r ≤ C

because uϵm ∈ L∞(0, T ;H1
0 (Ω)), therefore

|uϵm |r−1uϵm → |uϵ|r−1uϵ in L∞(0, T ;L2(Ω)) weakly star (4.29)

THIRD ESTIMATE
Taking derivatives in the distribution sense in approximate problem (4.1),
omitting parameter ϵ and considering w = umtt , we obtain using an argu-
ment similar to that in (4.18)

d

dt

[
1

2
|umtt (t)|2 +

1

2
|∆umt (t)|2 +M(|∇um|2)∥umt (t)∥2

]
+ |umtt (t)|2

+
1

ϵ
(β(umt (t))′, umtt (t)) =

(
r|um(t)|r−1umt (t), umtt (t)

)
(4.30)

− 2M ′(|∇um(t)|2)((umt (t), um(t)))((um(t), umtt (t)))

+2M ′(|∇um(t)|2)((umt (t), um(t)))∥umt (t)∥2.

Using previous estimates, the terms of second, third and fourth line of
(4.30) can be increased as follows:

|(r|um(t)|r−1umt (t), umtt (t))| ≤ C∥um(t)∥r−1
Ln(Ω)∥u

m
t (t)∥Lq(Ω)|umtt (t)|

≤ C + 1
4 |u

m
tt (t)|2

(4.31)

| 2M ′(|∇um(t)|2)((umt (t), um(t)))((um(t), umtt (t))) (4.32)

≤ |2M ′(|∇um(t)|2)∥umt (t)∥∥um(t)∥|um(t)||umtt (t)| ≤ C +
1

4
|umtt (t)|2
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| 2M ′(|∇um(t)|2)((umt (t), um(t)))∥umt ∥2| (4.33)

≤ |2M ′(|∇um(t)|2)∥umt (t)∥∥um(t)∥∥umt ∥2 ≤ C

also

(β(umt (t))′,umtt (t))=lim
h→0

(
β(umt (t+h)−β(umt (t))

h
,
umt (t+h)−umt (t)

h

)
≥0 (4.34)

Integrating (4.30) on (0, t) and using (H1) and (4.31)-(4.34), we obtain

1

2
|umtt (t)|2 +

1

2
|∆umt (t)|2 + 1

2

∫ t

0
|umtt (t)|2+ ≤ C. (4.35)

because

1

2
|umtt (0)|2 +

1

2
|∆umt (0)|2 +M(|∇um(0)|2)∥umt (0)∥2 ≤ C

We note that (4.1) implies that |umtt (0)| ≤ C because um0 → u0 in H4
Γ(Ω)

Returning to the notation uϵm we have from (4.35)

uϵmt → uϵt in L∞(0, T ;H1
0 (Ω)H

2(Ω)) weakly star (4.36)

uϵmtt → uϵtt in L∞(0, T ;L2(Ω)) weakly star. (4.37)

Follows from (4.27), (4.36), (4.37) and Aubin-Lions compactness Theorem
that there exists a subsequence from (uϵmt ), still denoted by (uϵmt ), such
that

uϵmt → uϵt strongly in L2(0, T ;H1
0 (Ω)) and a.e. in Q. (4.38)

.
Proof of Theorem 3.1. Finally, we prove the main theorem of this
work. Let v ∈ L2(0, T ;H1

0 (Ω)) be v(t) ∈ K a.e. for t ∈ (0, T ). From (3.6)1
follows that ∫ T

0
(uϵtt, v − uϵt)dt+

∫ T

0
(∆2uϵ, v − uϵt)dt

+

∫ T

0
(M(|∇uϵ|2)(−∆uϵ), v − uϵt) + (uϵt, v − uϵt)

−(|uϵ|r−1uϵ, v − uϵt)dt = −1

ϵ
(β(uϵt), v − uϵt) ≥ 0

(4.39)
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because v ∈ K (β(v) = 0) and β is monotone.
From (4.26), (4.27), (4.37), (4.13), (4.29), (4.38) and the Bannach-

Steinhauss Theorem, it follows that there exists a subnet (uϵ)0<ϵ<1, such
that it converge to u as ϵ→ 0, that is

uϵ → u in L∞(0, T ;H3
Γ(Ω), weakly star, (4.40)

uϵt → ut in L2(0, T ;H1
0 (Ω)), strong and a.e. in Q. (4.41)

∆uϵ → ∆u in L∞(0, T ;L2(Ω)), weakly star. (4.42)

uϵtt → utt in L∞(0, T ;L2(Ω), weakly star (4.43)

|uϵ|r−1uϵ → |u|r−1u in L∞(0, T ;L2(Ω)) weakly star (4.44)

The convergences above are sufficient to pass to the limit in (4.39) with
ϵ > 0 to conclude that (3.5) is valid. To complete the proof of Theorem
3.1, it remains to show that ut(t) ∈ K a.e.

In the position, we observe that using convergences obtained in the
estimates above, making m→ ∞ in (4.1), we can find uϵ such that

uϵtt + ∆2uϵ +M(|∇uϵ|2)(−∆uϵ) + uϵt +
1

ϵ
β(uϵt) (4.45)

= |uϵ|r−1uϵ in L2(0, T ;L2(Ω)),

therefore

β(uϵt) = ϵ[−uϵtt −∆2uϵ −M(|∇uϵ|2)(−∆uϵ)− uϵt + |uϵ|r−1uϵ]. (4.46)

Then
β(uϵt) → 0 in D′(0, T ;L2(Ω)).

From (4.46) it follows that

β(uϵt) is bounded in L2(0, T ;L2(Ω)),
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therefore

β(uϵt) → 0 weak in L2(0, T ;L2(Ω)). (4.47)

On the other hand we deduce from (4.46) that

0 ≤
∫ T

0
(β(uϵt), u

ϵ
t) dt ≤ ϵ C. (4.48)

Thus ∫ T

0
(β(uϵt), u

ϵ
t)dt −→ 0. (4.49)

We have that∫ T

0
(β(uϵt)− β(φ), uϵt − φ) dt ≥ 0, ∀φ in L2(0, T ;H1

0 (Ω)),

because β is a monotonous operator. Thus,∫ T

0
(β(uϵt), u

ϵ
t) dt−

∫ T

0
(β(uϵt), φ) dt−

∫ T

0
(β(φ), uϵt − φ) dt ≥ 0. (4.50)

We have from (4.49), (4.47), (4.50) and (4.41) that∫ T

0
(β(φ), ut(t)− φ) dt ≤ 0. (4.51)

Taking φ = ut − λv, with v ∈ L2(0, T ;H1
0 (Ω)) and λ > 0, we obtain∫ T

0
(β(ut − λv), λv) dt ≤ 0. (4.52)

Multiplying (5.1) by
1

λ
> 0 it follows that

∫ T

0
(β(ut − λv), v) dt ≤ 0. (4.53)

Now, ∫ T

0
(β(ut − λv), v)dt→

∫ T

0
(β(ut, v) dt a.e. in [0, T ],
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because β is hemicontinuous. Therefore

∫ T

0
(β(ut, v) dt ≤ 0 ∀v ∈ L2(0, T ;H1

0 (Ω)).

In particular ∫ T

0
(β(ut, v) dt ≥ 0,

to −v ∈ L2(0, T ;H1
0 (Ω)). These last two inequalities imply that

∫ T

0
(β(ut, v) dt = 0 ∀v ∈ L2(0, T ;H1

0 (Ω)),

therefore

β(ut(t)) = 0, (4.54)

and this implies that ut(t) ∈ K a.e.

5 Uniqueness

Let u1, u2 two solutions of (3.5) and set w = u2 − u1 and t ∈ (0, T ).

Because ut ∈ K, we can talk u1t (resp. u2t) in the inequality (3.5) relative
to v2 (resp. v1) and adding up the results we obtain

−
∫ t

0
(wtt, wt)ds−

∫ t

0
(∆2w,wt)ds+

∫ t

0
(M(|∇u2|2)∆u2, wt)ds

−
∫ t

0
(M(|∇u1|2)∆u1, wt)ds−

∫ t

0
(wt, wt)ds+

∫ t

0
(|u1|r−1u1, wt)ds

−
∫ t

0
(|u2|r−1u2, wt)ds ≥ 0,
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or equivalently

−
∫ t

0
(wtt, wt)ds−

∫ t

0
(∆2w,wt)ds+

∫ t

0
(M(|∇u2|2)∆u2, wt)ds

−
∫ t

0
(M(|∇u2|2)∆u1, wt)ds+

∫ t

0
(M(|∇u2|2)∆u1, wt)ds

−
∫ t

0
(M(|∇u1|2)∆u1, wt)ds−

∫ t

0
(wt, wt)ds+

∫ t

0
(|u1|r−1u1, wt)ds

−
∫ t

0
(|u2|r−1u2, wt)ds = −

∫ t

0
(wtt, wt)ds−

∫ t

0
(∆2w,wt)ds

+

∫ t

0
(M(|∇u2|2)∆w,wt)ds+

∫ t

0
([M(|∇u2|2)−M(|∇u1|2)]∆u1, wt)ds

−
∫ t

0
(wt, wt)ds+

∫ t

0
(|u1|r−1u1, wt)ds−

∫ t

0
(|u2|r−1u2, wt)ds ≥ 0,

By hypotesis (H1), we can use the Mean Value Theorem to write

−
∫ t

0
(wtt, wt)ds −

∫ t

0
(∆2w,wt)ds+

∫ t

0
(M(|∇u2|2)∆w,wt)ds

+

∫ t

0
(M ′(ψ)[|∇u2|2 − |∇u1|2]∆u1, wt)ds (5.1)

+

∫ t

0
(|u1|r−1u1, wt)ds−

∫ t

0
(|u2|r−1u2, wt)ds ≥ 0,

where

|∇u1|2 ≤ ψ ≤ |∇u2|2.

From (5.1) it follows

1

2

∫ t

0

d

dt

(
|wt(s)|2 + |∆w(s)|2

)
ds+

∫ t

0
M(|∇u2(s)|2)

d

dt
∥w(s)∥2ds

≤
∫ t

0
(|u1(s)|r−1u1(s)− |u2(s)|r−1u2(s), wt(s))ds (5.2)

+ 2

∫ t

0
|M ′(ψ)[(|∇u2(s)| − |∇u1(s)|)(|∇u2(s)|+ |∇u1(s)|)]||∆u1(s)||wt(s)|ds.
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Using an argument similar to that in (4.18), from (5.2) it follows

∫ t

0

d

dt

{
|wt(s)|2 + |∆w(s)|2 + 2M(|∇u2(s)|2)∥w(s)∥ds

}
≤ 2

∫ t

0
(|u1(s)|r−1u1(s)− |u2(s)|r−1u2(s), wt(s))ds (5.3)

+ 4

∫ t

0
|M ′(ψ)[(|∇u2(s)| − |∇u1(s)|)(|∇u2(s)|+ |∇u1(s)|)]|∆u1(s)||wt(s)|ds

+ 4

∫ t

0
|M ′(|∇u2(s)|2)|∥u2(s)∥∥u2t(s)∥∥w(s)∥2ds.

The second line of (5.3) can be estimated in the following form:

∫ t

0
(|u1(s)|r−1u1(s)− |u2(s)|r−1u2(s), wt(s))ds

≤
∫ t

0

∫
Ω
||u1(s)|r−1u1(s)− |u2(s)|r−1u2(s)||wt(s)|dxds

≤
∫ t

0

∫
Ω
(|u1(s)|r−1 + |u2(s)|r−1)|w(s)||wt(s)|dxds (5.4)

≤ C

∫ t

0
|u1(s)|r−1

Ln(Ω)|w(s)|Lq(Ω)|wt(s)|+ |u2(s)|r−1
Ln(Ω)∥w(s)∥Lq(Ω)|wt(s)|ds

≤ C

∫ t

0
(|wt(s)|2 + ∥w(s)∥2)ds

because

∥|u|r−1∥Ln(Ω) ≤ C∥u∥r−1 and ∥|u|∥Lq(Ω) ≤ C∥u∥.
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Also, third and fourth lines of (5.3) can be estimated by:

4

∫ t

0
|M ′(ψ)[(|∇u2(s)| − |∇u1|(s))(|∇u2(s)|+ |∇u1(s)|)]|∆u1(s)||wt(s)|ds

+ 4

∫ t

0
|M ′(|∇u2(s)|2)|∥u2(s)∥∥u2t(s)∥∥w(s)∥2ds

≤ 4

∫ t

0
|M ′(ψ)[(|∇u2(s)−∇u1(s)|)(|∇u2(s)|+ |∇u1(s)|)]|∆u1(s)||wt(s)|ds

+ 4

∫ t

0
|M ′(|∇u2(s)|2)|∥u2(s)∥∥u2t(s)∥∥w(s)∥2ds (5.5)

≤ 4

∫ t

0
|M ′(ψ)[∥w(s)∥(|∇u2(s)|+ |∇u1(s)|)]|∆u1(s)||wt(s)|ds

+ 4

∫ t

0
|M ′(|∇u2(s)|2)|∥u2(s)∥∥u2t(s)∥∥w(s)∥2ds

≤ C

∫ t

0
(|wt(s)|2 + ∥w(s)∥2)ds.

Therefore, it follows from (5.3)-(5.5) and H1

|wt(s)|2 + ∥w(s)∥2 ≤ C

∫ t

0
(|wt(s)|2 + ∥w(s)∥2)ds (5.6)

because
wt(0) = w(0) = ∆w(0) = 0

Using Gronwall’s inequality in (5.6), we conclude that w(t) = 0 therefore
u1 = u2.
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