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Abstract. In this note we revise the arguments used to find ground
states solutions for an elliptic system which envolves the Schrödinger
equation coupled with the electrostatic equation of the Born-Infeld
electromagnetic theory. The main difficulties are related to the sec-
ond equation of the system which is nonlinear.
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1 Introduction

In this survey we present some results obtained in [2, 18] on an elliptic
system of interest in physics.

In the last years we noted an increasing interest in studying systems of
equations which model the interaction of the matter with electromagnetic
fields. In particular many theories have been considered which consider
matter equation, such as the the Klein-Gordon or Schrödinger equation
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coupled with equations of the electromagnetic field, such as the Maxwell
equations, or even equations which better describe the electromagnetic
field such as the Bopp-Podolsky or Born-Infeld equation. Actually, without
entering in physical details here, the Maxwell and Bopp-Podolsky equa-
tions are approximations of the more sophisticated Born-Infeld theory in-
troduced in [8, 9].

Roughly speaking, the coupling cited above of a matter field with the
electromagnetic field models a physical situation where a charge particle
interacts with the electromagnetic field generated by its motion in space.
This interaction can be described rigorously by means of the Gauge The-
ories and consists, practically, in changing the differential operators which
appear in the Lagrangian with the so-called “covariant derivatives”. The
search of standing waves solutions, or normal modes, in equilibrium with
its electromagnetic field, in a purely electrostatic situation leads to an el-
liptic system of two coupled equations: the first one related to the matter
field, and the second related to the electric potential which is different
according to the theory of electromagnetic field which is considered.

We studied recently these kind of systems and proved existence and
multiplicity of solutions in many situations. The interested reader may
consult the pioneering paper [5] and the subsequent papers which combines
the Klein-Gordon and the Maxwell equations [6, 12], the Klein-Gordon
and the Born-Infeld equations [11, 28], the Schrödinger and the Maxwell
equations [3, 4, 10, 14, 15, 19, 20, 26, 21, 23, 24], the Schrödinger and the
Bopp-Podolsky equations [1, 13, 16, 25, 22].

In this survey we consider the Schrödinger equation coupled with the
Born-Infeld equation of the electromagnetic field. This system has a la-
grangian LBI , which describes the physical situation better then the la-
grangian used in the Maxwell theory of the electromagnetic field LM . The
price to pay is that the equation of the electrostatic potential is nonlinear,
in contrast to the case of the Maxwell Theory where the Poisson equation
appears.

Coming to our problem, the search of standing waves for the Schrödinger
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equation in equilibrium with its own electrostatic field in the Born-Infeld
theory reduces to find solutions u, ϕ : R3 → R of the following system

−∆u+ u+ ϕu = |u|p−1u in R3,

−div

(
∇ϕ√

1− |∇ϕ|2

)
= u2 in R3,

u(x) → 0, ϕ(x) → 0, as x→ ∞,

(SBI)

to which we will refer as Schrödinger-Born-Infeld system. Here p > 1

and the power like nonlinearity simulates the interaction between many
particles.

A first look at the system suggests that a great attention has to be
paid to the second equation. Indeed in contrast to the Maxwell or Bopp-
Podolsky theory, here the operator is nonlinear and one has to choose the
right space where ϕ has to be. A second difficulty which appears is the fact
that we are working in the whole space where the compact embeddings of
Sobolev spaces are not true. From a variational point of view this brings
some difficulties in order to prove the compactness of Palais-Smale related
to the energy functional. Nevertheless we are able to give some existence
results, which depending on the values of p are based on two different
approaches.

2 Statements of the results

To state correctly our results, some preliminaries are in order. For
what concerns the space where look for the unknown u, the usual Sobolev
space H1(R3) seems to be the correct one. On the other hand, the second
equations forces us to restrict the space where we find the unknown ϕ. It
happens that the right set has to be something of type

X := D1,2(R3) ∩ {ϕ ∈ C0,1(R3) : ∥∇ϕ∥∞ ≤ 1}

where D1,2(R3) is the completion of C∞
c (R3) with respect to the L2−norm

of the gradient.
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Hereafter we denote by ∥ · ∥q the norm in Lq(R3), for q ∈ [1,+∞] and
with ∥ · ∥ the usual norm in H1(R3).

The fact that X should be the right space where to work is corroborated
by the following properties of X which can be seen in [7, Lemma 2.1].

Lemma 2.1. The following assertions hold:

1. X is continuously embedded in W 1,p(R3), for all p ∈ [6,+∞);

2. X is continuously embedded in L∞(R3);

3. if ϕ ∈ X , then lim|x|→∞ ϕ(x) = 0;

4. X is weakly closed;

5. if (ϕn)n ⊂ X is bounded, there exists ϕ̄ ∈ X such that, up to a
subsequence, ϕn ⇀ ϕ̄ weakly in X and uniformly on compact sets.

In particular the above results state that X is the right space where
to search for ϕ, either for the vanishing condition at infinity and for the
Sobolev embedding. A reasonable definition of weak solution is the follow-
ing. We say that a couple (u, ϕ) ∈ H1(R3)×X is a weak solution of (SBI)
if 

∫
R3

∇u · ∇v + uv + ϕuv =

∫
R3

|u|p−1uv∫
R3

∇ϕ · ∇ψ√
1− |∇ϕ|2

=

∫
R3

u2ψ.

for all (v, ψ) ∈ C∞
c (R3) × C∞

c (R3). Unfortunately, as we will se later, we
are forced to work in a radial setting.

Let us introduce then the spaces of radial functions

H1
r (R3) = {u ∈ H1(R3) | u is radially symmetric}

and
Xr = {ϕ ∈ X | ϕ is radially symmetric}.

The main theorems are the following. We state them separately since
different methods have been used to prove the results.
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Theorem 2.2. For any p ∈ (5/2, 5), problem (SBI) possesses a radial
ground state solution, namely a solution (u, ϕ) ∈ H1

r (R3)×Xr minimizing
the functional F among all the nontrivial radial solutions.

A brief explanation has to be done here. We will find solutions by
variational methods, hence as critical points of an energy functional F .
The solution of ground state is by definition a critical point of F which is
at the lower critical level.

Theorem 2.3. The above result also holds for p ∈ (2, 5/2].

We point out that in both results the unknowns u and ϕ are classical
solutions, namely of class C2(R3).

The remaining of the paper is organised as follows. In Section 3 we
give some preliminaries results which are used to set the variational frame-
work of the problem. In Section 4 we recall the arguments used to prove
Theorem 2.2 and in Section 5 we just sketch how to obtain the result in
Theorem 2.3. As we said before, the interested reader is referred to [2, 18]
where all the details, quite technical, can be found.

3 Functional setting and preliminary results

Formally, the system (SBI) comes variationally from the action func-
tional F defined by

F (u, ϕ) =
1

2

∫
R3

(
|∇u|2 + u2

)
+

1

2

∫
R3

ϕu2 − 1

p+ 1

∫
R3

|u|p+1

− 1

2

∫
R3

(
1−

√
1− |∇ϕ|2

)
.

which is well defined for (u, ϕ) ∈ H1(R3) × X . So we are reduced to find
critical points of F and a first variational principle hold:

Proposition 3.1. A pair (u, ϕ) ∈ H1(R3)×X is a weak solution of (SBI)
if and only if it is a critical point of F .
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The proof of this result is standard, although the fact that X is not
a vector space creates a difficulty in particular when we need to make
variations of the functional. Note that to this aim, the radial symmetry is
not necessary.

A further difficulty is related to the fact that the functional is un-
bounded from above and from below. In fact it is easy to exhibit a se-
quence {un} ⊂ H1(R3) such that F (un, 0) → +∞ and, fixed a function
u0 ∈ H1(R3) \ {0}, a sequence {ϕn} ⊂ X such that F (u0, ϕn) → −∞.
However this last obstacle is overcome by a “classical substitution argu-
ment”.

This is done by solving the second equation of (SBI), for any fixed
u ∈ H1(R3). Let us start by considering the functional

E : H1(R3)×X → R

defined as

E(u, ϕ) =

∫
R3

(
1−

√
1− |∇ϕ|2

)
−
∫
R3

ϕu2.

The following lemma states its main properties.

Lemma 3.2. For any u ∈ H1(R3) fixed, there exists a unique ϕu ∈ X
such that the following properties hold:

1. ϕu is the unique minimizer of the functional E(u, ·) : X → R and
E(u, ϕu) ⩽ 0, namely∫

R3

ϕuu
2 ⩾

∫
R3

(
1−

√
1− |∇ϕu|2

)
; (3.1)

2. ϕu ⩾ 0 and ϕu = 0 if and only if u = 0;

3. if ϕ is a weak solution of the second equation of system (SBI), then
ϕ = ϕu and it satisfies the following equality∫

R3

|∇ϕu|2√
1− |∇ϕu|2

=

∫
R3

ϕuu
2.
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Moreover, if u ∈ H1
r (R3), then ϕu ∈ Xr is the unique weak solution of the

second equation of system (SBI).

We observe that we need to require the radial symmetry of u ∈ H1(R3)

because, for a general u fixed, it is easy to show that there exists ϕu the
unique minimizer of the functional E(u, ·) : X → R but we are not able
to say that it is also a weak solution of the second equation of (SBI) (see
[7] for details). However, one can construct also in this case a reduced
functional which is of class C1. Then the restriction to the radial setting
and its necessity appears in virtue of the last sentence of the previous
lemma.

By Lemma 3.2, we can define the following one-variable functional on
H1(R3) as

I(u) = F (u, ϕu)

=
1

2

∫
R3

(
|∇u|2 + u2

)
+

1

2

∫
R3

ϕuu
2 − 1

p+ 1

∫
R3

|u|p+1

−1

2

∫
R3

(
1−

√
1− |∇ϕu|2

)
=

1

2

∫
R3

(
|∇u|2 + u2

)
− 1

p+ 1

∫
R3

|u|p+1 − 1

2
E(u, ϕu).

The proof of this fact is straightforward, in fact it is not known if the
correspondence u 7→ ϕu is C1 and then the result has to be proved by
hands using the definition.

It is convenient of course to restrict I to H1
r (R3) in virtue of the last

statement of Lemma 3.2. This choice is justified also by the fact that
H1

r (R3) is a natural constraint for I in the sense that

I ′(u)[v] = 0 ∀v ∈ H1
r (R3) =⇒ I ′(u)[v] = 0 ∀v ∈ H1(R3).

Indeed I is invariant under the action of O(3) on H1(R3), that is

Tg : u ∈ H1(R3) 7→ u ◦ g ∈ H1(R3), g ∈ O(3).

This can be seen by making use of Lemma 3.2, which gives

E(u, Tg−1ϕTgu) = E(Tgu, ϕTgu) ⩽ E(Tgu, Tgϕu) = E(u, ϕu)
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and so ϕu = Tg−1ϕTgu due to the uniqueness of the minimizer of E(u, ·).
Having ϕTgu = Tgϕu the invariance of I is now evident. Hence we can
apply the Palais Principle of Symmetric Criticality, implying that we can
restrict ourselves to find critical points of I on H1

r (R3).
Standard computations give a second variational principle:

Proposition 3.3. If (u, ϕ) ∈ H1(R3)×X is a weak nontrivial solution of
(SBI), then ϕ = ϕu and u is a critical point of I. On the other hand, if
u ∈ H1

r (R3) \ {0} is a critical point of I, then (u, ϕu) is a weak nontrivial
(radial) solution of (SBI).

Finally, u is a ground state of I if and only if (u, ϕu) is a ground state
of F .

In other words, to find solutions of (SBI) we are reduced to find critical
points of I on H1

r (R3), and in particular the solution of minimal energy of
the system is exactly the ground state of I.

Unfortunately, although we have a power nonlinearity, it is not avail-
able an expression of the functional under the rescaling

t ∈ (0,+∞) 7→ ut := tαu(tβ·) ∈ H1
r (R3),

hence classical rescaling arguments used in other contexts (e.g. for the
Schrödinger-Maxwell system) cannot be used, and this is another difficulty
of the problem.

Another important fact is related to an identity that all the solutions
of (SBI) have to satisfy. This is known as a Pohozaev identity. It states
the following: if (u, ϕ) is a solution of (SBI) of class C2(R3), then the
following identity is satisfied:

1

2

∫
R3

|∇u|2 + 3

2

∫
R3

u2 + 2

∫
R3

|∇ϕ|2√
1− |∇ϕ|2

− 3

2

∫
R3

(
1−

√
1− |∇ϕ|2

)
=

3

p+ 1

∫
R3

|u|p+1.

The proof is made by multiplying the equation by x · ∇u, integrating on
a ball BR, making straightforward computations and passing to the limit
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as R→ +∞. Formally it can be obtained by the equation

d

dt
I(u(tx))

∣∣∣
t=1

= 0.

The details are left to the reader.
The solutions we find using the variational method (by obtaining crit-

ical points of I) are indeed classical, as standard boot-strap arguments
show. The Pohozaev identity is then justified.

Let us pass now to describe the methods we use to find critical points
of I. They are based on suitable modifications of Mountain Pass type
arguments.

4 Sketch of proof of Theorem 2.2

The following technical lemma will be useful to study the geometry of
the functional I. We think it is instructive to present also the proof.

Lemma 4.1. Let q be in [2, 3). Then there exist positive constants C and
C ′ such that, for any u ∈ H1(R3), we have

∥∇ϕu∥
q−1
q

2 ⩽ C∥u∥2(q∗)′ ⩽ C ′∥u∥,

where q∗ is the critical Sobolev exponent related to q and (q∗)′ is its con-
jugate exponent, namely

q∗ =
3q

3− q
and (q∗)′ =

3q

4q − 3
.

Proof. Since ∥∇ϕu∥∞ ⩽ 1 and q ∈ [2, 3) we have

∥ϕu∥q∗ ⩽ C∥∇ϕu∥q = C

(∫
R3

|∇ϕu|2|∇ϕu|q−2

)1/q

⩽ C∥∇ϕu∥2/q2 ,

so, by (3.1) and being 2(q∗)′ ∈ [2, 6], it follows

∥∇ϕu∥22 ⩽ C

∫
R3

(
1−

√
1− |∇ϕu|2

)
⩽ C

∫
R3

ϕuu
2

⩽ C∥ϕu∥q∗∥u∥22(q∗)′ ⩽ C∥∇ϕu∥2/q2 ∥u∥22(q∗)′

and we get the conclusion.
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When p ∈ (5/2, 5) the proof of the main result involves the following
monotonicity trick. See [17, 27].

Proposition 4.2. Let
(
X, ∥·∥

)
be a Banach space and J ⊂ R+ an interval.

Consider a family of C1 functionals Iλ on X defined by

Iλ(u) = A(u)− λB(u), for λ ∈ J,

with B non-negative and either A(u) → +∞ or B(u) → +∞ as ∥u∥ →
+∞ and such that Iλ(0) = 0. For any λ ∈ J , we set

Γλ := {γ ∈ C([0, 1], X) | γ(0) = 0, Iλ(γ(1)) < 0}.

Assume that for every λ ∈ J , the set Γλ is non-empty and

cλ := inf
γ∈Γλ

max
t∈[0,1]

Iλ(γ(t)) > 0.

Then for almost every λ ∈ J , there is a sequence (vn)n ⊂ X such that

(i) {vn}n is bounded in X;

(ii) Iλ(vn) → cλ, as n→ +∞;

(iii) I ′λ(vn) → 0 in the dual space X−1 of X, as n→ +∞.

The importance of the previous result is that it permits to obtain a
critical point of our functional I by means of “approximation”. Indeed,
instead of working with the original functional I we deal with a slight per-
turbation Iλ for which one has a bounded Palais-Smale sequence (whenever
the above result applies), and after some computations, a critical point uλ.
Of course this critical point uλ does not solve our equation, but just an
approximated one, due to the presence of the parameter λ.

Then the idea is to send λ to 1 (since in this case we recover our original
functional I) and control the behaviour of {uλ} in order to achieve a critical
point of I. The advantage of this procedure is that our “approximating
sequence” {uλ} satisfies an identity I ′λ(uλ) = 0 which reveals very useful
in the computations.
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So, in our case X = H1
r (R3)

A(u) =
1

2

∫
R3

(|∇u|2 + u2) +
1

2

∫
R3

ϕuu
2 − 1

2

∫
R3

(
1−

√
1− |∇ϕu|2

)
,

B(u) =
1

p+ 1

∫
R3

|u|p+1.

and by (3.1), A(u) → +∞ as ∥u∥ → +∞.
Then we look for bounded Palais-Smale sequences of the following per-

turbed functionals

Iλ(u) =
1

2

∫
R3

(|∇u|2 + u2) +
1

2

∫
R3

ϕuu
2

− 1

2

∫
R3

(
1−

√
1− |∇ϕu|2

)
− λ

p+ 1

∫
R3

|u|p+1,

for almost all λ near 1.
The fact that the above abstract Proposition 4.2 is applicable, is due

to the following two results, in the first of which Lemma 4.1 has a main
role.

Proposition 4.3. For all λ ∈ [1/2, 1], the set Γλ is not empty.

Proof. Indeed fixed λ ∈ [1/2, 1] and u ∈ H1
r (R3) \ {0}, by Lemma 4.1 and

for q ∈ [2, 3), and standard inequalities we have

Iλ(u) ⩽
1

2
∥u∥2 + 1

2

∫
R3

ϕuu
2 − λ

p+ 1
∥u∥p+1

p+1

⩽
1

2
∥u∥2 + c∥ϕu∥6∥u∥212

5

− λ

p+ 1
∥u∥p+1

p+1

⩽
1

2
∥u∥2 + c∥∇ϕu∥2∥u∥2 −

λ

p+ 1
∥u∥p+1

p+1

⩽
1

2
∥u∥2 + c∥u∥

3q−2
q−1 − λ

p+ 1
∥u∥p+1

p+1.

Therefore, if λ ∈ [1/2, 1] and t > 0, we infer that

Iλ(tu) ⩽ c1t
2 + c2t

3q−2
q−1 − c3λt

p+1.

Since p ∈ (5/2, 5), we can find q ∈ [2, 3) such that Iλ(tu) < 0, for t
sufficiently large.
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Proposition 4.4. For any λ ∈ [1/2, 1], there exist α > 0 and ρ > 0,
sufficiently small, such that Iλ(u) ⩾ α, for all u ∈ H1(R3), with ∥u∥ = ρ.
As a consequence cλ ⩾ α > 0.

Then a standard proof gives the following.

Proposition 4.5. For almost every λ ∈ J , there exists uλ ∈ H1
r (R3),

uλ ̸= 0, such that I ′λ(uλ) = 0 and Iλ(uλ) = cλ.

In this way we have found a nontrivial solution uλ of the following
perturbed equation

−∆u+ u+ ϕuu = λ|u|p−1u in R3 (4.1)

for almost any value of λ near one.
As we said before, the next step is then to deduce the existence of a

non-trivial critical point for I. This is done by using the important fact
that uλ satisfies the equation I ′λ(uλ) = 0 and then, Nehari and Pohozaev
identity are available

d

dt
Iλ(tu(x))

∣∣∣
t=1

= 0 and
d

dt
Iλ(u(tx))

∣∣∣
t=1

= 0.

Indeed writing down and combining the above identities together and then
passing to the limit as λ→ 1 we obtain a nontrivial critical point u∗ of I.

At this stage we do not know if it is actually a ground state for I. But
we define

Sr :=
{
u ∈ H1

r (R3) \ {0} | I ′(u) = 0
}
̸= ∅,

σr := inf
u∈Sr

I(u).

The above infimum is strictly positive. In fact, any u ∈ Sr satisfies

∥u∥2 ⩽
∫
R3

|∇u|2 +
∫
R3

u2 +

∫
R3

|∇ϕu|2√
1− |∇ϕu|2

=

∫
R3

|u|p+1 ⩽ C∥u∥p+1,

and therefore
inf
u∈Sr

∥u∥ > 0.
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Finally from I(u) ⩾ c∥u∥2 for all u ∈ Sr, we conclude.

As a final step, one easily shows that the infimum is achieved and the
existence of a ground state solution for (SBI) is proved.

5 Sketch of proof of Theorem 2.3

To treat the case p < 5/2 we use a different approach. The previous
one based on the monotonicity trick reveals not useful, since it was based
on the fundamental Lemma 4.1 used at the end of the proof of Proposition
4.3. We just resume here the main points used in our arguments.

The “approximated” equation we use now is not (4.1), but the following
one

−∆u+ u+ ϕuu+ λ∥u∥2u = |u|p−1u+ λ|u|q−1u, u ∈ H1
r (R3)

where

• λ ∈ (0, 1],

• q ∈ (max{p+ 1, 4}, 6).

In this context we consider the approximating functional

Jλ(u) = I(u) +
λ

3

(∫
R3

u2
)3/2

− λ

q + 1

∫
R3

|u|q+1

where I is the original functional defined before. The next step is then to
pass, this time, to the limit as λ → 0+, instead of λ → 1. What happens
is that, after straightforward computations, the following properties hold:

• there is a Mountain Pass Geometry for Jλ which is uniform in λ;

• the Mountain Pass level cλ > 0 is controlled:

0 < m ≤ cλ ≤M and cλ → c∗ as λ→ 0;

• Jλ satisfies the PS condition.
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Indeed the following result holds

Lemma 5.1. We have

1. there exist ρ, δ > 0 such that, for any λ ∈ (0, 1], Jλ(u) ≥ δ for every
u ∈ Sρ = {u ∈ E : ∥u∥ = ρ};

2. there is v ∈ H1
r (R3) with ∥v∥ > ρ such that, for any λ ∈ (0, 1],

Jλ(v) < 0.

The above properties were possible due to the “new” perturbation we
used.

Then, having also the Palais-Smale condition satisfied, there is uλ such
that J ′

λ(uλ) = 0 and Jλ(uλ) = cλ.
Now the family {uλ}λ∈(0,1] furnishes a bounded PS sequence for the

original functional I, and after some computations there is a critical point
u∗ for I at the level c∗. The fact that I possesses a ground state is addressed
as in the previous section.

Remark 5.2. We point out that in [18] a more general nonlinearity has
been considered. Indeed we studied the problem

−△u+ u+ ϕu = f(u) in R3,

−div
(

∇ϕ√
1− |∇ϕ|2

)
= u2 in R3,

u(x) → 0, ϕ(x) → 0, as x→ ∞,

with the following assumptions on the nonlinearity f :

1. f ∈ C(R,R) and lims→0 f(s)/s = 0;

2. |f(s)| ≤ C(1 + |s|p) for p ∈ (2, 5);

3. for any s > 0, 0 < ϱF (s) ≤ f(s)s, where ϱ ∈ (3, 4) and F (s) =∫ s
0 f(τ)dτ ,
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which are quite natural when dealing with variational methods. More-
over we get a multiplicity result of solutions, in fact the problem admits
infinitely many solutions (uj , ϕj) ⊂ H1

r (R3) × Xr such that the energy
functional F tends to infinity.

Finally it is worth to note that also the critical case is treated. However
a further assumption due to compactness issues is necessary:

4. there exist D > 0 and 2 < r < 6 such that F (t) ≥ Dtr for t ≥ 0.

We prove then that under the set of assumption (1)-(4) the system has a
ground state solution if (i) r ∈ (4, 6), or (ii) r ∈ (2, 4] and D is sufficiently
large.
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