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1 Definitions, notations and conventions

Given positive integers m and nq, ..., n,, we say that a mapping P :
E™ — R is an (nq,...,nmy,)-homogeneous polynomial if, for each i with

1 <% < m, the mapping
P($1,...,$i,1,-,$i+1,...,$m) EF—R

is an n;-homogeneous polynomial for all fixed x; € E with j # 4. This
kind of map is often referred to as a multipolynomial. Note that it reduces

to an m-linear form when m > 1 and ny = ... = n,, = 1, and to an
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ni-homogeneous polynomial when m = 1. Continuous multipolynomials

are all those bounded over products of the unit ball Bg of E. In that case,
1P| = sup {|P (21, ., &m)| : 21,..., 2 € B}

defines a norm on the space of all continuous (nq, ..., n,,)-homogeneous
polynomials from E™ into R. As for the basics of the theory of multipoly-
nomials between Banach spaces, we refer to |2, 4, 5].

Henceforth ¢y will stand for the classical space of all real-valued se-
quences which vanish at co. The set NU {0} will be denoted by Ny. For

fixed m and ny,...,ny, positive integers, we shall write M := Y " n;.
We shall denote by M, x00(Np) and M, xo0(R) the set of all m x oo semi-
infinite matrices with entries in Ny and R, respectively. If x; := (24j);

and o; := (oyj;); are the ith row of z € M, x0o(R) and o € My, x00(Nop),
respectively, such that the summation of the entries of «; is |a;| = n; € No,
we shall write mlal = Hj a:;;” for each 7 with 1 <4 <m.

Similar to the polynomial case (see, e.g. [1, p. 392|), with the aid
of the above notation, one may show that every continuous (ni,...,nm,)-

homogeneous polynomial P : ¢y X --+ X ¢g — R can be written as

P(x1,...,2m) = anx?l Ceegom

for all x1,...,x, € ¢g, where ¢, € R and where the summation is taken
over all matrices @ € M, x00(No) such that |a;| = n;, for each ¢ with
1<t <m.

2 Main Results

The multipolynomial Bohnenblust-Hille inequality [4] for real scalars
asserts that for all positive integers m and nq,...,n,, there exists a con-
stant Cp; > 1 such that

3 lca| 3141 < O |1P] (2.1)

|a1|=n1,...,|am|=nm
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for all continuous (n1,...,n,,)-homogeneous polynomials P : ¢y X - -+ X
co — R.
By fixing m > 1 and choosing n; = ... = n,, = 1 in the above

inequality, it reduces to the Bohnenblust-Hille inequality for m-linear forms
(see [3, Inequality 1.1]). At the other extremity, by setting m = 1 and then
choosing any positive integer n; = m, we recover the Bohnenblust-Hille
inequality for m-homogeneous polynomials (see [1, Inequality 1.2]).

In [3, Sec. 5], the best lower bound for the constants in the Bohnenblust-

Hille inequality for m-linear forms is given by

C > 2" (2.2)
for every m > 2. As for the constants in the Bohnenblust-Hille inequality
for m-homogeneous polynomials, the best-obtained estimate in [1, Theo-

rem 2.2| is given by

()%
DRy > —%—

= if m is even
2

and
m=1 Ttl
(1577
Dgyy > ~———— if m # 1 is odd.
=
2-(3) ?
In any case, we have
Dy, > (1.17)™, (2.3)

which holds, therefore, for every positive integer m > 1.
In [6], we adapt the techniques due to [1| and [3] aiming to yield non-
trivial lower bounds for Cj in (2.1). To do so, we let f and g denote the

real-valued functions defined by means of the equations

,ifnz':1

2 , if n; is even

372 ,if n; # 1 is odd

1
f(ni) =43
4
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and

,ifnizl

|3

ot
~—

g(ni) = , if n; is even

n;—1

2 ,ifn; #11is odd

N~ =

~—~
ot
~—

for each 7 with 1 <7 <m.
The following result proved in [6] provides proper lower bounds for C),

and, in extreme cases, recovers the estimates (2.2) and (2.3).

Theorem 2.1. Let Cpy > 1 be a constant as in the inequality (2.1). Then

(AL f () -+ f () 20
OV 2 g () - g ()

for all positive integers m and nyi, ..., Ny

As we mentioned, the classical multilinear and polynomial estimates
can be derived from this result. Indeed, it reduces to the best estimate
(2.2) for the m-linear constants C,, when m > 1 and ny = ... =n,, = L.
An application of the theorem by assuming m = 1 and then ny = m, on

the other hand, yields the more accurate lower bound (2.3) for Dg .
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